
Formula SAE Power Distribution

Controller
by

Daniel Baron

Advisor: Professor Bridget Benson

Electrical Engineering Department

California Polytechnic State University

San Luis Obispo

2017

1

Table of Contents Page

Table of Contents 1

List of Tables 2

List of Figures 3

Abstract 5

1. Background and Introduction 6

2. Customer Archetype, Needs, Requirements, and Specifications 10

3. Functional Decomposition 17

4. Project Planning 21

5. Project Design 23

6. Testing and Integration 33

7. Conclusions 43

References 44

Appendix A: Senior Project Analysis 45

Appendix B: Hardware Schematics 51

Appendix C: Bill of Materials 58

Appendix D: Wiring Guide and Device Setup 59

Appendix E: Testing details and data 63

Appendix F: Code 73

2

List of Tables Page

Table 1.1: Market research and competing products 9

Table 2.1: Customer Needs 13

Table 2.2: Marketing Requirements 14

Table 2.3: Engineering Requirements 15

Table 2.4: Project Deliverables 16

Table 4.1: General cost breakdown 21

Table 6.1: Engineering Requirements Test Summary 34

Table A.1: Original Cost Estimate 46

Table C.1: Bill of Materials 58

Table D.1: Pin Functions List 59

Table D.2: Output Condition References 62

Table E.1: ADC Calibration Raw Dataset 64

Table E.2: Raw Dataset for Low Current Output Current Calibration 66

Table E.3: Raw Dataset for High Current Output Current Calibration 68

3

List of Figures Page

Figure 1.1: Cal Poly Racing 2016 Formula SAE car 6

Figure 1.2: Typical production vehicle power distribution circuitry 6

Figure 1.3: Typical racecar power distribution controller 7

Figure 3.1: Level 0 Block 17

Figure 3.2: Level 1 Block Diagram 18

Figure 4.1: Gantt Chart for EE 461 and EE 462 21

Figure 5.1: Level 1 Block Diagram 23

Figure 5.2: MOSFET configuration simulation 24

Figure 5.3: Printed Circuit Board 27

Figure 5.4: PDC Enclosure CAD 28

Figure 5.5: Software flow diagram 29

Figure 5.6: Main Function 30

Figure 5.7: Setup and Control Registers 31

Figure 6.1: Emergency Shutdown Circuit 35

Figure 6.2: Modified Emergency Shutdown Circuit 36

Figure 6.3: Thermograph of Power Distribution Controller 37

Figure 6.4: Thermograph of PDC with heatsink 38

Figure 6.5: Output Shutdown Time 39

Figure 6.6 High Current Output Analog Redundancy Circuit 40

Figure A.1: Estimated development time 47

Figure B.1: High Current Output 51

Figure B.2: High Current Analog Redundancy 51

Figure B.3: Analog shutdown and high side driver 52

Figure B.4: Low current output 52

Figure B.5: Signal to ADC multiplexing 53

4

Figure B.6: Charge rectifier shutdown circuit 53

Figure B.7: Temperature Sensing 53

Figure B.8: Battery voltage measurement circuit 54

Figure B.9: Input current and voltage limiting 54

Figure B.10: Voltage regulator and reference 54

Figure B.11: AVR connections 55

Figure B.12: FTDI USB to UART interface 56

Figure B.13: AVR reset circuit 56

Figure B.14: CAN transceiver 57

Figure B.15: Connectors and USB 5 V circuit protection 57

Figure D.1: Wiring Diagram 60

Figure D.2: HC1 Setup Parameters 61

Figure E.1: ADC Error Pre-Calibration 63

Figure E.2: ADC Error Post-Calibration 63

Figure E.3: Low Current Output ADC Calibration 66

Figure E.4: High Current Output ADC Calibration 66

5

Abstract:

The Power Distribution Controller senior project aims to replace the current Power Distribution

Module (PDM) on Cal Poly’s Formula SAE internal combustion vehicle with a more advanced,

configurable, and reliable system. The Power Distribution Controller is a MOSFET based system

that can be controlled through either controller area network or a parallel interface to distribute

and control power from the vehicle’s battery to the several electrical devices on the car. The

Power Distribution Controller also collects output voltage and current data, and communicates

this data to the vehicle’s data logger. This will allow engineers to troubleshoot electrical problems

on the car by looking through log files, and also detect possible sources of electrical failure before

the devices fail. Finally, the Power Distribution Controller is highly configurable and adaptable to

any surrounding electrical system by being updatable through firmware rather than hardware.

6

1. Background and Introduction

Background:

Formula SAE is an engineering competition in which “teams are to assume that they work for

a design firm that is designing, fabricating, testing and demonstrating a prototype vehicle for

the nonprofessional, weekend, competition market [1]”. Cal Poly’s Formula SAE car from

2016 is shown in Figure 1.1. As an engineering project, Formula SAE teams have extensive

electronics systems to control the engine, as well as collect kinematic data to tune and

improve designs. At the center of the electronics systems is power distribution circuitry to

deliver power to several electronic devices.

Figure 1.1: Cal Poly Racing 2016 Formula SAE car

Historically, Cal Poly Racing has used relays and fuses to distribute power and protect circuits

as seen in figure 1.2. While this is the typical method of power distribution for production

vehicles due to simplicity and cost, this is an atypical solution for racecars. Racecars generally

use power distribution controllers which have digital inputs as well as solid state switching

outputs in order to control, distribute, and protect circuits as seen in figure 1.3.

Figure 1.2: Typical Production Vehicle power distribution circuitry

7

Figure 1.3: Typical racecar power distribution controller

Racecars use digitally controlled, solid state power controllers as depicted in figure 1.3 for

several reasons. First, the digital input and output controller allows for a much more

controllable and versatile system than its analog counterpart as seen in figure 1.2. Secondly,

when circuits fail and draw too much current with a traditional relay and fuse style power

distribution system, the fuse blows, and the circuit is unusable until the fuse is replaced. This

could be detrimental to a racecar’s operation and performance in the middle of a race. A

digital power distribution controller is able to attempt to restart the circuit after the

overcurrent condition, and can determine if a circuit should be left on or shut down after

analyzing the failing circuit’s impact to the car’s operation, safety, and potential electrical

system damages. Finally, racecars utilize digital power distribution controllers because

racecar electrical systems undergo several modifications throughout a racing season, and

major modifications between seasons. With analog power distribution circuity, when

modifications are made to the surrounding electrical system architecture, hardware such as

relays and fuses are required to be added to the power distribution circuity to support the

new system architecture. With a digital power distribution controller, when a change is made

to the surrounding electrical system architecture, a wire may need to be added going to the

power controller, but toggling and controlling the output(s) can be modified in firmware,

leading to a much faster and more reliable implementation.

8

Product Description:

The Formula SAE Power Distribution Controller (PDC) is a solid-state power controller for

prototype racecars. Racecars aim for lightweight, small, reliable, and efficient products. This

power controller takes advantage of lightweight solid state electronics to replace power

inefficient, large, and heavy relays and fuses. The CAN interface of this product also

contributes to a very clean device implementation. The primary customer of the product, Cal

Poly Racing Formula SAE, sees the greatest improvement in lap times with more testing time

for the car. When electrical devices fail on the vehicle, engineers have the painstaking process

of continuity testing, checking fuses, and testing relays to determine the source of the

problem, all of which takes away time from testing. The PDC solves this issue by logging

output currents and voltages to detect problems before devices fail, and locate the source of

the electrical problem quickly when devices do fail. This will decrease the amount of time

troubleshooting, allowing for more time on the track.

Racecar electrical systems can best be described as prototypes that undergo several

modifications and revisions within a season. Because power distribution circuity sits at the

center point of this architecture to deliver power to all electrical devices, it needs to be

changed frequently to work with the modifications and revisions of the surrounding system.

Traditional fuses and relays require hardware changes in order to support changes in the

vehicle’s electrical system. This also requires revalidation of hardware reliability, and often

compromises in reliability. The PDC solves this issue by being able to change input and output

relationships through firmware updates, making this product highly configurable. Finally,

Formula SAE teams cannot afford programmable solid state power controllers from well-

known suppliers such as Motec. These products have a significant amount of development

cost and are highly priced in the market due to the convenient user interface they have for

configuring inputs and outputs. The Formula SAE power controller lowers cost by

acknowledging that the customers have technical knowledge to program firmware into the

power controller. This removes development cost of the user interface, and decreases the

price of the product in the market, ultimately saving customers thousands of dollars.

9

Table 1.1: Market research and competing products [2] [3] [4]

Picture
Product
Name

Price Pros Cons

Motec
PDM15

$1636.53

 Small

 Light weight

 Developed User
interface for
modifying settings

 Expensive

 Limited
configurations based
on user interface

Motec
PDM16

$2463.55

 Small and light
weight

 Durable

 High quality
components

 Developed user
interface

 Expensive

 Expensive mating
connectors (~$150
per connector)

 Limited
Configurations based
on user interface

Cartek Power
Distribution

Module
$272.74

 Inexpensive and
affordable

 Very small and
light weight

 Too few outputs
(may require
purchase of 2
modules)

 Outputs too low of
current rating

 Not configurable

10

2. Customer Archetype, Needs, Requirements, and Specifications

The customers for the Formula SAE Power Distribution Controller are Formula SAE teams.

These teams consist of full time students, mostly engineers, who also build Formula SAE cars

in their spare time. The users and influencers on the team are typically electrical or computer

engineering students who are in charge of designing the electrical systems for the teams’

vehicle. These students typically have technical aptitude and programming knowledge.

However, the short timeline to design, manufacture, and test the Formula SAE car, in

combination with the limited amount of spare time an engineering student has, often leads

to the users and influencers looking for suitable off-the-shelf solutions that can be

implemented quickly. The buyer on the team is typically a student and the team manager.

This individual controls a very tight budget, as Formula SAE teams are often reliant on

donations and sponsorships. The predesigned hardware and open source firmware of the

Power Distribution Controller is an excellent solution for the users and influencers because

the product is incredibly adaptable and offers the user full control over the inputs and

outputs, while also saving time on the design and implementation. This product appeals to

the buyer on the teams because it is reasonably priced. When the influencer asks the buyer

to purchase a product, the more expensive the product is, the more the influencer must

convince the buyer that the money spent will improve the overall performance of the vehicle

at competition. Teams that will be seeking to purchase this power distribution controller will

generally be newer teams, small teams, and teams just starting out in developing electronics.

Teams that are well established in the Formula SAE competition series often have a custom

designed power controller already

Pain relievers and gains:

The Formula SAE power distribution module solves both technical and management pains for

Formula SAE teams. From a technical standpoint, because the Power Controller utilizes solid

state electronics, it is more robust and more reliable than traditional fuse and relay systems.

Additionally, because of microcontroller on the power controller, electrical circuits will only

be turned off in competition if the circuit is a risk to safety, or any other criteria set by the

11

team, not just a simple overcurrent criteria set by traditional fuses. The microcontroller will

also allow for analysis of the electrical system and enable faster troubleshooting when

problems do arise. The more time spent testing the vehicle and less time troubleshooting

problems, directly translates to a better performing car at competition. From a management

standpoint, this product solves the problem of teams having to choose to spend a significant

amount of time designing a power distribution system, or spending a significant amount of

money purchasing one. This product offers a nice compromise to the two solutions by

providing low cost hardware, but also requiring a small amount of time configuring the open

source firmware so that the hardware integrates nicely with each team’s car.

For teams that have previously used relays and fuses for power distribution, teams will see

significant gains in electrical system control, and see gains in optimizing electrical systems by

collecting data from the power distribution controller. These teams will also have gains by

obtaining more reliable system while having a faster design and implementation than

designing their own fuse and relay system or custom power controller.

Market Leaders:

Motec is the market leader for intelligent power distribution

modules for motorsports. They mostly serve professional and

Semiprofessional markets

Littelfuse is the market leader for relay and fuse based power

distribution modules. Littelfuse sells modular systems in which

different configurations of relays and fuses can be used to distribute power. They mostly

serve the aftermarket truck, commercial, and industrial markets.

Limitations of Competitors

The two key competitors for this product are Littelfuse and Motec. Motec does not have

limitations on their product that would be problematic to a Formula SAE team. Their systems

are designed to power electrical systems for professional and semiprofessional racecars that

12

are much more extensive than a Formula SAE car’s electrical system. These features come at

a price that is far too expensive for the vast majority of Formula SAE teams. Littelfuse is the

leader in providing analog power distribution modules. While these systems are affordable,

they often lack the feature set desired by Formula SAE teams. The limitations of Littelfuse

systems is that once a fuse blows, the electrical circuit cannot be reset immediately, which

could lead to a poorly performing racecar. Additionally, multiple criteria cannot toggle an

output on the Littlefuse system without the addition of external controllers.

Key Areas of Strength

The Formula SAE Power Controller has two key areas of leverage. First, the system is

affordable for most Formula SAE teams and other amateur race teams. This is in contrast to

the high priced Motec system. The second area of leverage is that the Formula SAE Power

Controller is versatile, configurable, and adaptable through open source firmware. This is in

contrast to the Littelfuse system. Overall, the combination of these two strengths offers

leverage over Motec and Littelfuse in the target market.

13

Customer Needs

Table 2.1: Customer Needs

Feature Importance Customer Need

High Current Outputs High

Customers need to be able to
drive and control fuel pumps,

fans, and ignition systems
that draw a lot of current

Low Current Outputs High

Customers need to control
power to low current control
systems such as shifting and

engine control

Digital Inputs Medium

Customers without CAN
communication on their

vehicles need to interface
this product through digital

inputs

CAN Receiver High

Customers with CAN on their
vehicle must be able to

control the Power Controller
through CAN communication

CAN Transmitter Low
Communicate output current
and voltage data to external

data logger

Digital “Fuses” High

Customers must be able to
set current limits on outputs
through firmware to protect

electronics

Water resistant/Durable

Build
High

Power Distribution Controller
must be able to operate in
rain, wet road conditions,
and dusty/dirty conditions

14

Marketing Requirements

Table 2.2: Marketing requirements

Marketing
Requirement

Rationale

Product sold for $400 This price point is low enough where Formula SAE
teams would buy the product and low enough to
significantly disrupt the market when the product
arrives at the market. This price is also high enough
to make a profit

4 High Current Outputs The Formula SAE car currently uses three high
current outputs. The 4th high current output would
be to add another high current device if necessary.

8 Low Current Outputs Low current outputs are the most common output
on the car, and the Formula SAE car currently uses
two of these outputs. This is being expanded to
eight to more properly protect various electronic
devices from overcurrent conditions.

6 Digital Inputs 6 digital inputs are needed because if CAN fails,
three inputs would be enough to control the fuel
pump, cooling fan, and ignition, and then the other
three inputs could be used for various inputs such as
a pressure sensor for a brake light.

Capable of delivering 600
Watts of power steady
state for extended periods
of time

The Formula SAE car currently draws 396 Watts.
Requiring the device to supply 600 Watts allows for
room to improve the electrical system by adding
more electronics.

All outputs can
individually have current
limits set in firmware

Different outputs require different current limits.
Users need to be able to choose any current limit
they desire for a particular output.

Product must interface
easily with surrounding
electrical system

The customer must not be frustrated with the
implementation or use of this product, in order for
the business model to be sustainable.

Build must be durable and
resistant to impact,
pressure, and heat

The device is being used in a high vibration and hot
environment. Furthermore, people may hit the
device by accident while working on the car.

Product must be user
friendly, adaptable, and
easily configurable
through firmware

The device must be easy to use for the customer to
be satisfied. The system must also be adaptable to
give the race car’s electrical systems designer
flexibility in his or her design.

15

Engineering Requirements

Table 2.3: Marketing requirements translated to engineering requirements

Marketing Requirement Engineering Requirement

Affordable Prototype Costs $200 (max)

Meets FSAE Rules Follows the FSAE rule book regarding
emergency cutoff switch circuitry

4 High Current Outputs Outputs must source 20A max at 14.4 V

8 Low Current Outputs Outputs must source 5A max at 14.4 V

6 Inputs (Analog and Digital) Inputs must accept up to 14.4 V

 Inputs must be over voltage protected

Capable of delivering 600 W of
power steady state for extended
periods of time
(~40 A continuous current)

 Satisfy marketing wattage and current
requirements

 Deliver maximum power for at least 1 hour
intervals

 Size PCB traces to have a 10 °F maximum
temperature rise

All Outputs can individually have
current limits set in firmware

 Current limits must have 0.1 A precision

Turning of a circuit in reaction to
the current limit must be faster
than a fuse

 In the case of an overcurrent condition, the
output must shut down in less than 10 ms

 Analog redundancy must limit current in
case of digital failure

Product must interface easily with
surrounding electrical system

 Use inexpensive connectors to interface
with the rest of the electrical system: < $10
per connector

 Terminals must accept 22 AWG wire

Build must be durable and resistant
to impact, pressure, and heat

 Connectors must be automotive rated and
water resistant

 Enclosure must be water resistant

 Product must operate between 40 °F and
120 °F

Product must be user friendly,
adaptable, and easily configurable
through software

 Sends data regarding output voltages and
currents over CAN

 Current limits for outputs set in software

 All outputs can be toggled based on CAN or
input data

 Electrical system warnings must be sent
over CAN

16

Project Deliverables

Table 2.4: Power Distribution Controller Project Deliverables

Delivery Date Description

March 22, 2017 EE 461 Alpha Demo

May 8, 2017 EE 462 Beta Demo

May 8, 2017 EE 462 Report Rough Draft

June 2, 2017 Senior Project Expo

June 14, 2017 EE 462 Final Demo

June 14, 2017 Final Report

17

3. Functional Decomposition
Level 0 Block Diagram Input/Output Descriptions

Figure 3.1: Level 0 Block Diagram of the FSAE Power Distribution Controller

High Current Outputs: Four high current outputs that are current limited at 15 A through

software, and 20 A through the analog redundancy provide the FSAE vehicle power for

high current loads such as ignition coils, cooling fans, and fuel pumps.

Low Current Outputs: Eight low current outputs that are current limited at 5 A each through

software and 6 A through the analog redundancy, provide power for low current draw

loads such as data loggers and sensors.

Digital and Analog Inputs: Six digital inputs can be configured to control and toggle the high

current outputs and/or the low current outputs. Two of the inputs can optionally be

selected to read analog inputs.

Controller Area Network (CAN): CAN will be used for the communication between the

Power Distribution Controller, and other controllers in the FSAE car. Channels received

over CAN will be able to toggle the high current and low current outputs. CAN data will

18

also be transmitted from the power controller so that information on current draws and

output voltages can be logged in the car’s data logger.

Emergency Shutdown: In accordance with FSAE competition rules, power must be turned

off to critical engine components through two switches in the case of an emergency.

Additionally, these switches are required to act through analog means (ie. not software

dependent). Due to these switches requiring analog circuitry, they are distinctly

different from the digital inputs.

Level 1 Functional Block Description

Figure 3.2: Level 1 Block Diagram of the FSAE Power Distribution Controller. The red arrows
indicate the main power flow, while the green arrows indicate the control loop for “fusing”

through software

Microcontroller: The microcontroller is at the center of the power controller and analyzes

information from the digital and analog inputs, CAN communication, serial interface,

and voltage and current information from the outputs, and controls the high current

and low current outputs accordingly.

19

Output Switching: The microcontroller is unable to provide the outputs with sufficient

driving voltage and current. The output switching block receives signals from the

microcontroller, and then amplifies these signals to the appropriate levels for the

output. The switching block must make the output signal approximately the same as the

battery voltage, and source current up to 20 amps for the high current outputs, and 6

amps for the low current outputs

Analog Emergency Shutdown: The analog emergency shutdown circuit is required by FSAE

rules. This circuit accepts input from an external switch, and if activated, the circuit

disables power to the high current outputs. The circuit is required to bypass the

microcontroller so that it still operates in the case that the code in the microcontroller

fails.

Low Current Redundant Overcurrent Protection: The analog overcurrent protection consists

of PTC resettable fuses that will “blow” if the current detection and/or microcontroller

fail and the output current exceeds the rated output current. Under normal operation,

the user will set a current limit, and this value will be lower than the fusing value of the

PTC fuse in this block.

High Current Redundant Overcurrent Protection: The analog overcurrent protection

consists of a feedback loop from the current detection block to disable high current

outputs in case of the software failing to shut down the output before exceeding 20 A.

Voltage and Current Detection: This block detects the voltage and current of the output and

feeds this information back to the microcontroller. If the current exceeds the user set

current limit, the microcontroller will turn the output off. If the output voltage is lower

than expected, the microcontroller will send error messages over CAN in order to notify

the driver.

20

Temperature Sensing: The power controller will have an internal temperature sensor

because the significant amount of power passing through the circuit board will result in

a significant amount of heat. If the heat exceeds a particular temperature, the

microcontroller will turn off all outputs that do not stop the car from driving.

21

4. Project Planning

Figure 4.1: Gantt Chart for EE 461 and EE 462

Cost

Table 4.1: General Cost breakdown

Item Quantity Cost

Circuit Board Components 1 $120

Printed Circuit Board 1 $0

Connectors, Enclosure, and Hardware - $2

Extra Expenses
(Shipping, re-orders, extra components)

- $80

Total $202

Table 4.1 shows a general categorized cost breakdown for the power distribution controller.

A more detailed bill of materials and associated costs may be found in Appendix C. If all

22

materials were to be bought outright for this project, total cost would near $300 before

additional expenses such as shipping, re-orders, and extra components, however, this

project has received support from many industry partners who have aided this project with

parts and materials. These donations have lowered the cost of this project significantly.

Finance

This project is primarily financed through the electrical engineering department’s $200

grant per student. However, this project will also be financed through part donations from

suppliers and Cal Poly Racing. While Cal Poly Racing will not contribute to the upfront costs

of the prototype, the team will be responsible for the cost of maintaining the product as

well as building more of these products for backups. This project will work with Cal Poly

Racing industry partners in order to obtain free and discounted parts.

Resources

People: Advisors will be very important to the success of this project. I will consult with

Professor Benson, and Cal Poly graduate and former Formula Electric SAE team lead

Thomas Wilson in order to review design decisions, schematics, circuit boards, and

overall design. I will also be consulting with the current Cal Poly racing leadership and

electronics subsystem lead in order to ensure that the end product will be compatible

with next year’s vehicle and vehicles for future years.

Campus Resources: This project will require access to the Senior Project Lab and the

Electrochemistry lab. These two labs contain the equipment needed to construct and

test this project. Furthermore, this project will require access to the Hangar and

Mustang 60 shops in order to construct the enclosure for the project.

Skills: This project requires programming, analog circuit design, digital circuit design, mixed

signal printed circuit board design, soldering, and debugging skills. Furthermore, in

order to complete this project on time, this project will require superb organizational

and time management skills.

23

5. Project Design

Hardware Design

(Refer to Appendix B for hardware schematics)

Figure 5.1: Level 1 Block Diagram of the FSAE Power Distribution Controller

Microcontroller

The AT90CAN128 microcontroller is at the center of the Power Distribution Controller.

The AT90CAN128 is an 8-bit AVR microcontroller with 128 kilobytes of ISP flash and a

CAN controller. This microcontroller also contains a 10 bit SAR ADC with eight ADC

input channels. Furthermore, this microcontroller contains four hardware timers that

can time events and provide outputs with PWM if needed. Most importantly, this

microcontroller is used on all Cal Poly Racing circuit boards meaning that they are

readily available to the Formula SAE team, and the people who will be using the Power

Distribution Controller will be familiar with programming this microcontroller.

Additional circuitry that supports the microcontroller is the 16MHz external clock, the

FTDI232RL USB to UART interface, and the MCP2551 CAN Transceiver. The MCP2551

CAN transceiver supports up to 1Mb/s.

24

High Current Outputs

The high current outputs provide power for loads drawing up to 15 A. The main power

path through the high current outputs begin at main power input from the battery,

then travels through a 0.002 Ω resistor for current measurement, and then passes

through two power N-MOSFETs in parallel which controls the on/off state of the

output.

To measure current, the LT6100 current sense amplifier reads the voltage across the

0.002 Ω resistor, and then amplifies that voltage by 40 V/V. The output of the

amplifier then is sent through a 4:1 mux that selects which of the four current

readings, from the four high current outputs, should be sent to the ADC. The output of

the current sense amplifier is also sent to the high current output redundancy circuit

as described below.

The two MOSFETs in parallel are the Nexperia PSMN2R2-25YLC. Two MOSFETs are

used in parallel because it significantly reduces the amount of power dissipated by

each MOSFET and reducing the amount of resulting heat while carrying high currents

as seen in figure 5.2. Two MOSFETs in parallel also do not take up too much of the

available circuit board space.

Figure 5.2: This simulation shows the amount of power dissipated for each

PSMN2R2-YLC in three different configurations. The green line is a single MOSFET, the
blue line is two MOSFETs in parallel, and the red line is three MOSFETs in parallel.

25

MOSFET Gate Driving

In order to reduce drain to source resistance and voltage drop in the MOSFETs, NMOS

are being used to high side drive the loads on the outputs. In order to high side drive

with a NMOS and reduce the drain to source resistance, the NMOS must operate in

the linear mode of operation with ideally the highest gate to source voltage allowed as

per the electrical specifications of the MOSFET. In the case of the PSMN2R2-YLC, this

value is approximately 20 V.

The microcontroller outputs a 5 V signal to the LT1161 High-Side MOSFET Driver which

converts the 5 V signal to a 20 V signal that is able to drive the MOSFET gate. The

signal from the microcontroller to the gate driver passes through the analog

emergency shut down circuitry for the high current outputs. This connection is direct

for the low current outputs.

High Current Output Redundancy

The high current output redundancy prevents damage to the Power Distribution

Controller in the case that the software fails to shut down a circuit in an overcurrent

condition. This circuit operates by feeding the output of the current sense amplifier to

a hysteretic comparator that compares the amplifier output to 2 V, the voltage at

which output current equals 20 A. When the voltage from the current sense amplifier

exceeds 2 V, the comparator triggers low to high, and enables a BJT which then drains

the gate of the power MOSFET. Because the gate voltage is drained, the output is

disabled.

High current outputs commonly drive inductive loads that have sharp current spikes

when turning on. For this reason the analog redundancy is disabled for 10 milliseconds

after an output is turned on. The 2 V reference described above is provided by a digital

to analog converter. To disable the redundancy circuit, the reference is changed from

2 V to 5 V momentarily, therefore prevent the comparator from triggering low to high.

26

Analog Emergency Shut Down

Analog emergency shutdown consists of a BJT that has its gate pulled high to 5 V via a

pullup resistor. When the base of the BJT is shorted to ground via an emergency stop

switch, the microcontroller’s signal can pass to the gate driver, however, when the

emergency stop is pushed and the base is passively pulled high, the microcontroller

signal is blocked from passing through to the gate driver, therefore disabling the high

current outputs.

Low Current Outputs

The eight low current outputs drive loads that are less than or equal to 5 amps. The

main power path through these outputs start at the main power input, then flow

through a PTC resettable fuse for the analog overcurrent redundancy. From the PTC

fuse, the current flows through a 0.02 Ω resistor for current measurement, and then

flows to a single PSMN2R2-25YLC N-MOSFET. Current is sensed in the same manner as

the high current outputs, however, this time the amplifier reads the voltage across the

0.02 Ω resistor, and amplifies the value by 50 V/V.

Voltage Measurement

The voltage is measured at each low current and high current output. In order to

ensure voltages being sent to the ADC are on the 0 V to 5 V scale, a resistive divider

made of a 26.1 kΩ and a 10 kΩ resistor is used. The center node of the two resistors is

then fed through two 8:1 muxes to determine which signal is to be sent to the ADCs.

Connector

The Super Seal 1.0, 60 position connector allows for the Power Distribution Controller

to connect with the rest of the Formula car’s electronics. The Super Seal connector is

inexpensive, has a high pin density, is automotive rated, and is water resistant.

Furthermore, the formula team uses the Super Seal connector on their engine control

unit with a different key pattern, meaning that the contacts for the Super Seal

connector are readily available to the team.

27

Printed Circuit Board

The printed circuit board is a 2 ounce copper board that was designed to have a

maximum 10 °F temperature rise. The corners of the board were rounded to a quarter

inch diameter to offer the option of CNC milling an enclosure that can have a snug fit

with the circuit board. The printed circuit board contains 3 main sections: the power

path (figure 5.3 white box), the controls and driving block (figure 5.3 yellow box), and

the digital block (figure 5.3 blue box). The power path contains the components

described in the high current and low current output sections. Furthermore, the

current sense amplifiers are placed directly underneath their respective current sense

resistors in order to reduce the influence of noise and voltage drop. The controls

section contains gate drivers, multiplexers, analog redundancy circuitry, and

emergency shutdown circuitry. The digital block contains all elements described in the

microcontroller section.

Figure 5.3: Printed Circuit Board

28

Enclosure

Figure 5.4 shows the enclosure CAD

Figure 5.4: PDC Enclosure CAD

There are two key features to the design of this enclosure. First, when the top and

bottom halves are joined together, the two halves overlap on three sides of the

enclosure. This overlap prevents water from seeping into the box when it is splashed

or sprayed on the box. On the connector side of the enclosure, the cutout is made to

lock the PCB in place via the connector, and to make a tight seal with the connector’s

flange. The second key feature is that interior corners of the enclosure are rounded to

a quarter inch diameter. The design intent with the filleted corners is that this

enclosure could be made on the CNC mills in Cal Poly’s shop. The first revision of the

enclosure was 3D printed using PLA plastic, however, in order to assist with heat

dissipation, this enclosure could be milled out of aluminum and act as a heatsink for

the printed circuit board.

29

Software Design

Figure 5.5: Software flow diagram

30

Code Summary

There are three major sections to the code. The first section is the initialization, the second

section is the data collection and output switching, and the third section is the CAN data

transmission. Figure 5.6 shows the main function. This section of the report will summarize

the three major sections of code. For the full code, please refer to Appendix F.

int main(){
 pdc.InitializePDC(&canRxIntFunc);
 OutputCheckCounter = 0;
 pdc.SetOutputSettings();

 while(1){
 while(OutputCheckCounter < 8){
 pdc.UpdateData(OutputCheckCounter);
 pdc.OutputIO();
 OutputCheckCounter++;
 }

 OutputCheckCounter=0;
 pdc.TxCANdata();
 }
 return 0;
}

Figure 5.6: Main Function

Initialization

The initialization first consists of CAN, GPIO, serial, SPI, ADC, timer, and interrupt

initialization in pdc.InitializePDC(&canRxIntFunc). The argument to this function is the

interrupt vector for the CAN receive interrupt. The timer initialization consists of Timer

1 which interrupts every 10 milliseconds to check if the analog redundancy for the

high current outputs should be re-enabled after the output turns on (this section of

logic can be found in the red box in Figure 5.5) and Timer 2 which delays the activation

of the firmware fuse if a delay is set by the user.

The second part of the initialization consists of setting up the outputs. Each output

contains two key registers: the setup register, and the control register. These two

registers for low current output 1 are shown in figure 5.7.

31

 LC1_Setup.OutName = OutputNames::LC1;
 LC1_Setup.OutputEnable = false;
 LC1_Setup.CurrentLimit = 5; //in Amps
 LC1_Setup.FusingTime = 10;
 LC1_Setup.ResetEnable = false;
 LC1_Setup.ResetAttempts = 10; //Must be non zero
 LC1_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC1Control.FuseEnabled = false;
 LC1Control.OutCurrent = 0;
 LC1Control.OutVoltage = 0;
 LC1Control.ResetAttemptsRemaining = LC1_Setup.ResetAttempts;
 LC1Control.ResetTimeEnable = true;
 LC1Control.FuseBuffer = false;
 LC1Control.timecount = 0;

Figure 5.7: Setup and Control Registers

The user configures the power distribution controller by modifying the setup register.

In the setup register:

 “OutputEnable” sets if the output is used or not.

 “CurrentLimit” sets the firmware current limit for the output.

 “FusingTime” sets an additional delay in milliseconds between detection of an

overcurrent condition and output shutdown.

 “ResetEnable” determines if an output should attempt to turn on again after an

overcurrent condition shut down the output.

“ResetAttempts” determines how many times the output should attempt to restart.

“ConditionNChannel” are references to Boolean values determined from the digital,

analog, or CAN inputs.

32

The Control register tracks the state of the output, and based on the values in this

register, the power distribution controller determines if the output should be on or

off. In the control register:

“FuseEnabled,” is true if an over current condition was detected and the fusing time

set in the setup register has passed since the over current detection.

“Fuse Buffer” is true if an overcurrent condition is detect but the fusing time has not

yet passed.

“timecount” in the control register tracks the amount of time that has passed since

the overcurrent condition was detected.

”OutCurrent” and “OutVoltage” hold the most recent output current and voltage

reading respectively.

“ResetAttemptsRemaining” tracks how many more times an output could be reset

after an overcurrent condition. Once this number reaches zero, the output will

remain off.

“ResetTimeEnable” determines how long after an output is shut down due to an

overcurrent condition, that the output should be reset.

Data Collection and Output Switching

The pdc.UpdateData(OutputCheckCounter) function in figure 5.6 collects output

voltage and current readings for the outputs determined by OutputCheckCounter in

figure 5.6, and then stores those values in the outputs’ respective control registers.

The function then collects values for the circuit board temperature, battery voltage,

and analog inputs, and stores those readings in other global registers. This function

then calls a function called “UpdateConditions().” The “UpdateConditions()” function

compares the current readings with the current limits set by the user and then sets

the “FuseBuffer” flag to true if the current limit has been surpassed. This function also

updates other Boolean values for battery voltage thresholds, received CAN data, and

33

digital input values. If the output setup register references any of these Boolean

values in the “ConditionNChannel” elements, these updated values will later be used

to determine if the output should be on or off.

After the “UpdateData()” function is called in main(), the “OutputIO()” function is

called. In “OutputIO()”, between the setup and control register, if “FuseEnable” is

false, “OutputEnable” is true, all of the “ConditionNChannel” references are true, the

“ResetAttemptsRemaining” is greater than zero and “ResetTimeEnable” is true, the

output turns on. If any of these stated conditions are not met, the output turns off.

CAN Transmission

After data has been collected and the output state of each output has been

determined, all output voltages and currents are packaged into CAN messages, and

sent over the CAN bus to the Formula SAE Vehicle’s data logger. Other data such as

fuse states, input states, and circuit board temperature are also sent to the data

logger at this time. After all data has been sent over CAN, the loop counter is reset to

zero, and the data collection and output switching segment of the code is repeated.

6. Testing and Integration
Test and Integration Approach

The power distribution controller has several different elements both in hardware and

software. The testing and integration approach was to first test individual elements of the

controller, and then test the integration of those elements. The individual elements

tested are the ADC reading accuracy, SPI communication, CAN communication, serial

communication, digital to analog converter output, current reading accuracy, and input

switch reading. Between these individual tests and the integration tests, all engineering

specifications have been tested. Table 6.1 shows a summary of all engineering

requirements being tested and their results. For further test information and analysis,

refer to the “Test Summary” section. For test data that does not pertain directly to testing

engineering requirements, refer to Appendix E.

34

Table 6.1: Engineering Requirements Test Summary

Test Name Engineering Requirement
Tested

Results

Product Cost Prototype should be less than
$200

Requirement Met

Emergency Shutdown Emergency shutdown circuit
operates in accordance to FSAE

rules

Requirement met

High Current Output
Power

High Current Outputs must
source 15 A max at 14.4 V

Requirement Met

Low Current Power Low Current Outputs must
source 5 A max at 14.4 V

Requirement Met

Input Maximum Voltage Inputs must accept up to 14.4 V Requirement Met

Max Power Deliver 600 W of power steady
state at 40 A for one hour

intervals with maximum 10 °F
temperature rise

Requirement Not
Met

Current Limit Accuracy Current Limits must have 0.1 A
precision

Requirement Met

Output Shutdown Time Outputs must shutdown in less
than 10 ms in an overcurrent

condition

Requirement Met

Analog Redundancy
Test

In the case firmware fails to
shutdown the circuit in an

overcurrent condition, analog
redundancy circuit must

shutdown the circuit

Requirement
partially met

Interface Connector
Cost

Interface connector must be
less than $10 per connector

Requirement Met

Connector Properties
Test

Terminals must accept 22 AWG
wire, connector must be

automotive rated and must be
water resistant

Requirement Met

Operating Temperature
Range

Product must operate between
40 °F and 120 °F

Requirement not
Met

Firmware Current Limits Current limits for outputs are
set in firmware

Requirement Met

Output Toggle
Conditions

All outputs can be toggled
based on CAN or digital inputs

Requirement Met

Transmit CAN Electrical system data and
warnings must be sent over

CAN

Requirement Met

35

Test Summary

Product Cost

If all parts and components were to be purchased directly, the total cost of the project

would be $291.57 which would not meet the $200 specification limit. The cost of the

PCB which is $5 per square inch, is the major item that makes the project over budget.

However, many of the parts used in this project are manufactured by partners of Cal

Poly Racing, the primary customer of this project. Therefore, after discounts for the

customer are taken into account, this product costs approximately $102.25 to

manufacture

Emergency Shutdown

Figure 6.1 shows the emergency shutdown circuit. When the section circled in red is

grounded, the signal passes from the microcontroller to the MOSFET gate driver,

however, when the output is left floating, the signal cannot pass between the

microcontroller and the MOSFET gate driver, effectively disabling the high current

outputs.

Figure 6.1: Emergency shutdown circuit

The emergency shutdown test initially failed. When the base of the BJT in figure 6.1

was grounded and the microcontroller signal was high, the voltage at the gate driver

input was only 1 volt, which was not a high enough input to turn on the MOSFET. The

expected input into the gate driver was 5 volts. The gate driver input voltage was so

low because of the lack of a base resistor on the BJT leading to an excessive base

36

current and insufficient collector voltage. The wire circled in red in figure 6.1 is

connected to a connector terminal and is grounded externally to the circuit board. The

wire harness to this connector terminal was modified to include an inline 10 kΩ

resistor. Figure 6.2 reflects this modification. Once this modification was made, the

emergency shutdown circuit operated as expected.

Figure 6.2: Modified Emergency shutdown circuit

High Current Output Power Test

The high current outputs were each individually connected to an electronic load with a

15 A constant current limit. The power distribution controller was powered by a DC

power source set to 14.4 Volts and a 16 A current limit. Power distribution controller

effectively delivered 15 A to the load at 14.2 Volts (200 mV drop across components).

PCB traces heated approximately 15 °F as measured by a thermal camera, however, to

the touch, the trace did not feel warm.

Low Current Power Test

The low current outputs were each individually connected to an electronic load with a

5 A constant current limit. The power distribution controller was powered by a DC

power source set to 14.4 V and a 7 A current limit. Power distribution controller

effectively delivered 5 A to the load at 14.2 Volts (200 mV drop across components).

PCB traces heated approximately 15 °F.

37

Input Maximum Voltage Test

A voltage of 14.4 volts was applied to each digital input. With a voltmeter, the voltage

at the microcontroller input was measured and found to be 5 V. This is the expected

clamping voltage, and therefore, this test was successful.

Max Power Test

High current outputs 1, 2, and 3 were each connected to an electronic load set to 13 A

constant current. The power distribution controller was then connected to DC power

source set to deliver 14.4 volts and a current limit at 40 A. After 10 minutes of testing,

PCB traces were extremely hot to the touch, and measured to be approximately 180

°F. Figure 6.3 shows a thermograph of the power distribution module during this test.

Figure 6.3: Thermograph of Power distribution controller

The thermograph on the right in figure 6.3 shows extreme heating in the region of the

circuit board circled in the picture on the left. The trace that is heating excessively is

the main power trace that is carrying 39 A during this test. While the output traces did

not heat excessively when they were carrying 15 A during the High Current Output

Power Test, the main power trace heated so significantly that the heat conducted

through the current sense resistors (black boxes in the thermograph in figure 6.3) and

into the output traces. In attempt to decrease heating of the circuit board, a small

heatsink was added to this section of the circuit board. This heatsink had limited

success with the traces heating to 165 °F instead of 180 °F. Figure 6.4 shows a

thermograph of the test with a heatsink. While the heatsink (circled) cools the board

38

slightly, there is still a large section of the trace that is bright yellow showing

significant heat.

Figure 6.4: Thermograph of Max Power Test with heatsink. Circled section is the heatsink.

While this heating issue could not be solved on this circuit board, there are two

solutions that are likely to rectify this issue. The first is to remove the solder mask on

top of this trace and add solder to it in order to thicken the trace. The second solution

would be to print the circuit board using a 4 ounce copper pour. The trace is

approximately 0.6 inches wide, and if made using 4 oz copper, the expected

temperature rise would be 16 °F [7].

Current Limit Accuracy Test

For this test a low current output was connected to a constant current load. The

power distribution controller was powered by a 14.4 volt source with a 7 amp current

limit. The load was stepped in 0.1 amp increments from 0 amps to 5 amps. The power

distribution then sent the output current reading to the computer terminal via serial

communication. This value was compared to the electronic load setting. The power

distribution controller output current readings matched the electronic load settings

for all data points. This test was then repeated for the high current output with the

power distribution controller being powered by a 14.4 volt source with a 20 amp

39

current limit, and load currents were stepped in 0.1 amp increments from 0 amps to

15 amps. In this test, the power distribution showed zero current on the output

between 0 amps and 0.7 amps, however, beyond 0.7 amps, the current reading was

accurate. Because the high current outputs are designed for loads drawing more than

5 amps, the lack of readings between 0 amps and 0.7 amps is insignificant to the

performance of the power distribution controller.

Output Shutdown Time Test

For this test, a high current output was connected to a constant current load of 2

amps, and the power distribution controller was powered by a 14.4 volt DC power

supply with a 7 amp current limit. A firmware current limit of 5 amps was set for the

output. An oscilloscope was connected to the output of the current sense amplifier on

channel 1, and was then connected to the output on channel 2. The oscilloscope was

placed in single sweep mode with a rising edge trigger. After starting the test, the

constant current load was changed from 2 amps to 5.2 amps. After making this change

in the load, the current sense amplifier output had a rising edge which triggered the

single sweep, and channel 2 then showed the falling edge of output turning off. The

time from the current sense amplifier rising edge to the output turning off falling edge

is the output shutdown time which was determined to be 7 ms. Figure 6.5 shows the

results of this test on an oscilloscope.

Figure 6.5: Oscilloscope image of the output shutdown test time.

40

Analog redundancy Test

The power distribution module has two analog redundancy circuits, one for the low

current outputs, and one for the high current outputs. The analog redundancy test

was successful for the low current outputs, but the requirement was not met for the

high current output redundancy. The low current redundancy simply uses a PTC

resettable fuse that fuses at 6 amps after two seconds. The high current output

redundancy uses a more complex feedback circuit that assesses the output of the

current sense amplifier via a hysteretic comparator, and if the comparator detects

that the output has surpassed 20 amps, the comparator turns on, which then drains

the gates of the output MOSFETs.

Figure 6.6 shows the high current output redundancy circuit. Due to the lack of a base

resistor on the output of the hysteretic comparator and base of the BJT, the gate of

the output MOSFET was only reaching approximately 1 volt when it was turned on

during normal operation. In order to test the rest of the high current output

operation, the high current redundancy circuit had to be removed from the circuit

board by removing the BJT array that contains Q2 in figure 6.6.

Figure 6.6: High current output analog redundancy circuit

The reference voltage for the hysteretic comparator in figure 6.6 is provided by a

digital to analog converter. The digital to analog converter provides a 5 volt reference

to the comparator to disable it when the MOSFET turns on, in order to allow an inrush

41

current through the output for inductive loads, and then re-enables after 10 ms. With

the removal of the BJT array, the digital to analog converter and hysteretic

comparator operated as expected.

Connector Cost and Properties

The connectors cost $8.75 for the 26 position connector and $7.16 for the 34 position

connector. The Super Seal connectors are sealed connectors, and are designed for

automotive use.

Operating Temperature Range Test

The operating temperature range was not explicitly tested, however, due to the

failure of the maximum power test, the operating temperature range test inherently

fails. During the maximum power test, the room temperature was 74 °F. At this

ambient temperature, the main power PCB trace overheated which indicates that the

product cannot operate properly at 74 °F, and therefore will not operate properly at

120 °F.

Firmware Current Limit Test

For this test, low current and high current outputs were connected to constant current

loads one at a time, and current limits were set in firmware for the outputs. The

constant current load was set to draw 0.1 amps below the firmware current limit, and

then after the test began, the load was set to draw 0.1 amps above the current limit.

During all tests, the firmware successfully shutdown the outputs when the firmware

current limit was exceeded.

Output Toggle Conditions Test

This test ensured that analog, digital, and CAN, inputs into the system, can toggle a

Boolean value, and that the Boolean value can toggle an output. To test this, a low

current output was set to toggle based on the digital 1 input. A toggle switch was then

42

connected to the digital 1 input. A voltmeter read the voltage on the low current

output. When the toggle switch was toggled to the on position, the output turned on

as indicated on the voltmeter. When the toggle switch was toggled to the off position,

the output turned off. This test was then repeated, however, instead of using a toggle

switch as the input, the power distribution controller was connected to the Formula

SAE vehicle’s CAN bus. The data logger on the Formula SAE car was set to send a

simulated RPM value to the power distribution controller. The power distribution

controller was set to keep a Boolean value at false if the RPM was below 100 RPM,

and then change to true when the RPM value exceeded 100 RPM. The low current

output was then set to toggle based on this Boolean value. When a RPM of 0 was sent

to the power distribution controller, the output was off, however, when 3000 RPM

was sent to the power distribution controller, the output turned on.

Transmit CAN Test

For this test, the power distribution controller was connected to the Formula SAE CAN

bus. The data logger was set up to read output current and voltage data from low

current output 1 and high current output 2. The power distribution controller was

turned on with both outputs enabled. The data logger data was monitored live and

the current showed 0 amps and the output voltage showed 13.2 volts as expected.

The test was run again with both outputs disabled, and both outputs read 0 amps and

0 volts on the data logger readout. With this successful CAN transmission, the power

distribution controller is able to send both data and warnings to the data logger.

43

7. Conclusions
This project has had a mix of successes as well as limitations. The current, voltage,

temperature, and input detection as well as the CAN communication, code, and overall

build quality of the power distribution controller are very successful. However, the two

major drawbacks to this product now is the inability to deliver maximum power and the

nonfunctioning analog redundancy for the high current outputs. While these two

drawbacks do pose an issue for implementing this controller on the Formula SAE car, this

first revision of the power distribution controller has provided an excellent testbed for

testing hardware as well as the logic in the software at lower currents than the maximum

40 A specification. In a second revision board, only these two drawbacks must be solved.

The analog redundancy issue can likely be solved by adding a base resistor to the BJT in

figure 6.6, and the overheating issue at maximum power can be solved by either using a

thicker copper pour such as four ounce copper, or adding solder on top of the main power

input trace circled in figure 6.3. With just a couple corrections on a revision two printed

circuit board, the power distribution controller can be fully functioning and high

performing controller on the formula SAE vehicle.

44

References

[1] "2016 Formula SAE Rules," in Formula SAE, SAE International, 2015. [Online]. Available:

http://www.fsaeonline.com/content/2016_FSAE_Rules.pdf. Accessed: Oct. 24, 2016.

[2] Tim, "prices_ecu_motec," in Capa Performance, 2016. [Online]. Available:

http://www.capa.com.au/prices_ecu_motec.pdf. Accessed: Oct. 24, 2016.

[3] "MoTeC," in MoTeC Engine Management and Data Acquisition Systems, 2008. [Online].

Available: http://www.motec.com/home. Accessed: Oct. 24, 2016.

[4] "CARTEK Power Distribution Modules," in CARTEK Motorsport electronics, 2016. [Online].

Available: http://www.cartekmotorsport.com/pdm.html. Accessed: Oct. 24, 2016.

[5] "SAE Collegiate Chapters," in SAE International, 2016. [Online]. Available:

http://www.sae.org/servlets/collegiate?PAGE=getCollegiateMainPage&OBJECT_TY

PE=CollegiateChapInfo. Accessed: Oct. 24, 2016.

[6] "Official Results," in Formula Student, Institution of Mechanical Engineers, 2016. [Online].

Available: http://formulastudent.imeche.org/docs/default-source/default-document-

library/download-the-final-overall-class-1-results.pdf?sfvrsn=0. Accessed: Oct. 24,

2016.

[7] B. Suppanz, “Trace Width Website Calculator,” in Advanced Circuits, 2007. [Online].

Available: http://www.4pcb.com/trace-width-calculator.html, accessed Jun. 10, 2017.

Accessed: Jun. 10, 2017.

[8] “M400/M600/M800/M880 User’s Manual,” in Motec Pty Ltd, 2003. [Online]. Available:

http://www.motec.com/m400/m400downloads/. Accessed: Jun. 10, 2017.

45

Appendix A: Senior Project Analysis

Project Title: Formula SAE Power Distribution Controller

Student Name: Daniel Baron

Advisor’s Name: Professor Bridget Benson

Summary of Functional Requirements:

This project accepts a power input from the Formula SAE car’s battery, and distributes

the power to the various electronics on the vehicle. Current limits for each output are set

in firmware. If and when an over current condition, as defined by the user, occurs on an

output, the device must immediately turn off the output on which the overcurrent

condition occurs. Inputs into the system include CAN and digital inputs. Outputs will be

able to toggle on and off based upon input values. Output current and voltage data will

also be sampled and sent over CAN to the car’s data logger.

Primary Constraints:

First and foremost, this project must abide by the Formula SAE rulebook. This especially

affects the emergency shutdown circuitry that disables the high current outputs of the

system. The system must also be designed to dissipate heat from the high currents

flowing through PCB traces, and be able to operate in ambient temperatures up to 120°F.

Finally, the entire system must be light weight, as low mass is important to a competitive

racecar. Finally, the system must cost less than $200 to build.

Economic:

What economic impacts result?

Human Capital: This device will create jobs in engineering, software development,

manufacturing, sales, and technical support. Additionally, customer support jobs will be

created to teach race teams how to implement and use the product.

Financial Capital: This product will create minimal business for suppliers due to a limited

market, however, this product will have a large financial impact for the customer.

Customers currently pay $3000 to $5000 dollars for a similar product. Undercutting the

market price significantly will create a large market for this product.

Manufactured or Real Capital: The manufactured capital will be the inventory of this

product.

Natural Capital: The ICs used on this device require a significant amount of water while

being manufactured. Additionally the raw materials that create the components, circuit

boards, and enclosures come from natural resources.

46

When and where do costs and benefits accrue throughout the project lifecycle?

Costs to the project team occurs during the design and manufacturing stages of the

project lifecycle through research and development, labor costs, and material costs.

When the product is sold, the customer has an upfront purchase cost. The customer will

then see the benefits through the rest of the life of the product before for the product is

ultimately disposed of.

What inputs does the experiment require? How much does the project cost? Who pays?

Table A.1: Original cost estimate

Item Quantity Cost

Circuit Board Components 1 $120

Printed Circuit Board 1 $0

Connectors, Enclosure, and Hardware - $2

Extra Expenses
(Shipping, re-orders, extra components)

- $80

Total $202

While different parties will be assuming the costs at different points in the product

lifecycle, ultimately, the cost of this project will come from the EE department through

the $200 grant they give to senior projects. If manufactured commercially, the customer

would be assuming all the costs when they buy the product.

How much does the product earn? Who profits?

This project is being funded through the EE department grants, and donations.

Furthermore, this project is being given to Cal Poly Racing, a nonprofit organization.

Therefore, this project does not profit, however, Cal Poly Racing profits from new

equipment, and the parts suppliers profit from purchasing parts from them.

Timing

Products would emerge after 20 weeks combined of design, manufacturing, and testing.

The products are then expected to last 10 years at a minimum. In order for the product

to last this long, some soldering and components may need to be repaired over time due

to the amount of vibration and heat generated by the Formula SAE car. After the project

is complete, the project will be given to Cal Poly Racing in order to implement on the 2018

vehicle. Product training for integration and use will occur after the 2017 Formula SAE

competition.

47

Figure A.1: Estimated development time

If Manufactured on a Commercial Basis:

Estimated number of devices sold per year: 200

Estimated manufacturing cost for each device: $110 (this considers economies of scale

and labor)

Estimated Purchase price for each device: $400

Estimated profit per year: $29,000

Estimated cost for user to operate device: Operating the device for one hour will cost the

user approximately $0.072 per hour. This assumes $0.12 per Kilowatt-hour.

Environmental:

This product mostly affects the environment at the beginning and end of the product

lifecycle, and has a minimal environmental impact during its use. At the beginning of the

lifecycle, energy, raw materials, and consumable materials put into manufacturing the

ICs, circuit boards, and enclosures for the product taxes upon the environment in water

48

usage, waste, and emissions. During the use of the product, the product indirectly

contributes to air pollution because its intended use is to help control internal combustion

vehicles. At the end of the lifecycle, the product is disposed of, and affects the cleanliness

of the environment because it would most likely end up in a landfill. While this product

does cause some harm to the environment, it does also improve the environment. This

product will be more effective at protecting electronics on the Formula SAE vehicles, so

there will be less damage to the electronics. The electronics on the vehicles then will have

extended lifecycles, and less electronic waste will be in the landfills. For the areas of the

environment that this product negatively impacts, the species residing in those areas will

see some impact in their habitat as the impact of this project combines with the impact

of other projects on the environment.

Manufacturability:

Manufacturing will be difficult due to the environment the product will be used in. All

solder joints must be of very high quality due to significant amount of vibration that the

circuit board will be experiencing under normal conditions. Furthermore, the enclosure

needs to be manufactured so that it is water and dust resistant which will be difficult due

to the small tolerances this specification requires.

Sustainability

Describe any issues or challenges associated with maintaining the completed device or

system.

The environment in which the device is operated will pose as a challenge to maintaining

the device. This device must be designed to withstand vibration, heat, impact, water, and

dust. Furthermore, due to the significant amount of power flowing through this device,

this device must effectively dissipate the generated heat to ensure the longevity of the

internal components, however, this device must also be lightweight due to it being used

on racecars.

Describe how the project impacts the sustainable use of resources.

While this product taxes upon resources upfront through the manufacturing process,

overall, this product improves the sustainable use of resources. This product not only

distributes power to various electronics, but it also protects those electronics from

overcurrent and overvoltage conditions. This will ultimately result in fewer damaged

electronic devices that will then result in fewer electronic devices being disposed of, and

fewer electronic devices being manufactured to replace the older devices.

Describe any upgrades that would improve the design of the project.

This project can be upgraded by making the internal circuit boards and components very

accessible. This will allow the device to be serviceable, and would result in a longer

49

product life cycle. Furthermore, reducing product weight and size would be advantageous

because weight is a very big consideration when choosing devices to put on a racecar, and

a smaller size will help with packaging the device in the racecar. Finally, a graphical user

interface would be an advantageous addition to this project so that users do not need to

interact with the code directly in order to operate this project.

Describe any issues or challenges associated with upgrading the design:

Upgrading the design to be modular would pose a challenge because even when the

device is designed to be taken apart easily, it must still be water resistant and durable.

Upgrading the design to be smaller and lighter would pose issues because the circuit

board would need to still fit all of the same components. Secondly, the circuit board must

be large enough so that the trace width could be wide enough for the device to stay cool.

Finally, making the device lighter would prove to be difficult because the device must be

cooled, and a significant amount of the weight of the system is designated to cooling the

device.

Ethical

This project has several ethical implications. First, the device must be designed to follow

the Formula SAE competition rules, even if simpler design choices could be made by not

following the rules. Secondly, the device must be reliable and thoroughly tested. Not only

is this device being used in a competition, and the customer expects a reliable product,

this product also contains key safety shutdown circuitry that disables the engine of the

vehicle in the case of an emergency, including, but not limited to a fire, crash, or loss of

brake pressure. The current limiting circuitry must also work reliably because the

customer is relying on this device to protect $10,000 to $15,000 worth of electronics from

damage. Another important ethical consideration is that this product is documented

properly. When the customer receives this product, the customer must have the

documentation on how to implement the device into the vehicle and how to use it.

Without that documentation and knowledge, the customer would invest time and money

into this product, and then would be unable to use it. Finally, while this product is

designed to be used in a motorsports application, the designers have no control over how

the customer uses the devices. A customer could choose to misuse the product, and use

it on a harmful system that causes damage to people and/or property.

Health and Safety

The safety concerns of this product revolve primarily around the design and use of the

device. Specifically, the emergency shutdown circuitry must always work flawlessly as it

is responsible for disabling the engine of the car in the case of an emergency. If this

circuitry ever fails, it could put the driver and surrounding spectators in serious danger of

injury.

50

Social and Political

This product has social implications associated with it because this product will seriously

affect the motorsports electronics industry. This product impacts both motorsports

electronics customers, and competing companies and the employees at these companies.

This product significantly undercuts the price of competing products, and the customers

will greatly benefit from the lower product cost. Likewise, competitors may lose business

do to their products now being too expensive. This may affect the pay and livelihood of

employees at the other companies. While all customers would pay equally for this

product, this product does create inequities. This device requires programming

knowledge in order to successfully implement this solution on a racecar. Therefore,

individuals who have programming knowledge would be able to buy this low cost

solutions, while individuals without programming knowledge would probably have to

purchase the more expensive versions the competitors offer.

Development

This project will require development in knowledge of thermal dissipation of electronic

components, thermal transfer and cooling, and how, quantitatively, heat affects the

operation of various electronic components.

51

Appendix B: Hardware Schematics

Figure B.1: High Current Output circuit containing the current sense resistor (RS4), two MOSFETs in

parallel (M11 and M12) and the current sense amplifier (U9). There are four of these circuits total on the

circuit board.

Figure B.2: High Current Analog Redundancy Circuit. The output of the current sense amplifier from

Figure B.1 is input into the hysteretic comparator based on (U2). A reference voltage provided by the

DAC (U21) is also sent to the hysteretic comparator. If the comparator is triggered, a BJT in the BJT array

(U$2) turns on and drains the gait voltage from the MOSFETs (M11 and M12 in Figure B.1).

52

Figure B.3: Analog shut down circuitry (U$3) and gate driver for high current output (U3)

Figure B.4: Low current output containing PTC fuse (F2), current measuring resistor (U$4), output

MOSFET (U$5), and current sense amplifier (U10)

53

Figure B.5: Signal to ADC multiplexing for high current outputs (U20) and low current outputs (U$20)

Figure B.6: Charging rectifier shutdown circuit containing gate driver (U22) and output MOSFETS (M1,

M4, M7)

Figure B.7: Temperature sensing

54

Figure B.8: Battery voltage measurement circuit

Figure B.9: Input current and voltage limiting

Figure B.10: 5 V linear regulator (U$26) and the voltage reference for the ADC (MAX6350CSA). The PWR

LED indicates when the Power Distribution Controller is on.

55

Figure B.11: AVR connections

56

Figure B.12: FTDI USB to UART interface

Figure B.13: AVR Rest Circuit

57

Figure B.14: CAN transceiver

Figure B.15: Connectors and USB circuit protection

58

Appendix C: Bill of Materials

Table C.1: Bill of Materials

Qty Part Manufacturer's Part Number Price per Unit Total Price

4 WSL2726_RES WSL2762L000FEB $2.39 $9.56

8 LVK_SERIES LVK20R020DER $1.19 $9.55

2 R-US_R0805 ERJ-P06F-1003V $0.19 $0.38

4 C-USC0805 C0805C104K5RACAUTO $0.15 $0.60

18 R-US_R0603 RC0603RF-0710KL $0.02 $0.27

2 C-USC0603 GRT188R61C106ME13D $0.47 $0.94

1 R-US_R0603 RC0603FR-0714K7L $0.10 $0.10

1 PTCSMD FUSE PTC RESET 16 V .25 A 1206 $0.50 $0.50

2 C-USC0805 CL21C180JBANNNC $0.10 $0.20

5 R-US_R0805 RC0402FR-071KL $0.01 $0.07

1 DIODESOD-123 1N4148W-TP $0.14 $0.14

1 1N5819-BSOD123 1N5819HW-7-F $0.49 $0.49

2 C-USC0603 EMK107BJ225KA-T $0.12 $0.24

12 C-USC0603 C0603C221F5GACTU $0.18 $2.16

13 R-US_R0603 RT0603BRE0726k1L $0.28 $3.61

6 R-US_R0603 RC0402FR-072K1L $0.01 $0.08

4 R-US_R0603 RC0603JR-73KL $0.01 $0.04

1 CAP0805 CL21B472KB6WPNC $0.10 $0.10

1 CRYSTALSMD ABLS-16.000MHZ-B4-T $0.25 $0.25

1 AD5314WARMZ-REEL7 AD5314ARMZ-REEL7 $7.06 $7.06

1 AT90CAN128 AT90CAN128-16AUR $7.66 $7.66

3 AZ23C5V6-7-F AZ23C5V6-7-F $0.44 $1.32

1 L-USL3216C CS321613-100K $0.34 $0.34

1 DG407 DG407DN-E3 $8.04 $8.04

1 DG409DY-E3 DG409DY-E3 $3.31 $3.31

1 FT232RL FT232RL-REEL $4.50 $4.50

1 M03X2SMD_FCI 20021121-00006C4LF $0.53 $0.53

3 LT1161ISWPBF LT1161ISW#PBF $7.84 $23.52

4 LT1716IS5PBF LT1716IS5#PBF $2.93 $11.72

1 LT1910IS8TRPBF LT1910IS8#TRPBF $4.52 $4.52

12 LT6100HMS8PBF LT6100HMS8#PBF $2.96 $35.52

1 MAX6350CSA MAX6350CSA+ $9.78 $9.78

1 MCP2551SO8 MCP2551T-E/SN $1.22 $1.22

1 MCP970X MCP9700T-E/TT $0.26 $0.26

1 MMPQ3904 MMPQ3904 $1.55 $1.55

1 MMPQ3906 MMPQ3906 $1.69 $1.69

1 NCP1117 NCP1117ST50T3G $0.50 $0.50

1 NUP2105L NUP2105LT1G $0.44 $0.44

19 PSMN2R2-25YLC PSMN2R2-25YLC, 115 $0.90 $17.10

8 PTC_FUSE2002920L 2920L600 $0.85 $6.80

1 LEDCHIPLED_0805 LG R971-KN-1 $0.25 $0.25

1 LEDCHIPLED_0805 LY R976-PS-36 $0.35 $0.35

1 SUPERSEAL1.0_60POS 2-6437285-2 $15.95 $15.95

1 LEDCHIPLED_0805 LY R976-PS-36 $0.35 $0.35

1 PCB PCB $96.00 $96.00

1 Enclosure Enclosure $0.00 $0.00

1 8X 4-40 Bolt, 8X Nut $2.00 $2.00

59

Appendix D: Wiring Guide and Device Setup

Table D.1: Pin Functions List

Connector A: 34 Position Connector B: 26 Position

Pin Number Function Pin Number Function

1 Low Current 1 Output 1 Battery +

2 High Current 2 Output 2 Battery +

3 High Current 3 Output 3 Rectifier Ground

4 Emergency Shutdown 4 No Connect

5 No Connect 5 High Current 1 Output

6 No Connect 6 High Current 4 Output

7 Low Current 1 Ground 7 Low Current 5 Output

8 Low Current 2 Ground 8 Battery +

9 High Current 1 Ground 9 Rectifier Ground

10 Low Current 2 Output 10 Low Current Output 8 Ground

11 High Current 2 Output 11 High Current 1 Output

12 High Current 3 Output 12 High Current 4 Output

13 USB Voltage 13 Low Current 6 Output

14 Digital Input 1 14 Battery- (Ground)

15 Low Current 3 Ground 15 High Current 4 Ground

16 Low Current 4 Ground 16 High Current 3 Ground

17 High Current 1 Ground 17 Rectifier In

18 Low Current 3 Output 18 Rectifier Out

19 USB Ground (Ground) 19 Low Current 7 Output

20 Digital/Analog Input 5 20 Battery- (Ground)

21 Digital/Analog Input 6 21 Battery- (Ground)

22 Digital Input 4 22 High Current 4 Ground

23 Digital Input 2 23 High Current 3 Ground

24 Low Current 5 Ground 24 Rectifier In

25 High Current 2 Ground 25 Rectifier Out

26 Low Current 4 Output 26 Low Current 8 Output

27 USB D+

28 USB D-

29 CAN High

30 CAN Low

31 Digital Input 3

32 Low Current 6 Ground

33 Low Current 7 Ground

34 High Current 2 Ground

60

Figure D.1: Wiring Diagram [8]

61

Output Setup Instructions:

1) Open PDC.h, and find the section “Set Output Settings” near the top of the file.

2) Find the output that you would like to set up. Outputs are designated as “HC” for high

current output and “LC” for low current outputs. The number following HC or LC is the

output number. Figure D.2 shows the setup parameters for high current output 1. All

further instructions refer to output HC1, however, in order to set up another output,

replace HC1 with the output name you want to set up.

HC1_Setup.OutputEnable = true;
HC1_Setup.CurrentLimit = 12;
HC1_Setup.FusingTime = 0; //in [ms]should be set higher than inrush current time
HC1_Setup.ResetEnable = false;
HC1_Setup.ResetAttempts = 240; //Must be non zero
HC1_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
HC1_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
HC1_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
HC1_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
HC1_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

Figure D.2: HC1 setup parameters

3) To enable the output, set HC1_Setup.OutputEnable to true. If this value is false, the

output will not turn on.

4) Set the firmware current limit in HC1_Setup.CurrentLimit. This value has 0.1 amp

accuracy. For high current outputs, this value should not exceed 15 amps, and for low

current outputs this value should not exceed 5 amps.

5) To set a fusing delay, set HC1_Setup.FusingTime to the number of milliseconds after an

over current condition the output should shutdown. If the current drops below the

current limit at any time between the initial overcurrent detection and the time at

which the output is delayed to turn off, the output will remain on until either a second

overcurrent condition activates this delay again, or another condition shutdown the

output. HC1_Setup.FusingTime should be set slightly higher than the expected inrush

current time for the load.

6) If you would like the output to turn the output back on after an overcurrent condition to

reattempt to power the load, set HC1_Setup.ResetEnable to true. Then, set

HC1_Setup.ResetAttempts to the number of times the output should try to restart

before remaining off. If you set HC1_Setup.ResetEnable to false,

HC1_Setup.ResetAttempts must be set to a non-zero number. As long as

HC1_Setup.ResetEnable is set to false, the output will not attempt to restart after an

overcurrent condition.

7) In order to toggle an output based on a digital, analog, or CAN receive value, set the

HC1_Setup.ConditionNChannel variables to the reference of the Boolean value you want

the output to be toggled on. Predefined references are shown in table D.2.

62

Table D.2: Output Condition References

Input Reference

Default Value (true) &(ConditionReg.defaultCondition)

Digital Input 1 &(InputReg.dInput1)

Digital Input 2 &(InputReg.dInput2)

Digital Input 3 &(InputReg.dInput3)

Digital Input 4 &(InputReg.dInput4)

Digital Input 5 &(InputReg.dInput5)

Digital Input 6 &(InputReg.dInput6)

Engine RPM (CAN)* &(ConditionReg.EngineRPMthresh)

Engine Temp (CAN)* &(ConditionReg.EngineTempthresh

*Note that Engine RPM and Engine temperature are configured for a CAN message with

CAN ID 0x0E0, and Engine Temp as the first two data bytes, and Engine RPM as the

second two data bytes.

To create more conditions, first created a Boolean value in ConditionReg in PDC.h, then

in UpdateConditions() under the comment “//CAN condition check,” write a conditional

statement that assigns a value to the Boolean variable you created. Then, to have an

output toggle based on that condition, set HC1_Setup.ConditionNChannel to

&(ConditionReg.YourBooleanVariable).

8) Save the file and build the project. Flash the new hex file to the power distribution

controller.

63

Appendix E: Testing Details and Data

This section contains the full datasets for the ADC error test and calibration, as well as the data
set for the output current calibrations.

ADC error test and calibration

Table E.1 shows the ADC error pre calibration, and the ADC error post calibration. For this test,
analog input 5 was connected to a DC voltage source, and the ADC reading was sent to a serial
monitor via UART. The AT90CAN128 microcontroller contains 8 ADC inputs, however, they are
multiplexed into a single ADC. Therefore, performing the calibration on analog input 5, actually
calibrates all ADC inputs.

In Table E.1, “Input Voltage” is the input into analog input 5, “ADC Return” is the raw 10 bit ADC
value, “ADC Voltage Pre-Calibration” is the ADC voltage reading based on the equation E.1,
“Error Pre-Calibration” Is the difference between “ADC Voltage Pre-Calibration” and “Input
Voltage,” “Voltage Post Calibration” is the “Voltage Pre-Calibration” minus the trend line
generated in figure E.1, and “Error Post Calibration” is the difference between “Voltage Post
Calibration” and “Input Voltage.”

𝐴𝐷𝐶 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑃𝑟𝑒 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = (ADC Return) ∗
𝐴𝐷𝐶 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

10 𝐵𝑖𝑡 𝐴𝐷𝐶
= (𝐴𝐷𝐶 𝑅𝑒𝑡𝑢𝑟𝑛) ∗

5 𝑉𝑜𝑙𝑡𝑠

210

Equation E.1: ADC Voltage Calculation

Figure E.1 shows the amount of absolute error in the ADC readings before the calibration, and
Figure E.2 shows the amount of absolute error in the ADC readings after the ADC calibration.
Notice that in Figure E.2, the error is corrected to be less than on least significant bit of the ADC
for all points.

64

Table E.1: ADC Calibration Raw Dataset

Input
Voltage
(V)

ADC
Return

ADC Voltage Pre-
Calibration (V)

Error Pre
Calibration (V)

Voltage Post
Calibration (V)

Error Post
Calibration (V)

5 1023 5 0 5.003 0.003

4.904 1003 4.902248289 0.001751710655 4.903879765 0.0001202346041

4.803 983 4.804496579 0.00149657869 4.804759531 0.001759530792

4.703 963 4.706744868 0.003744868035 4.705639296 0.002639296188

4.603 943 4.608993157 0.00599315738 4.606519062 0.003519061584

4.503 923 4.511241447 0.008241446725 4.507398827 0.004398826979

4.402 902 4.408602151 0.006602150538 4.403322581 0.001322580645

4.303 882 4.31085044 0.007850439883 4.304202346 0.001202346041

4.204 862 4.213098729 0.009098729228 4.205082111 0.001082111437

4.103 842 4.115347019 0.01234701857 4.105961877 0.002961876833

4.003 822 4.017595308 0.01459530792 4.006841642 0.003841642229

3.904 801 3.914956012 0.01095601173 3.902765396 0.001234604106

3.803 781 3.817204301 0.01420430108 3.803645161 0.0006451612903

3.703 761 3.71945259 0.01645259042 3.704524927 0.001524926686

3.603 741 3.62170088 0.01870087977 3.605404692 0.002404692082

3.503 720 3.519061584 0.01606158358 3.501328446 0.001671554252

3.403 700 3.421309873 0.01830987292 3.402208211 0.0007917888563

3.303 680 3.323558162 0.02055816227 3.303087977 0.00008797653959

3.204 660 3.225806452 0.02180645161 3.203967742 0.00003225806452

3.104 640 3.128054741 0.02405474096 3.104847507 0.0008475073314

3.005 619 3.025415445 0.02041544477 3.000771261 0.004228739003

2.906 600 2.93255132 0.02655131965 2.906607038 0.0006070381232

2.806 579 2.829912023 0.02391202346 2.802530792 0.003469208211

2.705 559 2.732160313 0.02716031281 2.703410557 0.001589442815

2.605 539 2.634408602 0.02940860215 2.604290323 0.0007096774194

2.504 519 2.536656891 0.0326568915 2.505170088 0.001170087977

2.404 498 2.434017595 0.03001759531 2.401093842 0.002906158358

2.304 478 2.336265885 0.03226588465 2.301973607 0.002026392962

2.203 458 2.238514174 0.035514174 2.202853372 0.000146627566

65

2.103 438 2.140762463 0.03776246334 2.103733138 0.0007331378299

2.003 418 2.043010753 0.04001075269 2.004612903 0.001612903226

1.903 397 1.940371457 0.0373714565 1.900536657 0.002463343109

1.804 377 1.842619746 0.03861974585 1.801416422 0.002583577713

1.703 357 1.744868035 0.04186803519 1.702296188 0.0007038123167

1.604 337 1.647116325 0.04311632454 1.603175953 0.0008240469208

1.503 317 1.549364614 0.04636461388 1.504055718 0.001055718475

1.403 296 1.446725318 0.04372531769 1.399979472 0.003020527859

1.303 276 1.348973607 0.04597360704 1.300859238 0.002140762463

1.203 256 1.251221896 0.04822189638 1.201739003 0.001260997067

1.102 236 1.153470186 0.05147018573 1.102618768 0.0006187683284

1.002 216 1.055718475 0.05371847507 1.003498534 0.001498533724

0.902 196 0.9579667644 0.05596676442 0.9043782991 0.00237829912

0.802 176 0.8602150538 0.05821505376 0.8052580645 0.003258064516

0.702 156 0.7624633431 0.06046334311 0.7061378299 0.004137829912

0.602 135 0.6598240469 0.05782404692 0.6020615836 0.00006158357771

0.502 115 0.5620723363 0.06007233627 0.502941349 0.0009413489736

0.402 95 0.4643206256 0.06232062561 0.4038211144 0.00182111437

0.303 75 0.366568915 0.06356891496 0.3047008798 0.001700879765

0.203 55 0.2688172043 0.06806549365 0.2055806452 0.002580645161

0.103 35 0.1710654936 0.07131378299 0.1064604106 0.003460410557

0.002 15 0.07331378299 0 0.007340175953 0.005340175953

Output Current Calibration

This test determined the calibration between the current sense amplifier output voltage for the
high current and low current outputs, and the corresponding output current. Figure E.3 shows
the calibration curve for the low current output while Figure E.4 shows the calibration curve for
the high current outputs. The trend line generated in Figures E.3 and E.4 are used in the code to
determine the output current. The curves are referenced to raw ADC return values rather than
voltage in order to reduce processing time in the code. Table E.2 shows the raw dataset for the
low current output calibration, and Table E.3 shows the raw dataset for the high current output
calibration. In each table, the “ADC Value” is an average of the ADC values observed during
each data point.

66

Table E.2: Raw Dataset for Low Current Output Current Calibration

ADC Value Load Current (A) Output Voltage (V) Load Power (W) PDC Dissipated Power (W)

 0.02 12 0.24 0

0 0.1 11.99 1.199 0.001

15 0.2 11.97 2.394 0.006

30.5 0.3 11.96 3.588 0.012

48.5 0.4 11.94 4.776 0.024

65 0.5 11.93 5.965 0.035

81 0.6 11.91 7.146 0.054

97 0.7 11.89 8.323 0.077

114 0.8 11.88 9.504 0.096

131 0.9 11.86 10.674 0.126

147.5 1 11.85 11.85 0.15

163 1.09 11.83 12.8947 0.1853

180.5 1.2 11.82 14.184 0.216

197.5 1.3 11.8 15.34 0.26

213.5 1.39 11.79 16.3881 0.2919

230 1.49 11.77 17.5373 0.3427

247 1.6 11.75 18.8 0.4

262.5 1.7 11.74 19.958 0.442

279 1.8 11.72 21.096 0.504

295 1.89 11.71 22.1319 0.5481

67

311.5 2 11.69 23.38 0.62

328.5 2.09 11.68 24.4112 0.6688

346 2.2 11.66 25.652 0.748

361.5 2.3 11.64 26.772 0.828

378.5 2.39 11.63 27.7957 0.8843

394.5 2.5 11.61 29.025 0.975

412 2.6 11.6 30.16 1.04

427 2.69 11.58 31.1502 1.1298

444.5 2.8 11.56 32.368 1.232

461 2.9 11.55 33.495 1.305

477.5 2.99 11.53 34.4747 1.4053

494.5 3.09 11.52 35.5968 1.4832

511 3.19 11.5 36.685 1.595

527 3.29 11.48 37.7692 1.7108

543.5 3.39 11.47 38.8833 1.7967

560 3.49 11.45 39.9605 1.9195

576.5 3.6 11.43 41.148 2.052

593 3.69 11.42 42.1398 2.1402

610 3.79 11.4 43.206 2.274

626.5 3.89 11.39 44.3071 2.3729

643 3.99 11.37 45.3663 2.5137

660 4.1 11.35 46.535 2.665

677 4.19 11.34 47.5146 2.7654

693 4.3 11.32 48.676 2.924

710 4.39 11.3 49.607 3.073

726 4.5 11.28 50.76 3.24

742 4.59 11.27 51.7293 3.3507

758.5 4.68 11.25 52.65 3.51

776.5 4.79 11.23 53.7917 3.6883

792 4.89 11.21 54.8169 3.8631

809 4.98 11.19 55.7262 4.0338

68

Table E.3: Raw Dataset for High Current Output Current Calibration

ADC Value Current (A) Output Voltage (V) Load Power (W) PDC Output Power (W)

0 0 12 0 0

0 0.11 12 1.32 0

0 0.21 11.99 2.5179 0.0021

0 0.31 11.99 3.7169 0.0031

0 0.4 11.98 4.792 0.008

0 0.51 11.98 6.1098 0.0102

0 0.6 11.97 7.182 0.018

0 0.7 11.96 8.372 0.028

0.5 0.81 11.96 9.6876 0.0324

1.5 0.9 11.95 10.755 0.045

3.5 1 11.95 11.95 0.05

5.5 1.1 11.94 13.134 0.066

8 1.2 11.94 14.328 0.072

10 1.3 11.93 15.509 0.091

12 1.4 11.93 16.702 0.098

14 1.5 11.92 17.88 0.12

16 1.6 11.91 19.056 0.144

18 1.7 11.91 20.247 0.153

20 1.8 11.9 21.42 0.18

22 1.9 11.9 22.61 0.19

24 2 11.89 23.78 0.22

26 2.1 11.89 24.969 0.231

28.5 2.2 11.88 26.136 0.264

30.5 2.3 11.87 27.301 0.299

32.5 2.4 11.87 28.488 0.312

34.5 2.5 11.86 29.65 0.35

36.5 2.6 11.86 30.836 0.364

39 2.69 11.85 31.8765 0.4035

41 2.8 11.85 33.18 0.42

43.5 2.9 11.84 34.336 0.464

46 2.99 11.84 35.4016 0.4784

69

48 3.09 11.83 36.5547 0.5253

50 3.2 11.82 37.824 0.576

52 3.29 11.82 38.8878 0.5922

54.5 3.4 11.81 40.154 0.646

55.5 3.49 11.81 41.2169 0.6631

58.5 3.59 11.8 42.362 0.718

60.5 3.7 11.8 43.66 0.74

62.5 3.79 11.79 44.6841 0.7959

64.5 3.89 11.79 45.8631 0.8169

66.5 4 11.78 47.12 0.88

68.5 4.09 11.78 48.1802 0.8998

70.5 4.19 11.77 49.3163 0.9637

72.5 4.29 11.76 50.4504 1.0296

74.5 4.39 11.76 51.6264 1.0536

76.5 4.49 11.75 52.7575 1.1225

78.5 4.59 11.74 53.8866 1.1934

81 4.69 11.74 55.0606 1.2194

82.5 4.79 11.73 56.1867 1.2933

84.5 4.89 11.73 57.3597 1.3203

86.5 4.99 11.72 58.4828 1.3972

88.5 5.09 11.72 59.6548 1.4252

90.5 5.19 11.71 60.7749 1.5051

92.5 5.29 11.71 61.9459 1.5341

94.5 5.39 11.7 63.063 1.617

96.5 5.49 11.7 64.233 1.647

98.5 5.59 11.69 65.3471 1.7329

100.5 5.69 11.68 66.4592 1.8208

102.5 5.79 11.68 67.6272 1.8528

105 5.88 11.67 68.6196 1.9404

107.5 5.99 11.67 69.9033 1.9767

109 6.09 11.66 71.0094 2.0706

111.5 6.19 11.66 72.1754 2.1046

113.5 6.29 11.65 73.2785 2.2015

70

116 6.39 11.64 74.3796 2.3004

117.5 6.48 11.64 75.4272 2.3328

120.5 6.59 11.63 76.6417 2.4383

122.5 6.69 11.63 77.8047 2.4753

124.5 6.79 11.62 78.8998 2.5802

126.5 6.89 11.62 80.0618 2.6182

128.5 6.98 11.61 81.0378 2.7222

130 7.08 11.6 82.128 2.832

132.5 7.19 11.6 83.404 2.876

134.5 7.29 11.59 84.4911 2.9889

136.5 7.38 11.59 85.5342 3.0258

138.5 7.48 11.58 86.6184 3.1416

140.5 7.59 11.57 87.8163 3.2637

143 7.68 11.57 88.8576 3.3024

145.5 7.78 11.56 89.9368 3.4232

147.5 7.88 11.56 91.0928 3.4672

149.5 7.99 11.55 92.2845 3.5955

151.5 8.08 11.54 93.2432 3.7168

153.5 8.18 11.54 94.3972 3.7628

155.5 8.28 11.53 95.4684 3.8916

157 8.39 11.53 96.7367 3.9433

158.5 8.48 11.52 97.6896 4.0704

161 8.58 11.52 98.8416 4.1184

163 8.68 11.51 99.9068 4.2532

164.5 8.78 11.5 100.97 4.39

166.5 8.88 11.5 102.12 4.44

168.5 8.98 11.49 103.1802 4.5798

171.5 9.08 11.49 104.3292 4.6308

173.5 9.18 11.48 105.3864 4.7736

175.5 9.28 11.48 106.5344 4.8256

177.5 9.37 11.47 107.4739 4.9661

179.5 9.48 11.46 108.6408 5.1192

181.5 9.58 11.46 109.7868 5.1732

71

183.5 9.68 11.45 110.836 5.324

185.5 9.78 11.44 111.8832 5.4768

188 9.88 11.44 113.0272 5.5328

190.5 9.98 11.43 114.0714 5.6886

193.5 10.08 11.43 115.2144 5.7456

195.5 10.18 11.42 116.2556 5.9044

197.5 10.28 11.41 117.2948 6.0652

199 10.38 11.41 118.4358 6.1242

201.5 10.48 11.4 119.472 6.288

203.5 10.58 11.4 120.612 6.348

205.5 10.68 11.39 121.6452 6.5148

207.5 10.78 11.38 122.6764 6.6836

210.5 10.88 11.38 123.8144 6.7456

211.5 10.98 11.37 124.8426 6.9174

213.5 11.08 11.37 125.9796 6.9804

215.5 11.18 11.36 127.0048 7.1552

217.5 11.28 11.36 128.1408 7.2192

219.5 11.38 11.35 129.163 7.397

222.5 11.48 11.34 130.1832 7.5768

224.5 11.58 11.34 131.3172 7.6428

226.5 11.68 11.33 132.3344 7.8256

227.5 11.78 11.33 133.4674 7.8926

230.5 11.88 11.32 134.4816 8.0784

232.5 11.98 11.31 135.4938 8.2662

234.5 12.08 11.31 136.6248 8.3352

236.5 12.18 11.3 137.634 8.526

238.5 12.28 11.3 138.764 8.596

240.5 12.38 11.29 139.7702 8.7898

242.5 12.48 11.28 140.7744 8.9856

244.5 12.58 11.28 141.9024 9.0576

246.5 12.68 11.27 142.9036 9.2564

248.5 12.78 11.27 144.0306 9.3294

250.5 12.88 11.26 145.0288 9.5312

72

252.5 12.98 11.25 146.025 9.735

254.5 13.08 11.25 147.15 9.81

256.5 13.18 11.24 148.1432 10.0168

258.5 13.28 11.24 149.2672 10.0928

261 13.38 11.23 150.2574 10.3026

263.5 13.48 11.22 151.2456 10.5144

265.5 13.58 11.22 152.3676 10.5924

267.5 13.68 11.21 153.3528 10.8072

270.5 13.78 11.2 154.336 11.024

272.5 13.88 11.2 155.456 11.104

274.5 13.98 11.19 156.4362 11.3238

276.5 14.08 11.19 157.5552 11.4048

278.5 14.18 11.18 158.5324 11.6276

280.5 14.28 11.17 159.5076 11.8524

282.5 14.38 11.17 160.6246 11.9354

284.5 14.48 11.16 161.5968 12.1632

286.5 14.58 11.16 162.7128 12.2472

288.5 14.68 11.15 163.682 12.478

291.5 14.78 11.14 164.6492 12.7108

293.5 14.88 11.14 165.7632 12.7968

295.5 14.98 11.13 166.7274 13.0326

73

Appendix F: Code

main.cpp

#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <AVRLibrary/arduino/Arduino.h>
#include <AVRLibrary/CPFECANLib.h>
#include "PDC.h"

PDC pdc;
testPDC test;
uint8_t OutputCheckCounter;

SIGNAL(TIMER1_COMPA_vect) {//Analog Redundancy Interrupt
 pdc.AnalogRedEnableLOGIC();
}

SIGNAL(TIMER2_COMP_vect){//Fusing Delay Interrupt
 pdc.timer2_int_handler();
}

void canRxIntFunc(CPFECANLib::MSG *msg, uint8_t mobNum) {//CAN Receive Interrupt
 pdc.CAN_RX_Int(msg, mobNum);
}

int main(){
 pdc.InitializePDC(&canRxIntFunc);
 OutputCheckCounter = 0;
 pdc.SetOutputSettings();

 while(1){
 while(OutputCheckCounter < 8){
 pdc.UpdateData(OutputCheckCounter);
 pdc.OutputIO();
 OutputCheckCounter++;
 }

 OutputCheckCounter=0;
 pdc.TxCANdata();
 }
 return 0;
}

74

PDC.h

#include <stdio.h>
#include <stdint.h>
#include <avr/pgmspace.h>
#include <avr/io.h>
#include <util/delay.h>

#include <AVRLibrary/CPFECANLib.h>
#include <AVRLibrary/arduino/Arduino.h>

#define MINIMUM_BATTERY_VOLTAGE 11
#define MAX_TEMPERATURE 49 //degrees C

class testPDC;

/***/
/*ECU CAN Message Setup*/

static constexpr uint8_t ECU_CAN_ID = 0x0E0;

static const CPFECANLib::MSG PROGMEM ECU1_MSG =
{ { ECU_CAN_ID}, 8, 0, 0, 0};

static const CPFECANLib::MSG PROGMEM ECU1_MASK = { {0xFFF}, 8, 1, 1, 0};

/***/

class PDC {
 friend class testPDC;
protected:
 enum class OutputNames
 : uint8_t {
 HC1, HC2, HC3, HC4, LC1, LC2, LC3, LC4, LC5, LC6, LC7, LC8
 };

public:
/**/
/* Set Output Settings */
/**/
/*
 * This Function sets the output settings
 */

 void SetOutputSettings(void){
 //Output Settings

 GlobalControl.GlobalEnable = true;
 ConditionReg.defaultCondition =true;

 HC1_Setup.OutName = OutputNames::HC1;
 HC1_Setup.OutputEnable = false;
 HC1_Setup.CurrentLimit = 3;
 HC1_Setup.FusingTime = 5000; //in [ms]should be set higher than inrush current time
 HC1_Setup.ResetEnable = false;
 HC1_Setup.ResetAttempts = 240; //Must be non zero

75

 HC1_Setup.Condition1Channel = &(InputReg.dInput1);
 HC1_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 HC1_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 HC1_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 HC1_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 HC2_Setup.OutName = OutputNames::HC2;
 HC2_Setup.OutputEnable = false;
 HC2_Setup.CurrentLimit = 4; //in Amps
 HC2_Setup.FusingTime = 0;
 HC2_Setup.ResetEnable = false;
 HC2_Setup.ResetAttempts = 240; //Must be non zero
 HC2_Setup.Condition1Channel = &(InputReg.dInput2);
 HC2_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 HC2_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 HC2_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 HC2_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 HC3_Setup.OutName = OutputNames::HC3;
 HC3_Setup.OutputEnable = false;
 HC3_Setup.CurrentLimit = 5; //in Amps
 HC3_Setup.FusingTime = 0;
 HC3_Setup.ResetEnable = false;
 HC3_Setup.ResetAttempts = 240; //Must be non zero
 HC3_Setup.Condition1Channel = &(InputReg.dInput1);
 HC3_Setup.Condition2Channel = &(InputReg.dInput2);
 HC3_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 HC3_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 HC3_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 HC4_Setup.OutName = OutputNames::HC4;
 HC4_Setup.OutputEnable = false;
 HC4_Setup.CurrentLimit = 3; //in Amps
 HC4_Setup.FusingTime = 10;
 HC4_Setup.ResetEnable = false;
 HC4_Setup.ResetAttempts = 240; //Must be non zero
 HC4_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 HC4_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 HC4_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 HC4_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 HC4_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC1_Setup.OutName = OutputNames::LC1;
 LC1_Setup.OutputEnable = true;
 LC1_Setup.CurrentLimit = 5; //in Amps
 LC1_Setup.FusingTime = 10;
 LC1_Setup.ResetEnable = false;
 LC1_Setup.ResetAttempts = 10; //Must be non zero
 LC1_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC1_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC2_Setup.OutName = OutputNames::LC2;
 LC2_Setup.OutputEnable = false;

76

 LC2_Setup.CurrentLimit = 3; //in Amps
 LC2_Setup.FusingTime = 10;
 LC2_Setup.ResetEnable = false;
 LC2_Setup.ResetAttempts = 240; //Must be non zero
 LC2_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC2_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC2_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC2_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC2_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC3_Setup.OutName = OutputNames::LC3;
 LC3_Setup.OutputEnable = false;
 LC3_Setup.CurrentLimit = 3; //in Amps
 LC3_Setup.FusingTime = 10;
 LC3_Setup.ResetEnable = false;
 LC3_Setup.ResetAttempts = 240; //Must be non zero
 LC3_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC3_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC3_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC3_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC3_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC4_Setup.OutName = OutputNames::LC4;
 LC4_Setup.OutputEnable = false;
 LC4_Setup.CurrentLimit = 3; //in Amps
 LC4_Setup.FusingTime = 10;
 LC4_Setup.ResetEnable = false;
 LC4_Setup.ResetAttempts = 240; //Must be non zero
 LC4_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC4_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC4_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC4_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC4_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC5_Setup.OutName = OutputNames::LC5;
 LC5_Setup.OutputEnable = false;
 LC5_Setup.CurrentLimit = 3; //in Amps
 LC5_Setup.FusingTime = 10;
 LC5_Setup.ResetEnable = false;
 LC5_Setup.ResetAttempts = 240; //Must be non zero
 LC5_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC5_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC5_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC5_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC5_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC6_Setup.OutName = OutputNames::LC6;
 LC6_Setup.OutputEnable = false;
 LC6_Setup.CurrentLimit = 3; //in Amps
 LC6_Setup.FusingTime = 10;
 LC6_Setup.ResetEnable = false;
 LC6_Setup.ResetAttempts = 240; //Must be non zero
 LC6_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC6_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC6_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC6_Setup.Condition4Channel = &(ConditionReg.defaultCondition);

77

 LC6_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC7_Setup.OutName = OutputNames::LC7;
 LC7_Setup.OutputEnable = false;
 LC7_Setup.CurrentLimit = 3; //in Amps
 LC7_Setup.FusingTime = 10;
 LC7_Setup.ResetEnable = false;
 LC7_Setup.ResetAttempts = 240; //Must be non zero
 LC7_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC7_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC7_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC7_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC7_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

 LC8_Setup.OutName = OutputNames::LC8;
 LC8_Setup.OutputEnable = false;
 LC8_Setup.CurrentLimit = 3; //in Amps
 LC8_Setup.FusingTime = 10;
 LC8_Setup.ResetEnable = false;
 LC8_Setup.ResetAttempts = 240; //Must be non zero
 LC8_Setup.Condition1Channel = &(ConditionReg.defaultCondition);
 LC8_Setup.Condition2Channel = &(ConditionReg.defaultCondition);
 LC8_Setup.Condition3Channel = &(ConditionReg.defaultCondition);
 LC8_Setup.Condition4Channel = &(ConditionReg.defaultCondition);
 LC8_Setup.Condition5Channel = &(ConditionReg.defaultCondition);

/**/
 //Set Control Register Initialization
 //DO NOT EDIT THE REMAINDER OF THIS FUNCTION

 HC1Control.FuseEnabled = false;
 HC1Control.InrushFlag = false;
 HC1Control.OutCurrent = 0;
 HC1Control.OutVoltage = 0;
 HC1Control.ResetAttemptsRemaining = HC1_Setup.ResetAttempts;
 HC1Control.ResetTimeEnable = true;
 HC1Control.FuseBuffer = false;
 HC1Control.timecount = 0;

 HC2Control.FuseEnabled = false;
 HC2Control.InrushFlag = false;
 HC2Control.OutCurrent = 0;
 HC2Control.OutVoltage = 0;
 HC2Control.ResetAttemptsRemaining = HC2_Setup.ResetAttempts;
 HC2Control.ResetTimeEnable = true;
 HC2Control.FuseBuffer = false;
 HC2Control.timecount = 0;

 HC3Control.FuseEnabled = false;
 HC3Control.InrushFlag = false;
 HC3Control.OutCurrent = 0;
 HC3Control.OutVoltage = 0;
 HC3Control.ResetAttemptsRemaining = HC3_Setup.ResetAttempts;
 HC3Control.ResetTimeEnable = true;
 HC3Control.FuseBuffer = false;
 HC3Control.timecount = 0;

78

 HC4Control.FuseEnabled = false;
 HC4Control.InrushFlag = false;
 HC4Control.OutCurrent = 0;
 HC4Control.OutVoltage = 0;
 HC4Control.ResetAttemptsRemaining = HC4_Setup.ResetAttempts;
 HC4Control.ResetTimeEnable = true;
 HC4Control.FuseBuffer = false;
 HC4Control.timecount = 0;

 LC1Control.FuseEnabled = true;
 LC1Control.InrushFlag = false;
 LC1Control.OutCurrent = 0;
 LC1Control.OutVoltage = 0;
 LC1Control.ResetAttemptsRemaining = LC1_Setup.ResetAttempts;
 LC1Control.ResetTimeEnable = true;
 LC1Control.FuseBuffer = false;
 LC1Control.timecount = 0;

 LC2Control.FuseEnabled = false;
 LC2Control.InrushFlag = false;
 LC2Control.OutCurrent = 0;
 LC2Control.OutVoltage = 0;
 LC2Control.ResetAttemptsRemaining = LC2_Setup.ResetAttempts;
 LC2Control.ResetTimeEnable = true;
 LC2Control.FuseBuffer = false;
 LC2Control.timecount = 0;

 LC3Control.FuseEnabled = false;
 LC3Control.InrushFlag = false;
 LC3Control.OutCurrent = 0;
 LC3Control.OutVoltage = 0;
 LC3Control.ResetAttemptsRemaining = LC3_Setup.ResetAttempts;
 LC3Control.ResetTimeEnable = true;
 LC3Control.FuseBuffer = false;
 LC3Control.timecount = 0;

 LC4Control.FuseEnabled = false;
 LC4Control.InrushFlag = false;
 LC4Control.OutCurrent = 0;
 LC4Control.OutVoltage = 0;
 LC4Control.ResetAttemptsRemaining = LC4_Setup.ResetAttempts;
 LC4Control.ResetTimeEnable = true;
 LC4Control.FuseBuffer = false;
 LC4Control.timecount = 0;

 LC5Control.FuseEnabled = false;
 LC5Control.InrushFlag = false;
 LC5Control.OutCurrent = 0;
 LC5Control.OutVoltage = 0;
 LC5Control.ResetAttemptsRemaining = LC5_Setup.ResetAttempts;
 LC5Control.ResetTimeEnable = true;
 LC5Control.FuseBuffer = false;
 LC5Control.timecount = 0;

 LC6Control.FuseEnabled = false;

79

 LC6Control.InrushFlag = false;
 LC6Control.OutCurrent = 0;
 LC6Control.OutVoltage = 0;
 LC6Control.ResetAttemptsRemaining = LC6_Setup.ResetAttempts;
 LC6Control.ResetTimeEnable = true;
 LC6Control.FuseBuffer = false;
 LC6Control.timecount = 0;

 LC7Control.FuseEnabled = false;
 LC7Control.InrushFlag = false;
 LC7Control.OutCurrent = 0;
 LC7Control.OutVoltage = 0;
 LC7Control.ResetAttemptsRemaining = LC7_Setup.ResetAttempts;
 LC7Control.ResetTimeEnable = true;
 LC7Control.FuseBuffer = false;
 LC7Control.timecount = 0;

 LC8Control.FuseEnabled = false;
 LC8Control.InrushFlag = false;
 LC8Control.OutCurrent = 0;
 LC8Control.OutVoltage = 0;
 LC8Control.ResetAttemptsRemaining = LC8_Setup.ResetAttempts;
 LC8Control.ResetTimeEnable = true;
 LC8Control.FuseBuffer = false;
 LC8Control.timecount = 0;

 }

/**/
/* CAN */
/**/

 //MOB Numbers
 static constexpr uint16_t CAN0id = 0x0A0;
 static constexpr uint16_t CAN1id = 0x0A1;
 static constexpr uint16_t CAN2id = 0x0A2;
 static constexpr uint16_t CAN3id = 0x0A3;
 static constexpr uint16_t CAN4id = 0x0A4;
 static constexpr uint16_t CAN5id = 0x0A5;
 static constexpr uint16_t CAN6id = 0x0A6;
 static constexpr uint16_t CAN7id = 0x0A7;

 static constexpr uint8_t sendcanMOB0 = 0;
 static constexpr uint8_t sendcanMOB1 = 1;
 static constexpr uint8_t sendcanMOB2 = 2;
 static constexpr uint8_t sendcanMOB3 = 3;
 static constexpr uint8_t sendcanMOB4 = 4;
 static constexpr uint8_t sendcanMOB5 = 5;
 static constexpr uint8_t sendcanMOB6 = 6;
 static constexpr uint8_t sendcanMOB7 = 7;
 static constexpr uint8_t RX_ECU1MOB = 8;

 void TxCANdata(void) {
 CANMessageData messageData = {0, 0, 0, 0};

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend0.HCCurrent);

80

 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend0.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend0.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend0.LCVoltage);
 txCAN(CAN0id, &messageData, sendcanMOB0); //Send Message For Check 0

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend1.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend1.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend1.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend1.LCVoltage);
 txCAN(CAN1id, &messageData, sendcanMOB1);//Send Message for Check 1

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend2.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend2.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend2.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend2.LCVoltage);
 txCAN(CAN2id, &messageData, sendcanMOB2);//Send Message for Check 2

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend3.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend3.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend3.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend3.LCVoltage);
 txCAN(CAN3id, &messageData, sendcanMOB3);//Send Message for Check 3

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend4.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend4.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend4.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend4.LCVoltage);
 txCAN(CAN4id, &messageData, sendcanMOB4);//Send Message for Check 4

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend5.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend5.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend5.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend5.LCVoltage);
 txCAN(CAN5id, &messageData, sendcanMOB5);//Send Message for Check 5

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend6.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend6.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend6.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend6.LCVoltage);
 txCAN(CAN6id, &messageData, sendcanMOB6);//Send Message for Check 6

 messageData.chan1 = CPFECANLib::hton_uint16_t(CANsend7.HCCurrent);
 messageData.chan2 = CPFECANLib::hton_uint16_t(CANsend7.HCVoltage);
 messageData.chan3 = CPFECANLib::hton_uint16_t(CANsend7.LCCurrent);
 messageData.chan4 = CPFECANLib::hton_uint16_t(CANsend7.LCVoltage);
 txCAN(CAN7id, &messageData, sendcanMOB7); //Send Message for Check 7
 }

 void CAN_RX_Int(CPFECANLib::MSG *msg, uint8_t mobNum) {

 switch (msg->identifier.standard) {
 case ECU_CAN_ID:
 memcpy((void *) &ECU1data, msg->data, sizeof(ECU1data));
 RX_ECU1(true);
 break;
 }

81

 }

/**/
/* InitializePDC */
/**/
/*
 * This function Initializes inputs and outputs, Serial Interface, SPI, ADCs,
 * timers and interrupts
 */
 void InitializePDC(CPFECANLib::CAN_MSG_RX canRxIntFunc){
 CPFECANLib::init(CPFECANLib::CAN_BAUDRATE::B1M, canRxIntFunc);
 initCAN_RX();
 PinInit();
 Serial.begin(115200);
 Initialize_SPI_Master();
 initADC();
 TimersInit();
 RedInit();
 sei();
 }
/**/
/* UpdateData */
/**/
/*
 * This Function updates data for selected outputs and all inputs
 */

 void UpdateData(uint8_t CheckNumber){
 volatile OutputControl *pHCControlReg;
 volatile OutputControl *pLCControlReg;
 CANoutputData *pSendCANdata;

 SwitchMUX(CheckNumber);
 OutputRegisterTracker(CheckNumber);

 pSendCANdata = OutReg.pCANoutputData;

 //Check Outputs
 pHCControlReg = OutReg.pHCControlReg;//Set HC Control Reg to current HC Reg
 pLCControlReg = OutReg.pLCControlReg;//Set LC Control Reg to current LC Reg

 pHCControlReg->OutCurrent = ReadHC_Current();

 //Read 16 bit ADC value for output voltage CAN tx
 pSendCANdata->HCVoltage = highPrecisionRead(3);

 //Read/calculate HC output voltage
 pHCControlReg->OutVoltage = (pSendCANdata->HCVoltage) * 3.61 * 0.00488;
 pLCControlReg->OutCurrent = ReadLC_Current();

 //Read 16 bit ADC value for output voltage CAN tx
 pSendCANdata->LCVoltage = highPrecisionRead(1);

 //Read/calculate LC output voltage
 pLCControlReg->OutVoltage = pSendCANdata->LCVoltage * 3.61 * 0.00488;

82

 //Check Battery Voltage and PDC Temperature

 //Read Input Battery Voltage
 GlobalControl.BatteryVoltage = highPrecisionRead(7) * 3.61 * 0.00488;

 //Read board temperature
 GlobalControl.Temperature = ((highPrecisionRead(4) * 0.00488)-0.4)/0.0195;

 //Check Analog Inputs
 InputReg.aInput5 = highPrecisionRead(5) * 0.00488; //0.00488 = volts per bit for adc
 InputReg.aInput6 = highPrecisionRead(6) * 0.00488;

 //Update Received CAN messages
 CAN_RX.EngineRPM = (motecToFloat(ECU1data[1]))*100;// Engine RPM Value

 UpdateConditions();
 }

/**/
/* OutputIO */
/**/
/*
 * This Function Decides if an output should be on or off
 */
 void OutputIO(void){

 volatile OutputControl *pHCControlReg;
 OutputSetup *pHCSetupReg;
 volatile OutputControl *pLCControlReg;
 OutputSetup *pLCSetupReg;

 pHCControlReg = OutReg.pHCControlReg;
 pHCSetupReg = OutReg.pHCSetupReg;
 pLCControlReg = OutReg.pLCControlReg;
 pLCSetupReg = OutReg.pLCSetupReg;

 if(~(pHCControlReg->FuseEnabled)&&(pHCSetupReg->OutputEnable)&&
 (pHCSetupReg->Condition1Channel)&&(pHCSetupReg->Condition2Channel)&&
 (pHCSetupReg->Condition3Channel)&&(pHCSetupReg->Condition4Channel)&&
 *(pHCSetupReg->Condition5Channel)&&(pHCControlReg->ResetTimeEnable)&&
 (pHCControlReg->ResetAttemptsRemaining>0)&&GlobalControl.GlobalEnable){

 OutputON(pHCSetupReg->OutName);
 }
 else{
 OutputOFF(pHCSetupReg->OutName);
 }

 if(~(pLCControlReg->FuseEnabled)&&(pLCSetupReg->OutputEnable)&&
 (pLCSetupReg->Condition1Channel)&&(pLCSetupReg->Condition2Channel)&&
 (pLCSetupReg->Condition3Channel)&&(pLCSetupReg->Condition4Channel)&&
 *(pLCSetupReg->Condition5Channel)&&(pLCControlReg->ResetTimeEnable)&&
 (pLCControlReg->ResetAttemptsRemaining>0)&&GlobalControl.GlobalEnable){

 OutputON(pLCSetupReg->OutName);
 }

83

 else{
 OutputOFF(pLCSetupReg->OutName);
 }
 }
/**/
/* Analog Re-Enable Determination */
/**/
/*
 * This Function is called based on timer 1 interrupt when activated. This
 * re-enables HC analog redundancy 10ms after an output is turned on.
 */
 void AnalogRedEnableLOGIC(void){
 cli();//Disable interrupts

 if((RedundancyStatusBuffer.RedundancyHC1)&& (RedundancyStatus.RedundancyHC1)&&
 (RedundancyStatusBuffer.RedundancyHC2)&& ~(RedundancyStatus.RedundancyHC2)&&
 (RedundancyStatusBuffer.RedundancyHC3)&& ~(RedundancyStatus.RedundancyHC3)&&
 (RedundancyStatusBuffer.RedundancyHC4)&& ~(RedundancyStatus.RedundancyHC4)){
 TIMSK1 &= ~(1<<OCIE1A);//disable compare interrupt Timer 1
 }

 if((RedundancyStatusBuffer.RedundancyHC1)&& ~(RedundancyStatus.RedundancyHC1)){
 EnableRedundancy(0);//Enable HC1 Redundancy
 }
 if((RedundancyStatusBuffer.RedundancyHC2)&& ~(RedundancyStatus.RedundancyHC2)){
 EnableRedundancy(1);//Enable HC2 Redundancy
 }
 if((RedundancyStatusBuffer.RedundancyHC3)&& ~(RedundancyStatus.RedundancyHC3)){
 EnableRedundancy(2);//Enable HC3 Redundancy
 }
 if((RedundancyStatusBuffer.RedundancyHC4)&& ~(RedundancyStatus.RedundancyHC4)){
 EnableRedundancy(3);//Enable HC4 Redundancy
 }

 RedundancyStatusBuffer.RedundancyHC1 = true;
 RedundancyStatusBuffer.RedundancyHC2 = true;
 RedundancyStatusBuffer.RedundancyHC3 = true;
 RedundancyStatusBuffer.RedundancyHC4 = true;

 LC1Control.InrushFlag = false;
 LC2Control.InrushFlag = false;
 LC3Control.InrushFlag = false;
 LC4Control.InrushFlag = false;
 LC5Control.InrushFlag = false;
 LC6Control.InrushFlag = false;
 LC7Control.InrushFlag = false;
 LC8Control.InrushFlag = false;
 HC1Control.InrushFlag = false;
 HC2Control.InrushFlag = false;
 HC3Control.InrushFlag = false;
 HC4Control.InrushFlag = false;

 sei(); //Enable Interrupts
 }

84

/**/
/* Delay Fusing Time */
/**/
 void timer2_int_handler(void){
 if(HC1Control.FuseBuffer){
 (HC1Control.timecount)++;
 }
 if(HC2Control.FuseBuffer){
 (HC2Control.timecount)++;
 }
 if(HC3Control.FuseBuffer){
 (HC3Control.timecount)++;
 }
 if(HC4Control.FuseBuffer){
 (HC4Control.timecount)++;
 }
 if(LC1Control.FuseBuffer){
 (LC1Control.timecount)++;
 }
 if(LC2Control.FuseBuffer){
 (LC2Control.timecount)++;
 }
 if(LC3Control.FuseBuffer){
 (LC3Control.timecount)++;
 }
 if(LC4Control.FuseBuffer){
 (LC4Control.timecount)++;
 }
 if(LC5Control.FuseBuffer){
 (LC5Control.timecount)++;
 }
 if(LC6Control.FuseBuffer){
 (LC6Control.timecount)++;
 }
 if(LC7Control.FuseBuffer){
 (LC7Control.timecount)++;
 }
 if(LC8Control.FuseBuffer){
 (LC8Control.timecount)++;
 }
 }

protected:
/**/
/* CAN */
/**/
 volatile uint16_t ECU1data[4];//Received data for ECU1data

 void RX_ECU1(bool interruptMode) {
 CPFECANLib::enableMOBAsRX_PROGMEM(RX_ECU1MOB, &ECU1_MSG,
 &ECU1_MASK, interruptMode);
 }

 void initCAN_RX() {
 RX_ECU1(false);
 }

85

 typedef struct {
 uint16_t chan1;
 uint16_t chan2;
 uint16_t chan3;
 uint16_t chan4;
 } CANMessageData;

 static void txCAN(uint16_t ID, CANMessageData *data, uint8_t MOB) {
 CPFECANLib::MSG msg; //comes from CPECANLib.h
 msg.identifier.standard = ID; //set for standard. for extended use identifier.extended
 msg.data = (uint8_t *)data;
 msg.dlc = 8; //Number of bytes of data
 msg.ide = 0; //Set to 0 for standard identifier. Set to 1 for extended address
 msg.rtr = 0;
 CPFECANLib::sendMsgUsingMOB(MOB, &msg);
 }

 //add all variables received from CAN in this struct
 typedef struct CANrx{
 float EngineRPM;
 float EngineTemp;
 }CANrx;

 CANrx CAN_RX;

 uint16_t swap(uint16_t d) {
 uint16_t a;
 unsigned char *dst = (unsigned char *) &a;
 unsigned char *src = (unsigned char *) &d;
 dst[0] = src[1];
 dst[1] = src[0];
 return a;
 }

 float motecToFloat(uint16_t value, float scaler=100.0) {
 return (float)swap(value) / scaler;
 }
/**/
/* Initialization Functions */
/**/
 void PinInit(void){
 //Setup Low Current Outputs
 DDRA |= (1<<PA0)|(1<<PA1)|(1<<PA2)|(1<<PA3)|(1<<PA4);
 DDRE |= (1<<PE3)|(1<<PE4)|(1<<PE5);

 //Setup High Current Outputs
 DDRB |= (1<<PB4)|(1<<PB5)|(1<<PB6)|(1<<PB7);

 //Setup Inputs with Pullups
 PORTD |= (1<<PD0)|(1<<PD1)|(1<<PD2)|(1<<PD3);

 //Setup SPI Pins as Outputs
 DDRB |= (1<<PB0)|(1<<PB1)|(1<<PB2); //slave select, SCLK, MOSI

86

 //MUX Select Pins Set as Outputs
 DDRC |= (1<<PC0)|(1<<PC1)|(1<<PC2);
 }

 void Initialize_SPI_Master(void)
 {
 SPCR = (0<<SPIE) | //No interrupts
 (1<<SPE) | //SPI enabled
 (0<<DORD) | //send MSB first
 (1<<MSTR) | //master
 (1<<CPOL) | //clock idles low
 (1<<CPHA) | //sample leading edge
 (0<<SPR1) | (0<<SPR0) ; //clock speed
 SPSR = (0<<SPIF) | //SPI interrupt flag
 (0<<WCOL) | //Write collision flag
 (0<<SPI2X) ; //Doubles SPI clock
 PORTB = 1 << PB0; // make sure SS is high
 }

 void initADC(){
 ADCSRA = 0x87;//Turn On ADC and set prescaler (CLK/128)
 ADCSRB = 0x00;//turn off autotrigger
 ADMUX = 0x00; //Set ADC channel ADC0
 }

 void TimersInit(void){
 //Timer 1 used for Analog redundancy re-enable
 TCCR1B |= (1 << WGM12)|(1 << CS11); //set timer 1 to CTC mode and prescaler 8
 TCNT1 = 0; //initialize counter
 OCR1A = 20000;//This sets interrupt to 10ms
 //Timer1 Interrupt is enabled and disabled In analog redundancy functions as needed

 //Timer 2 used to delay the fuse after overcurrent condition if needed.
 TCCR2A |= (1<<WGM21) | (1<<CS22); //CTC, 64 prescaler
 OCR2A = 250;//interrupt every 1ms
 TIMSK2 = (1 << OCIE2A); //Timer 2 CTC interrupt enable
 }

/**/
/**/
/*****************SwitchMUX(uint8_t)************************************/
/*
 * This function changes the MUX outputs based on a uint8_t input called CheckNumber
 *
 * CheckNumberValue Outputs Sent to ADCs
 * 0 LC1, HC4
 * 1 LC2, HC1
 * 2 LC3, HC3
 * 3 LC4, HC2
 * 4 LC5, HC4
 * 5 LC6, HC1
 * 6 LC7, HC3
 * 7 LC8, HC2
*/

87

 void SwitchMUX(uint8_t CheckNumber){
 switch(CheckNumber){
 case 0:
 PORTC &= ~((1<<PC2) | (1<<PC1) | (1<<PC0));//Clear PC2, PC1, PC0
 break;
 case 1:
 PORTC &= ~((1<<PC2)|(1<<PC1));
 PORTC |= (1<<PC0);
 break;
 case 2:
 PORTC &= ~((1<<PC2)|(1<<PC0));
 PORTC |= (1<<PC1);
 break;
 case 3:
 PORTC &= ~(1<<PC2);
 PORTC |= (1<<PC1)|(1<<PC0);
 break;
 case 4:
 PORTC &= ~((1<<PC1)|(1<<PC0));
 PORTC |= (1<<PC2);
 break;
 case 5:
 PORTC &= ~(1<<PC1);
 PORTC |= (1<<PC2)|(1<<PC0);
 break;
 case 6:
 PORTC &= ~(1<<PC0);
 PORTC |= (1<<PC2)|(1<<PC1);
 break;
 case 7:
 PORTC |= (1<<PC2)|(1<<PC1)|(1<<PC0);
 break;
 }
 }
/**/
/* Output Control Registers */
/**/
 typedef struct OutputControl{
 bool FuseEnabled;//Sets the output as enabled
 uint8_t ResetAttemptsRemaining;//Counter for restart attempts
 bool ResetTimeEnable;//Prevents restart when time condition not met
 bool FuseBuffer; //set to true when overcurrent condition is met, and wait x ms before
 shutdown
 float OutVoltage;
 float OutCurrent;
 bool InrushFlag;
 uint16_t timecount; //counts time for how long over current condition is present.
 compared to fusing time in setup register
 }OutputControl;

 volatile OutputControl HC1Control;
 volatile OutputControl HC2Control;
 volatile OutputControl HC3Control;
 volatile OutputControl HC4Control;
 volatile OutputControl LC1Control;
 volatile OutputControl LC2Control;

88

 volatile OutputControl LC3Control;
 volatile OutputControl LC4Control;
 volatile OutputControl LC5Control;
 volatile OutputControl LC6Control;
 volatile OutputControl LC7Control;
 volatile OutputControl LC8Control;

 typedef struct Globalcontrol{
 float BatteryVoltage;
 float Temperature;
 bool GlobalEnable;
 }Globalcontrol;

 Globalcontrol GlobalControl;

/**/
/* Setup Outputs */
/**/
 typedef struct OutputSetup{
 OutputNames OutName;
 bool OutputEnable; //enable the output
 float CurrentLimit; //Current Limit for the output
 uint16_t FusingTime; //Time of over current condition before output disable in
 ms
 bool ResetEnable; //if true, output will try to restart
 uint8_t ResetAttempts;//Number of restart attempts allowed
 bool *Condition1Channel;//Pointer to a conditional channel
 bool *Condition2Channel;//Pointer to a conditional channel
 bool *Condition3Channel;//Pointer to a conditional channel
 bool *Condition4Channel;//Pointer to a conditional channel
 bool *Condition5Channel;//Pointer to a conditional channel
 }OutputSetup;

 OutputSetup HC1_Setup;
 OutputSetup HC2_Setup;
 OutputSetup HC3_Setup;
 OutputSetup HC4_Setup;
 OutputSetup LC1_Setup;
 OutputSetup LC2_Setup;
 OutputSetup LC3_Setup;
 OutputSetup LC4_Setup;
 OutputSetup LC5_Setup;
 OutputSetup LC6_Setup;
 OutputSetup LC7_Setup;
 OutputSetup LC8_Setup;

 typedef struct CANoutputData{
 uint16_t LCCurrent;
 uint16_t LCVoltage;
 uint16_t HCCurrent;
 uint16_t HCVoltage;
 }CANoutputData;

 CANoutputData CANsend0;
 CANoutputData CANsend1;
 CANoutputData CANsend2;

89

 CANoutputData CANsend3;
 CANoutputData CANsend4;
 CANoutputData CANsend5;
 CANoutputData CANsend6;
 CANoutputData CANsend7;

/***/
/* OutputRegisterTracker */
/***/
/*
 * This function points to the Control Register and the Setup Register given the Check
 * Number to be performed.
 */

 typedef struct OutputTracker{
 volatile OutputControl *pHCControlReg;
 OutputSetup *pHCSetupReg;
 volatile OutputControl *pLCControlReg;
 OutputSetup *pLCSetupReg;
 CANoutputData *pCANoutputData;
 }OutputTracker;

 OutputTracker OutReg;

 void OutputRegisterTracker(uint8_t CheckNumber){
 switch(CheckNumber){
 case 0:
 OutReg.pHCControlReg = &HC4Control;
 OutReg.pHCSetupReg = &HC4_Setup;
 OutReg.pLCControlReg = &LC1Control;
 OutReg.pLCSetupReg = &LC1_Setup;
 OutReg.pCANoutputData = &CANsend0;
 break;
 case 1:
 OutReg.pHCControlReg = &HC1Control;
 OutReg.pHCSetupReg = &HC1_Setup;
 OutReg.pLCControlReg = &LC2Control;
 OutReg.pLCSetupReg = &LC2_Setup;
 OutReg.pCANoutputData = &CANsend1;
 break;
 case 2:
 OutReg.pHCControlReg = &HC3Control;
 OutReg.pHCSetupReg = &HC3_Setup;
 OutReg.pLCControlReg = &LC3Control;
 OutReg.pLCSetupReg = &LC3_Setup;
 OutReg.pCANoutputData = &CANsend2;
 break;
 case 3:
 OutReg.pHCControlReg = &HC2Control;
 OutReg.pHCSetupReg = &HC2_Setup;
 OutReg.pLCControlReg = &LC4Control;
 OutReg.pLCSetupReg = &LC4_Setup;
 OutReg.pCANoutputData = &CANsend3;
 break;
 case 4:
 OutReg.pHCControlReg = &HC4Control;

90

 OutReg.pHCSetupReg = &HC4_Setup;
 OutReg.pLCControlReg = &LC5Control;
 OutReg.pLCSetupReg = &LC5_Setup;
 OutReg.pCANoutputData = &CANsend4;
 break;
 case 5:
 OutReg.pHCControlReg = &HC1Control;
 OutReg.pHCSetupReg = &HC1_Setup;
 OutReg.pLCControlReg = &LC6Control;
 OutReg.pLCSetupReg = &LC6_Setup;
 OutReg.pCANoutputData = &CANsend5;
 break;
 case 6:
 OutReg.pHCControlReg = &HC3Control;
 OutReg.pHCSetupReg = &HC3_Setup;
 OutReg.pLCControlReg = &LC7Control;
 OutReg.pLCSetupReg = &LC7_Setup;
 OutReg.pCANoutputData = &CANsend6;
 break;
 case 7:
 OutReg.pHCControlReg = &HC2Control;
 OutReg.pHCSetupReg = &HC2_Setup;
 OutReg.pLCControlReg = &LC8Control;
 OutReg.pLCSetupReg = &LC8_Setup;
 OutReg.pCANoutputData = &CANsend7;
 break;
 }
 }
/**/
/* Input Control Register */
/**/
 typedef struct Inputreg{
 bool dInput1;
 bool dInput2;
 bool dInput3;
 bool dInput4;
 bool dInput5;
 bool dInput6;
 float aInput5;
 float aInput6;
 }Inputreg;

 Inputreg InputReg;//digital and analog input values
/**/
/* ADC Functions */
/**/
 void setADMUX(uint8_t ADCnum){//select ADC input to read
 switch(ADCnum){
 case 0:
 ADMUX &= ~((1<<MUX2)|(1<<MUX1)|(1<<MUX0));
 break;
 case 1:
 ADMUX|= (1<<MUX0);
 ADMUX &= ~((1<<MUX2)|(1<<MUX1));
 break;
 case 2:

91

 ADMUX|= (1<<MUX1);
 ADMUX &= ~((1<<MUX2)|(1<<MUX0));
 break;
 case 3:
 ADMUX|= (1<<MUX0)|(1<<MUX1);
 ADMUX &= ~(1<<MUX2);
 break;
 case 4:
 ADMUX|= (1<<MUX2);
 ADMUX &= ~((1<<MUX1)|(1<<MUX0));
 break;
 case 5:
 ADMUX|= (1<<MUX2)|(1<<MUX0);
 ADMUX &= ~(1<<MUX1);
 break;
 case 6:
 ADMUX|= (1<<MUX2)|(1<<MUX1);
 ADMUX &= ~(1<<MUX0);
 break;
 case 7:
 ADMUX|= (1<<MUX2)|(1<<MUX1)|(1<<MUX0);
 break;
 }
 }

 uint16_t highPrecisionRead(uint8_t ADCnum){//read ADC
 setADMUX(ADCnum);
 int voltage;
 int CalibratedVoltage;
 ADCSRA = 0xC7; // start conversion
 while(ADCSRA &(1<<ADSC));
 voltage = ADC & 0x3FF; // read voltage
 CalibratedVoltage = voltage+((0.014*voltage)- 13.8);

 return CalibratedVoltage;
 }

 float ReadLC_Current(void){//Read and average low current output current
 CANoutputData *pSendCANdata;
 pSendCANdata = OutReg.pCANoutputData;

 float Current;
 int Currentb;
 int ReadValues[5];
 int Average2[5];
 int Average3[10];
 uint8_t i = 0;
 uint8_t j = 0;
 uint8_t k = 0;

 while(k<10){
 while(j<5){
 while(i<5){
 ReadValues[i] = highPrecisionRead(0);

92

 i++;
 }

 Average2[j] = ReadValues[0] + ReadValues[1]+
 ReadValues[2] +ReadValues[3] +
 ReadValues[4];
 Average2[j] = Average2[j]/5;
 j++;
 }

 Average3[k] = Average2[0] + Average2[1] + Average2[2] +
 Average2[3] + Average2[4];
 Average3[k] = Average3[k]/5;
 k++;
 }

 Currentb = Average3[0] + Average3[1] + Average3[2] + Average3[3] +
 Average3[4] + Average3[5] + Average3[6] + Average3[7] +
 Average3[8] + Average3[9];

 Currentb = Currentb/10;
 pSendCANdata->LCCurrent = static_cast<uint16_t>(Currentb);
 Current = (0.00603*Currentb) +0.111;

 if(Current<0){
 Current = 0;
 }
 return Current;
 }

 float ReadHC_Current(void){//read and average high current output current
 CANoutputData *pSendCANdata;
 pSendCANdata = OutReg.pCANoutputData;

 float Current;
 int Currentb;
 int ReadValues[5];
 int Average2[5];
 int Average3[10];
 uint8_t i = 0;
 uint8_t j = 0;
 uint8_t k = 0;

 while(k<10){
 while(j<5){
 while(i<5){
 ReadValues[i] = highPrecisionRead(2);
 i++;
 }

 Average2[j] = ReadValues[0] + ReadValues[1] +ReadValues[2] +
 ReadValues[3] + ReadValues[4];
 Average2[j] = Average2[j]/5;
 j++;
 }
 Average3[k] = Average2[0] + Average2[1] + Average2[2] +

93

 Average2[3] + Average2[4];
 Average3[k] = Average3[k]/5;
 k++;
 }

 Currentb = Average3[0] + Average3[1] + Average3[2] + Average3[3] +
 Average3[4] + Average3[5] + Average3[6] + Average3[7] +
 Average3[8] + Average3[9];
 Currentb = Currentb/10;
 pSendCANdata->HCCurrent = static_cast<uint16_t>(Currentb);

 Current = (0.048*Currentb) +0.826;

 if(Current<0){
 Current = 0;
 }
 return Current;
 }
/**/
/* UpdateConditions */
/**/
/*
 * This function updates all conditions based on input values, output currents and voltages
 * and other global conditions. These conditions are then stored in boolean type to be used
 * in other functions to determine if an output should be on or off.
 */
 typedef struct Conditionreg{
 bool defaultCondition;
 bool EngineRPMthresh;
 bool EngineTempthresh;
 //Add more bool conditions here from CAN
 }Conditionreg;

 Conditionreg ConditionReg;

 void UpdateConditions(void){
 volatile OutputControl *pHCControlReg;
 OutputSetup *pHCSetupReg;
 volatile OutputControl *pLCControlReg;
 OutputSetup *pLCSetupReg;

 //Check Global Conditions First
 if(GlobalControl.BatteryVoltage < MINIMUM_BATTERY_VOLTAGE){
 GlobalControl.GlobalEnable = false;
 }

 if(GlobalControl.Temperature > MAX_TEMPERATURE){
 GlobalControl.GlobalEnable = false;
 }

 //Check Output Values

 pHCControlReg = OutReg.pHCControlReg;
 pHCSetupReg = OutReg.pHCSetupReg;

94

 pLCControlReg = OutReg.pLCControlReg;
 pLCSetupReg = OutReg.pLCSetupReg;

 //Determine if overcurrent event has occurred
 if(((pHCControlReg->OutCurrent) > (pHCSetupReg->CurrentLimit))&&
 ~(pHCControlReg->InrushFlag)){
 pHCControlReg->FuseBuffer = true;
 if(pHCControlReg->timecount >= pHCSetupReg->FusingTime){
 pHCControlReg->ResetTimeEnable = false;
 (pHCControlReg->ResetAttemptsRemaining)--;
 pHCControlReg->FuseEnabled = true;
 pHCControlReg->FuseBuffer = false;
 pHCControlReg->timecount = 0;
 }
 }
 else{
 pHCControlReg->FuseBuffer = false;
 pHCControlReg->timecount = 0;
 }

 if(((pLCControlReg->OutCurrent) > (pLCSetupReg->CurrentLimit))&&
 ~(pHCControlReg->InrushFlag)){
 pLCControlReg->FuseBuffer = true;
 if(pLCControlReg->timecount >= pLCSetupReg->FusingTime){
 (pLCControlReg->ResetAttemptsRemaining)--;
 pLCControlReg->ResetTimeEnable = false;
 pLCControlReg->FuseEnabled = true;
 pLCControlReg->FuseBuffer = false;
 pLCControlReg ->timecount = 0;
 }
 }
 else{
 pLCControlReg->FuseBuffer = false;
 pLCControlReg->timecount = 0;
 }

 //Determine status of digital inputs

 InputReg.dInput1 = (PIND & (1<<PD0)) ? false:true;
 InputReg.dInput2 = (PIND & (1<<PD1)) ? false:true;
 InputReg.dInput3 = (PIND & (1<<PD2)) ? false:true;
 InputReg.dInput4 = (PIND & (1<<PD3)) ? false:true;
 InputReg.dInput5 = (PINF & (1<<PF5)) ? false:true;

 //CAN Condition Check
 ConditionReg.EngineRPMthresh = (CAN_RX.EngineRPM > 100) ?
 true:false; //If RPM is greater than 100
 }

95

/**/
/* Enable and Disable Analog Redundancy */
/**/
 void Transmit_SPI_Master(uint8_t Data1, uint8_t Data2)
 {
 PORTB &= ~(1<<PB0); // assert the slave select
 SPDR = Data1; // Start transmission, send high byte first. Send upper 8 bits
 while (!(SPSR & (1<<SPIF)));// Wait (poll) for transmission complete
 SPDR = Data2; // Start transmission, send high byte first. Send lower 8 bits
 while (!(SPSR & (1<<SPIF)));// Wait (poll) for transmission complete
 PORTB |= (1<<PB0); // deassert the slave select
 }

 void RedInit(void){ //Initialization values for Analog Redundancy DAC
 Transmit_SPI_Master(0x32, 0x64);
 Transmit_SPI_Master(0x72, 0x64);
 Transmit_SPI_Master(0xB2, 0x64);
 Transmit_SPI_Master(0xF2, 0x64);
 }

 typedef struct RedStatus{
 bool RedundancyHC1;
 bool RedundancyHC2;
 bool RedundancyHC3;
 bool RedundancyHC4;
 }RedStatus;

 RedStatus RedundancyStatusBuffer;
 RedStatus RedundancyStatus;

 void EnableRedundancy(uint8_t Output){
 uint8_t data1;
 switch(Output){
 case 0:
 data1 = 0x32;
 RedundancyStatus.RedundancyHC1 = true;
 break;
 case 1:
 data1 = 0x72;
 RedundancyStatus.RedundancyHC2 = true;
 break;
 case 2:
 data1 = 0xB2;
 RedundancyStatus.RedundancyHC3 = true;
 break;
 case 3:
 data1 = 0xF2;
 RedundancyStatus.RedundancyHC4 = true;
 break;
 }

 Transmit_SPI_Master(data1, 0x64);//set DAC output to 2 V
 }

96

 void DisableRedundancy(uint8_t Output){
 uint8_t data1;
 switch(Output){
 case 0:
 data1 = 0x3F;
 RedundancyStatusBuffer.RedundancyHC1 = false;
 RedundancyStatus.RedundancyHC1 = false;
 break;
 case 1:
 data1 = 0x7F;
 RedundancyStatusBuffer.RedundancyHC2 = false;
 RedundancyStatus.RedundancyHC2 = false;
 break;
 case 2:
 data1 = 0xBF;
 RedundancyStatusBuffer.RedundancyHC3 = false;
 RedundancyStatus.RedundancyHC3 = false;
 break;
 case 3:
 data1 = 0xFF;
 RedundancyStatusBuffer.RedundancyHC4 = false;
 RedundancyStatus.RedundancyHC4 = false;
 break;
 }

 Transmit_SPI_Master(data1, 0xFF);//set DAC output to 5 V

 if(~(TIMSK1&(1<<OCIE1A))){
 TIMSK1 |= (1<<OCIE1A);//enable compare interrupt Timer 1 to
 re-enable Redundancy
 }
 }

/**/
/* Output Switching */
/**/
/*
 * These functions turn the outputs on and off
 */
 void OutputON(OutputNames OutputName){
 switch(static_cast<uint8_t>(OutputName)){
 case 0: //HC1
 //DisableRedundancy(0);
 PORTB |= (1<<PB4);
 HC1Control.InrushFlag = true;
 break;
 case 1: //HC2
 DisableRedundancy(1);
 PORTB |= (1<<PB5);
 HC2Control.InrushFlag = true;
 break;
 case 2: //HC3
 DisableRedundancy(2);
 PORTB |= (1<<PB6);
 HC3Control.InrushFlag = true;
 break;

97

 case 3: //HC4
 DisableRedundancy(3);
 PORTB |= (1<<PB7);
 HC4Control.InrushFlag = true;
 break;
 case 4: //LC1
 PORTE |= (1<<PE3);
 LC1Control.InrushFlag = true;
 break;
 case 5: //LC2
 PORTE |= (1<<PE4);
 LC2Control.InrushFlag = true;
 break;
 case 6: //LC3
 PORTE |= (1<<PE5);
 LC3Control.InrushFlag = true;
 break;
 case 7: //LC4
 PORTA |= (1<<PA0);
 LC4Control.InrushFlag = true;
 break;
 case 8: //LC5
 PORTA |= (1<<PA1);
 LC5Control.InrushFlag = true;
 break;
 case 9: //LC6
 PORTA |= (1<<PA2);
 LC6Control.InrushFlag = true;
 break;
 case 10: //LC7
 PORTA |= (1<<PA3);
 LC7Control.InrushFlag = true;
 break;
 case 11: //LC8
 PORTA |= (1<<PA4);
 LC8Control.InrushFlag = true;
 break;
 }

 }

 void OutputOFF(OutputNames OutputName){
 switch(static_cast<uint8_t>(OutputName)){
 case 0: //HC1
 PORTB &= ~(1<<PB4);
 break;
 case 1: //HC2
 PORTB &= ~(1<<PB5);
 break;
 case 2: //HC3
 PORTB &= ~(1<<PB6);
 break;
 case 3: //HC4
 PORTB &= ~(1<<PB7);
 break;
 case 4: //LC1

98

 PORTE &= ~(1<<PE3);
 break;
 case 5: //LC2
 PORTE &= ~(1<<PE4);
 break;
 case 6: //LC3
 PORTE &= ~(1<<PE5);
 break;
 case 7: //LC4
 PORTA &= ~(1<<PA0);
 break;
 case 8: //LC5
 PORTA &= ~(1<<PA1);
 break;
 case 9: //LC6
 PORTA &= ~(1<<PA2);
 break;
 case 10: //LC7
 PORTA &= ~(1<<PA3);
 break;
 case 11: //LC8
 PORTA &= ~(1<<PA4);
 break;
 }
 }

};//end class PDC

class testPDC{//test code for PDC
PDC pdcClass;
public:
 void RedOn(void){//redundancy test
 Serial.printf("Red On\n");
 pdcClass.Transmit_SPI_Master(0x2F, 0xFF);//**
 pdcClass.Transmit_SPI_Master(0x6F, 0xFF);
 pdcClass.Transmit_SPI_Master(0xAF, 0xFF);//**
 pdcClass.Transmit_SPI_Master(0xEF, 0xFF);

 }

 void RedOff(void){//redundancy test

 Serial.printf("Red off\n");
 pdcClass.Transmit_SPI_Master(0x20, 0x00);
 pdcClass.Transmit_SPI_Master(0x60, 0x00);
 pdcClass.Transmit_SPI_Master(0xA0, 0x00);
 pdcClass.Transmit_SPI_Master(0xE0, 0x00);
 }

 void RedTest(void){
 RedOn();

 _delay_ms(200);
 _delay_ms(200);
 _delay_ms(200);

99

 RedOff();
 _delay_ms(200);
 _delay_ms(200);
 _delay_ms(200);
 }

 void ADCtest(void){
 uint16_t adcRetvalue;
 adcRetvalue = pdcClass.highPrecisionRead(7);
 Serial.printf("Raw ADC value is %d\n",adcRetvalue);
 }

 void OutOn(void){
 pdcClass.OutputON(PDC::OutputNames::LC1);
 }

 void UpdateInfo(uint8_t Check){
 pdcClass.UpdateData(Check);
 }
};

