

DashBoard

Brad Levin - bmlevin@calpoly.edu

Kyle King - kking26@calpoly.edu

Computer Engineering Department

Under the advisement of Dr. Andrew Danowitz

California Polytechnic State University, San Luis Obispo, United States

June 2019

Table of Contents

Introduction 2
Project Overview 2
Project Outcomes and Deliverables 2

Engineering Specifications 4
Bill of Materials 4

Hardware 4
Software 4

Target Audience 5

Background 6

System Overview 7
Raspberry Pi 3 7
ATmega164P microcontroller 7
MC74ACT273NG Octal D Flip Flops 8
LED Array 8

Architecture - Control Flow 9
Full Board Design 9
Prototype Design 12

Construction 14
Acrylic Box 14
Wiring 15

Future Steps 17
Replace LEDs with Magnets 17
Full-Scale Model 18
PCB 18
RFID 19
Network Connectivity 19
Tunability 20

Appendix A 21

Appendix B 25

Appendix C 27

Appendix D 30

Appendix E 33

1

Introduction

Project Overview

Modern gamers are always looking for new and exciting ways to play board games. Our senior

project, DashBoard, is intended to capitalize on this interest and upgrade board games to have

pre-programmed moves and easy piece moving. It is a proof-of-concept project for a

programmable chess-style game board using an electromagnet array to move the pieces around

the board. With an easily programmable interface with the Raspberry Pi 3, users can make their

own programs or find ones others have made online to move pieces in creative ways.

The only similar product to the DashBoard is the SquareOff, a chess board that can simulate

playing against another player or can be used to play against another player remotely. SquareOff

is also very expensive at around $387. The main difference is that DashBoard is more easily

programmed by the users. DashBoard allows a more adaptable user interface and more user

participation.

Project Outcomes and Deliverables

The project deliverables are to be a proof-of-concept LED array programmable with a Raspberry

Pi 3 and ATmega164P along with programs to access each individual LED encased in a clear,

laser cut acrylic box with holes for access and a board of 3x3 etched squares. It is a smaller scale

than a chess board, with 9 squares and 49 programmable points. Only the Raspberry Pi is to be

programmable by the user, allowing for the user to activate LEDs to simulate moving pieces.

The current Raspberry Pi has programs for turning on individual LEDs, turning on all of the

LEDs, and has base code for programming pieces on individual squares. This project is meant to

be scalable, with the ability to eventually support an 8x8 grid of squares with 317 electromagnets

to move game pieces around.

2

Figure 1: Top View of DashBoard

Figure 2: Side View of Dashboard

3

Engineering Specifications

Bill of Materials

Hardware

Item Description Qty Cost

Red Light Emitting Diodes 49 $6.20

240�W Resistors 49 $5.69

Raspberry Pi 3 1 $35

ATmega164P microcontroller 1 $3.71

MC74ACT273NG Octal D Flip Flops 8 $1

Sheet of Clear Acrylic 1 $15

MB-102 Breadboard 2 $10

20-22 gauge leads 200 $10

Total $86.60
Table 1: Hardware Bill of Materials

Software

Item Description

Vim Text Editor

Python 2.7

Raspbian Operating System

Atmel Studio 7.0

Adobe Illustrator
Table 2: Software Bill of Materials

4

We decided to use the Raspberry Pi 3 for easy interfacing and to make it easier for future users to

program the board. The ATmega164P microcontroller is a cost effective controller to eventually

send out commands to an array of 317 of MC74ACT273NG D Flip Flops. The microcontroller

and flip flops are both hosted on the breadboard. We decided to use clear acrylic for the outer

shell because of former experience and ease of modification of the acrylic. On the Raspberry Pi

3’s operating system, Raspbian, we used the Vim text editor and Python 2.7 to make the suite of

functions for use for the board. Atmel Studio was used for programming the ATmega164P

microcontroller in C. Adobe Illustrator was used to design the template for laser cutting the

acrylic.

Target Audience

Our target audience is hobbyists and people with an interest in creating and playing board games.

Game developers and software developers with some disposable income are probably what we’re

looking for. They preferably have experience programming in Python, however, Python is not

necessarily for using the board. Experience with Raspberry Pi and Raspbian are preferred but not

required for use.

5

Background

The inspiration for this project first came when we realized the idea of making a real-world

wizard chess was workable. All we need are some magnets and digital logic to control them. We

found a similar product called “Square Off”, but their design featured a mechanical claw-like

structure. We realized that this is the ideal setup for making a hands-free chessboard due to the

fluid movements that it could do. But, our magnet array idea had its own merits. Even if piece

movements were jerky, an array would be able to coordinate multiple pieces at once. This isn’t

useful for games like chess, but it’s a cool idea to think of games it could be useful for.

Role-Playing Games like Dungeons and Dragons comes to mind. The thing that really pushed us

to explore the project more was the thought of games that haven’t been made yet. We envisioned

games that could incorporate pieces moving in real-time, a network component, a

piece-detection/response scheme, and behaviors customized to a user. The best part is, once the

system was created, developers everywhere could develop for it to introduce their own creativity

to the platform, and find purposes for it we would never think of.

Although this system is far from incorporating those features, it is a proof-of-concept that gets us

excited about the possibilities in using a programmable magnet array to develop games.

6

System Overview

Raspberry Pi 3

The Raspberry Pi 3, using Python 2.7, is used to interface with the ATmega164P

microcontroller. It uses the Raspbian operating system and requires the use of a monitor with an

HDMI input, MicroUSB power input, mouse, and keyboard. Using GPIO pins 2, 3, 4, 17, 27,

22, 10, and 9, and control pins 5, 6, 13, 16, and 27 the raspberry pi can support sending an 8 bit

number to up to 5 peripheral microcontrollers, or PMCs. All of the GPIO pins are connected to

all of the input pins for the PMC and activation depends on which of the control pins is activated.

This can then be used to send commands to activate or deactivate the LED for up to 317 outputs.

Because this is a smaller scale system, the system only uses one PMC.

Figure 3: Raspberry Pi 3

ATmega164P microcontroller

Our PMC, the ATmega164P, is used to take an input and control the output to an array of D Flip
Flops. It is programmed using Atmel Studio 7.0 on the Windows 10 Operating System in C. The
PMC takes an 8 bit input from the Raspberry Pi 3, processes which D Flip Flop is the correct one
to output to, and outputs to the proper D Flip Flop.

7

Figure 11: Connecting the breadboard to the LEDs

16

Future Steps

Replace LEDs with Magnets

The most obvious improvement to our prototype would be to replace the LED array with a
magnet array, as was originally intended. This transition would involve a redesign of how the
control signals from the DFFs interact with the grid, as shown in the figure below:

Figure 12: Updating the grid from LEDs to electromagnets

This design change introduces more circuitry per point on the grid. It replaces the

current-limiting resistors with flyback diodes (both of which are used to protect the circuit from

conducting too much current and damaging parts). It also adds a MOSFET and a power supply to

the circuit, which is necessary because the magnets will pull much more current than the LEDs,

so an external power source is needed to avoid burning out the DFFs. The MOSFETs would

draw current from the same power supply that powers the digital logic components.

17

Full-Scale Model

The next obvious improvement would be to construct the full board. Our current prototype is a
3x3 square grid, when a real chess board is 8x8. The proposed magnet addressing scheme for the
full board is shown below:

Figure 13: Magnet Address Scheme for Full-Size Board

The scheme was designed to keep the majority of the wiring symmetrical (the first 4 blocks have

an identical scheme), and only having 1 block separate. Block in this diagram refers to 64

magnets controlled by a PMC and its 8 DFFs. This design has the last block control the

right/bottom edge magnets, and 8+8+6+6=28 magnets around the outside of the board. These 28

magnets would cover the perimeter of the board’s play area, placing one adjacent to each outer

square. This would allow pieces to be moved off of the play area without manual intervention.

PCB

The preferred method for actually constructing our circuit is making a custom PCB with surface

mount components when possible. This will clean up our circuit and reduce the need for

additional and unnecessary wires. It will save us on space and reduce the need for the acrylic box

to be as tall as it is. A PCB will also let us interface easier with the Raspberry Pi and let us power

the board with the power supply without burning the rails, like it would in a breadboard. Being

limited to through-hole pieces hurt the bottom line for this project, and it will be cheaper and

with greater selection to be able to use surface-mount components. Finally, creating a stock PCB

will make this easier to construct and manufacture.

18

RFID

Adding RFID readers to the board (interfacing them with the MC) would add piece detection

with custom pieces with RFID tags. This would give the MC, and the developer’s code on it, to

use piece location to implement further features on the board. This is good for two reasons:

Firstly, it would allow the MC to have feedback as to whether or not its commands are being

performed correctly, and to self-correct and self-adjust. This would be useful for tuning (see later

section).

Secondly, it would give the developer the tools to directly interact with user input. A user could

move a piece on the board, and the board would be able to detect the change. A simple example

of this use would be a chess game where the AI is programmed to simply copy the player’s

moves.

Expanding on that, user input can be more complex. Having pieces with different behaviors

create more complex interactions than would be possible otherwise. For instance, having

“pieces” which act as obstacles on the board (but that can be detected) could allow players to

make things like custom terrain that actively change other piece’s pathing. For instance, a maze

could be physically constructed by the user using pieces with RFID tags under them, and an AI

could be programmed to traverse the maze or block the user from doing so. An example of that

would be a physical Pac-Man game where the user could customize the map, and the AI would

randomly move within it trying to catch the user.

Network Connectivity

The motivation for using the Raspberry Pi 3 as the MC instead of another ATmel164P or some

other microcontroller is the Pi’s built in networking capabilities. The Pi supports bluetooth, wifi,

and ethernet. Since we installed Raspbian OS on it, developers can SSH into it to configure files,

which is helpful to avoid needing a mouse/keyboard/monitor setup right next to the box. Plus, a

19

platform could be implemented to automatically update the Pi’s firmware.

Aside from easing the life of a developer, network capabilities offer consumers a potentially rich

set of features. Players could interact with the board solely from their smartphone or tablet, or

from a laptop that could have controllers set up on it. Pairing with RFID piece detection would

allow the opposite interaction to occur; interacting with the board could update an application on

another user’s device (like playing on a chess app but using the board as a controller).

Tunability

As mentioned in the background of the project, one major drawback of the magnet array design

is that piece movement would be jerky. Adding firmware to the MC could mitigate this issue.

Precision timing could be used to utilize control the magnets and see smoother movements. This

is because of the physical property of electromagnets (modeled as inductors): that they cannot

immediately change current but gain it over time (scaled by a calcable time constant).

The timing calculation would be very difficult, as it would need to account for piece weights and

surface material (which affects friction), as well as differences in the strength of each magnet. A

practical alternative would utilizing RFID tags on pieces in order to give the MC feedback about

it’s piece movement. A complex initialization function could be created (and standard firmware)

to calculate timings for each magnet in the grid and each piece to be used. Simply running an

initialization function before a session for a couple of minutes could dramatically improve piece

movement.

20

Appendix A

Python code to control and individual magnet

ø#`ah 3]d][lÆ þÄ ÿÄ úüÄ úĂÄ ûÿ

ø!\\j]kk 3]f\af_Æ ûÄ üÄ ýÄ úĀÄ ûĀÄ ûûÄ úùÄ Ă

ø(a_`×dgoÆ úú

aehgjl kqk

aehgjl 20aÇ'0)/ Yk '0)/

^jge lae] aehgjl kd]]h

\]^ k]lmhÝÞÆ

'0)/Çk]loYjfaf_kÝ&Ydk]Þ

'0)/Çk]leg\]Ý'0)/Ç"#-Þ

'0)/Çk]lmhÝþÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝÿÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝúüÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝúĂÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝûÿÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝûÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝüÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝýÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝúĀÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝûĀÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝûûÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝúùÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝĂÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

'0)/Çk]lmhÝúúÄ '0)/Ç/54Ä afalaYdđ'0)/Ç,/7Þ

\]^ [d]YfmhÝÞÆ

'0)/ÇgmlhmlÝûÄ ùÞ

'0)/ÇgmlhmlÝüÄ ùÞ

'0)/ÇgmlhmlÝýÄ ùÞ

'0)/ÇgmlhmlÝúĀÄ ùÞ

21

'0)/ÇgmlhmlÝûĀÄ ùÞ

'0)/ÇgmlhmlÝûûÄ ùÞ

'0)/ÇgmlhmlÝúùÄ ùÞ

'0)/ÇgmlhmlÝĂÄ ùÞ

'0)/ÇgmlhmlÝúúÄ ùÞ

'0)/ÇgmlhmlÝþÄ ùÞ

'0)/ÇgmlhmlÝÿÄ ùÞ

'0)/ÇgmlhmlÝúüÄ ùÞ

'0)/ÇgmlhmlÝúĂÄ ùÞ

'0)/ÇgmlhmlÝûÿÄ ùÞ

'0)/Ç[d]YfmhÝÞ

\]^ k]f\ë\YlYÝY\\j]kkÄ klYl]ÞÆ

øY\\j]kk đ aflÝY\\j]kkÞ

[k đ ù

a^ÝY\\j]kk Ē ùpýùÞÆ

[k đ þ

]da^ÝY\\j]kk Ē ùpāùÞÆ

[k đ ÿ

Y\\j]kk đ Y\\j]kk È ùpýù

]da^ÝY\\j]kk Ē ùp#ùÞÆ

[k đ úü

Y\\j]kk đ Y\\j]kk È ùpāù

]da^ÝY\\j]kk Ē ùpúùùÞÆ

[k đ úĂ

Y\\j]kk đ Y\\j]kk È ùp#ù

]da^ÝY\\j]kk Ē ùpúýùÞÆ

[k đ ûÿ

Y\\j]kk đ Y\\j]kk È ùpúùù

'0)/ÇgmlhmlÝúúÄ klYl]Þ

'0)/ÇgmlhmlÝûÄ Y\\j]kk µ ùpùúÞ

'0)/ÇgmlhmlÝüÄ ÝY\\j]kk ēē úÞ µ ùpùúÞ

'0)/ÇgmlhmlÝýÄ ÝY\\j]kk ēē ûÞ µ ùpùúÞ

'0)/ÇgmlhmlÝúĀÄÝY\\j]kk ēē üÞ µ ùpùúÞ

'0)/ÇgmlhmlÝûĀÄÝY\\j]kk ēē ýÞ µ ùpùúÞ

'0)/ÇgmlhmlÝûûÄÝY\\j]kk ēē þÞ µ ùpùúÞ

22

'0)/ÇgmlhmlÝúùÄÝY\\j]kk ēē ÿÞ µ ùpùúÞ

'0)/ÇgmlhmlÝĂÄ ÝY\\j]kk ēē ĀÞ µ ùpùúÞ

ø'0)/ÇgmlhmlÝûÄ Y\\j]kk µ ùpùúÞ

ø'0)/ÇgmlhmlÝüÄ Y\\j]kk µ ùpùûÞ

ø'0)/ÇgmlhmlÝýÄ Y\\j]kk µ ùpùýÞ

ø'0)/ÇgmlhmlÝúĀÄY\\j]kk µ ùpùāÞ

ø'0)/ÇgmlhmlÝûĀÄY\\j]kk µ ùpúùÞ

ø'0)/ÇgmlhmlÝûûÄY\\j]kk µ ùpûùÞ

ø'0)/ÇgmlhmlÝúùÄY\\j]kk µ ùpýùÞ

ø'0)/ÇgmlhmlÝĂÄ Y\\j]kk µ ùpāùÞ

'0)/ÇgmlhmlÝ[kÄ úÞ

kd]]hÝÇúÞ

'0)/ÇgmlhmlÝ[kÄ ùÞ

\]^ k]f\ëYjjYqÝY\\j]kkëYjjÄ klYl]ÞÆ

^gj Y\\j]kk af Y\\j]kkëYjjÆ

k]f\ë\YlYÝY\\j]kkÄ klYl]Þ

kd]]hÝùÇúÞ

\]^ k]f\ëYddÝÞÆ

^gj a af jYf_]ÝýĂÞÆ

k]f\ë\YlYÝaÄ úÞ

kd]]hÝÇþÞ

k]f\ë\YlYÝaÄ ùÞ

\]^ k]f\ëYddÝ\]dYqđ.gf]ÞÆ

a^ \]dYq đđ .gf]Æ

\]dYq đ Çú

]dk]Æ

\]dYq đ eYpÝ\]dYqÄ ÇúÞ

^gj a af jYf_]ÝýĂÞÆ

k]f\ë\YlYÝaÄ úÞ

kd]]hÝ\]dYqÞ

k]f\ë\YlYÝaÄ ùÞ

23

