Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands

J. A. SCHNEIDER* and R. E. S. MOSS†

Contradictory conclusions may arise when assessing liquefaction resistance of sands based on penetration tests and shear wave velocity. To provide a more unified analysis framework, this letter couples cyclic stress and cyclic strain based analysis of liquefaction triggering using site-specific correlations between penetration resistance and small strain shear modulus from shear wave velocity using the seismic cone tests. Cyclic strain theory provides a robust lower limit to liquefaction resistance, and analyses indicate that relatively high ratios of small strain stiffness to penetration resistance lead to high liquefaction resistance at relatively low cyclic stress ratios. The increased resistance to liquefaction from relatively high stiffness values is suspected to break down at higher cyclic stress ratios, where liquefaction resistance is controlled by the potential for soil to dilate, which correlates well with effective stress normalised cone tip resistance. The analysis framework is in general agreement with laboratory and field data that are predominantly Holocene in origin; however further validation by a comprehensive lab testing programme is warranted.

KEYWORDS: in situ testing; liquefaction; sands

INTRODUCTION

Analysis of soil liquefaction resistance based on in situ tests can result in contradictory conclusions when different measurements are used, particularly high-strain measurements from penetration tests and low-strain measurements from shear wave velocity. Liquefaction resistance is controlled by two distinctly different mechanisms – where high soil stiffness initially resists the development of shear strains and where high dilation angles minimise the consequences of liquefaction at higher strain levels. This letter sets out a framework in which these two aspects of liquefaction resistance are addressed separately and correlations between penetration resistance and shear modulus are used to link the two mechanisms within conventional design charts.

Cyclic strain theory (Dobry et al., 1982) provides a robust lower limit for liquefaction resistance: if a threshold shear strain is not exceeded, no shear-induced pore pressures will develop and there will be no reduction in stiffness or strength due to cyclic loading. This letter explores the following hypotheses.

(a) Cyclic strain theory, with resistance based on G_0 (small-strain shear modulus) and a threshold shear strain, provides a lower limit for liquefaction resistance.

(b) The influence of dilation at higher strain levels limits the consequences of liquefaction and better correlates to penetration resistance, specifically cone penetration test (CPT) cone tip resistance (q_c) for soils of the same high-stress compressibility.

(c) Correlations between G_0 and q_c exist that can link cyclic stress and cyclic strain based approaches, but these correlations are not unique and should be updated with results from seismic cone tests.

(d) Coupled cyclic stress and cyclic strain based assessment of liquefaction resistance indicates that soils with high relative ratios of G_0/q_c (i.e. K_G see the next section) have a liquefaction resistance at low levels of cyclic loading that is greater than typical liquefaction resistance correlations based on the q_c of Holocene sands.

By incorporating relationships between G_0 and q_c, increases in stiffness due to factors such as soil ageing or cementation become an implicit component of a liquefaction analysis.

CORRELATIONS BETWEEN CONE TIP RESISTANCE AND SHEAR WAVE VELOCITY

Correlations between G_0 and q_c exist, but they are not unique (e.g. Rix & Stokoe, 1991). G_0 is a small-strain property controlled by the relative number of particle contacts, the characteristics of those particle contacts and the effective stress state (e.g. Santamaria et al., 2001), whereas q_c is a large-strain property that is controlled by a larger strain shear stiffness, high-stress crushability of the soil, dilation angle and the horizontal effective stress state (e.g. Salgado et al., 1997). Therefore, measurement of in situ G_0 and q_c through the use of a seismic cone test can be used to reduce the uncertainty in correlations between strength and stiffness, which is particularly useful for aged and cemented sands. Since the ratio of G_0/q_c is influenced by relative density and effective stress as well as age and cementation (e.g. Eslaamizad & Robertson, 1996; Falley et al., 2003; Schnaid et al., 2004), G_0/q_c cannot be used alone to reduce uncertainty in liquefaction-triggering correlations. The empirical parameter K_G, as defined in equation (1) (after Rix & Stokoe (1991)), will be used to account for sand relative density and effective stress level on the correlation between G_0 and q_c.

Manuscript received 10 March 2011; first decision 17 April 2011; accepted 19 May 2011.
Published online at www.geotechniqueletters.com on 16 June 2011.

*Civil & Environmental Engineering, University of Wisconsin Madison, WI, USA
†Civil & Environmental Engineering, Cal Poly State University San Luis Obispo, CA, USA
\[K_G = \frac{G_0 / q_c}{(q_c / P_{ref}) / (\sigma_{v0} / P_{ref})^{0.5}}^{m} = \frac{G_0 / q_c}{q_{c11N}^{-m}} \]

(1)

where \(\sigma_{v0} \) is the initial in situ vertical effective stress, \(P_{ref} \) is a reference stress equal to 100 kPa, \(m \) is an empirical exponent typically taken as 0.75 (e.g., Rix & Stokoe, 1991; Schneider et al., 2004) and \(q_{c11N} \) is the stress normalised cone tip resistance using a median sand overburden stress exponent of 0.5 (Moss et al., 2006b).

Seismic cone data from eight studies are summarised in Table 1 and Fig. 1. Aged, cemented and calcareous sands tend to have values of \(K_G \) between 330 and 1100, while Holocene sands tend to have a \(K_G \) of 110–330, with a median value of 215. These ranges are in good agreement with previous recommendations of Rix & Stokoe (1991) and Schmied et al. (2004). The following section develops a lower limit of liquefaction resistance in sandy soils based on cyclic strain theory.

Table 1. Summary of data used in evaluation of correlations between CPT cone tip resistance and small-strain shear modulus

<table>
<thead>
<tr>
<th>Sand</th>
<th>Median (K_G)</th>
<th>(K_G) CoV</th>
<th>Mineralogy</th>
<th>Single site</th>
<th>Aged/cemented</th>
<th>Lab/field</th>
<th>Fig.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian</td>
<td>212</td>
<td>0.14</td>
<td>Siliceous</td>
<td>No</td>
<td>No</td>
<td>Field</td>
<td>(a)</td>
<td>Baldi et al. (1989)</td>
</tr>
<tr>
<td>Washed mortar</td>
<td>361</td>
<td>0.13</td>
<td>Siliceous</td>
<td>Yes</td>
<td>No</td>
<td>Lab</td>
<td>(a)</td>
<td>Rix & Stokoe (1991)</td>
</tr>
<tr>
<td>Heber Road</td>
<td>181</td>
<td>0.17</td>
<td>Siliceous</td>
<td>Yes</td>
<td>No</td>
<td>Lab</td>
<td>(a)</td>
<td>Rix & Stokoe (1991)</td>
</tr>
<tr>
<td>Mississippi River</td>
<td>221</td>
<td>0.24</td>
<td>Siliceous</td>
<td>No</td>
<td>No</td>
<td>Field</td>
<td>(a)</td>
<td>Schmied et al. (2004)</td>
</tr>
<tr>
<td>Shenton Park</td>
<td>513</td>
<td>0.20</td>
<td>Siliceous</td>
<td>Yes</td>
<td>Yes</td>
<td>Field</td>
<td>(b)</td>
<td>Schmied et al. (2008)</td>
</tr>
<tr>
<td>Ledge Point</td>
<td>491</td>
<td>0.22</td>
<td>Calcareous</td>
<td>Yes</td>
<td>No</td>
<td>Field</td>
<td>(b)</td>
<td>Schmied & Lelane (2010)</td>
</tr>
<tr>
<td>Quiou</td>
<td>303</td>
<td>0.18</td>
<td>Calcareous</td>
<td>Yes</td>
<td>No</td>
<td>Lab</td>
<td>(b)</td>
<td>Fiorevante et al. (1998)</td>
</tr>
<tr>
<td>Perth aged</td>
<td>518</td>
<td>0.49</td>
<td>Siliceous / Calcareous</td>
<td>No</td>
<td>Yes</td>
<td>Field</td>
<td>(c)</td>
<td>Fahey et al. (2003)</td>
</tr>
<tr>
<td>Holocene liquefaction</td>
<td>181</td>
<td>0.49</td>
<td>Siliceous</td>
<td>No</td>
<td>No</td>
<td>Field</td>
<td>(d)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>Holocene no liquefaction</td>
<td>184</td>
<td>0.56</td>
<td>Siliceous</td>
<td>No</td>
<td>No</td>
<td>Field</td>
<td>(d)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>Pleistocene liquefaction</td>
<td>213</td>
<td>0.43</td>
<td>Siliceous</td>
<td>No</td>
<td>Yes</td>
<td>Field</td>
<td>(e)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>Pleistocene no liquefaction</td>
<td>368</td>
<td>0.67</td>
<td>Siliceous</td>
<td>No</td>
<td>Yes</td>
<td>Field</td>
<td>(e)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>Laboratory Holocene</td>
<td>210</td>
<td>0.20</td>
<td>Siliceous</td>
<td>No</td>
<td>Yes/No</td>
<td>Lab</td>
<td>(f)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>Laboratory Pleistocene</td>
<td>408</td>
<td>0.25</td>
<td>Siliceous</td>
<td>No</td>
<td>Yes/No</td>
<td>Lab</td>
<td>(f)</td>
<td>Roy (2008)</td>
</tr>
<tr>
<td>All siliceous Holocene</td>
<td>214</td>
<td>0.39</td>
<td>Siliceous</td>
<td>No</td>
<td>No</td>
<td>Both</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*For exponent \(m = 0.75 \)

Cyclic Strain Based Assessment of Liquefaction Triggering

The lower limits of liquefaction resistance can be defined where induced cyclic strains fall below the elastic threshold shear strain. An elastic threshold strain would be independent of the number of cycles of loading, therefore the number of loading cycles is not explicitly accounted for in this study. Data reported by Dobry et al. (1982) and Stokoe et al. (2008) support an elastic threshold strain of \(1 \times 10^{-3} \) that is independent of the number of cycles of loading typical of earthquakes (<30 cycles). The small-strain shear modulus \((G_0) \) normalised by the initial in situ vertical effective stress \((\sigma_{v0}) \) can be used to calculate a threshold shear strain \((\gamma_{th}) \) based on the cyclic stress ratio (CSR = \(\tau / \sigma_{v0} \)):

\[\gamma_{th} = \frac{\tau_{th}}{G_0} = \frac{\sigma_{v0} / \sigma_{v0}}{G_0 / \sigma_{v0}} = \frac{CSR}{1} \]

(2)

Figure 2(a) compares field case histories (Andrus and Stokoe, 2000) with shear wave velocity data where
liquefaction was observed during earthquakes to a threshold shear strain of 1×10^{-4}. Figure 2(b) presents case histories where liquefaction was not observed, compared with a higher equivalent threshold shear strain of 4×10^{-3}. Normalised average cyclic loading from field case histories ($CSR = \tau_{avg}/\sigma_{v0}$) tends to increase with G_0/σ_{v0}. For case histories where soils have liquefied, the CSR is the maximum cyclic resistance ratio ($CRR = \tau_{max}/\sigma_{v0}$) that the soil could have experienced during the earthquake. For case histories where soils have not liquefied, the CSR is the minimum CRR that the soil could have experienced during the earthquake. A threshold shear strain of 1×10^{-4} provides a minimum level of liquefaction resistance for the database of case histories with a typically initial vertical effective stress level of 50 kPa. Layers that were subjected to higher cyclic stresses but did not result in observations of liquefaction likely had the consequences of liquefaction minimised due to dilation at higher shear strains.

CPT case histories where G_0 was not explicitly measured can be evaluated within the same framework if a correlation between G_0 and q_c is assumed. The database from Moss et al.
(2006a) is analysed in Fig. 3 using equation (1) with \(m = 0.75 \) and \(K_G = 215 \) (median of Holocene siliceous subset database). A similar minimum liquefaction resistance related to a threshold shear strain of \(1 \times 10^{-5} \) is observed for the CPT database when the median correlation between \(G_0 \) and \(q_v \) is used.

COMBINING CYCLIC STRAIN WITH CYCLIC STRESS BASED ASSESSMENT OF LIQUEFACTION TRIGGERING

The minimum value of liquefaction resistance, represented by the threshold strain, can be equated to the CRR using the ratio of \(G_0 / q_v \), as illustrated in equation (3a) (cf. equation (2)). Using the correlation between \(G_0 \) and \(q_v \) (equation (1)), the minimum liquefaction resistance can be expressed as a function of cone tip resistance and initial vertical effective stress (equation (3b)).

\[
\begin{align*}
\text{CRR} & \geq \frac{\tau_{th}}{\sigma'_{vo}} \geq \frac{G_0 \gamma_{th}}{\sigma'_{vo}} \quad (3a) \\
\text{CRR} & \geq \frac{\tau_{th}}{\sigma'_{vo}} \geq \frac{G_0 q_v \gamma_{th}}{\sigma'_{vo}} \quad (3b)
\end{align*}
\]

Figure 4 compares the cyclic resistance from laboratory tests on Holocene and Pleistocene samples collected using freezing techniques (Roy, 2008) with cyclic resistance calculated using equation (3b). A threshold strain level of \(1 \times 10^{-5} \) and effective vertical stress of 50 kPa is used in equation (3b) for consistency with Figs 2 and 3 and databases of liquefaction case histories. The effects of stress level on threshold strain have been discussed in the literature (e.g. Dobry et al., 1982; Santamarina & Aloufi, 1995; Santamarina et al., 2001); the influence of stress level on equation (3b) requires further study. Use of the Roy (2008) dataset in Fig. 4 allows exploration of the following two issues.

(a) Since the data are from laboratory tests, there is less ambiguity as to the stress ratio that causes liquefaction when compared to field case histories.

(b) Pleistocene soils are not typically included in liquefaction case history databases and are expected to have higher values of liquefaction resistance (e.g. Arango & Migues, 1996; Hayati & Andrus, 2009; Leon et al., 2006; Moss et al., 2008; Pyke, 2003; Roy, 2008; Seed, 1979).

Incorporation of soil age into design method formulations generally does not significantly reduce uncertainty in the analysis for two reasons. First, the actual age of a soil deposit is rarely measured in a geotechnical site investigation. Second, in areas that are subject to high seismic activity, liquefiable soils tend to re-liquefy in historical seismic events (Youd 1984). In relation to the second point, recurring historic liquefaction events may destroy the

(**Fig. 3.** Field database of liquefaction case histories in sandy soils (Moss et al., 2006a) with shear modulus estimated from cone tip resistance \(G_0 / q_v = 215q_v \gamma_{th} \) compared with threshold strain levels: (a) liquefaction cases in sands and gravels; (b) non-liquefaction cases in sands and gravels)
structure and/or bonding effects often induced by ageing that increase liquefaction resistance. An aged soil that had previously liquefied could then have similar engineering properties (strength and stiffness) as a young soil, and therefore have similar resistance to liquefaction during a seismic event.

Analysis of Roy’s (2008) data uses a sample median K_G value of 210 for Holocene sands in Fig. 4(a) and 408 for the Pleistocene sands in Fig. 4(b) (Table 1). The Pleistocene sands tend to show higher liquefaction resistance than Holocene sands for $q_{c,N}$ less than about 150, where dilation is considered to have less influence on liquefaction resistance. For a number of cases with $q_{c,N}$ greater than about 150, the liquefaction resistance of Holocene sands approaches that of Pleistocene sands with the same cone tip resistance. These data tend to fall along the cyclic stress based ($P_L = 15\%$) liquefaction resistance curve of Moss et al. (2006a). For data falling along this curve, the consequences of liquefaction are limited by dilatation at larger strain levels and any increase in resistance is minimised when ageing effects have been broken down at larger strains.

Figure 4(d) is a conceptual diagram that combines cyclic strain based liquefaction resistance with cyclic stress based curves. At low values of normalised cone tip resistance, stiffness controls liquefaction resistance and Pleistocene soils have a higher liquefaction resistance for the same cone tip resistance, as indicated by K_G. For these curves, the increase in liquefaction resistance is approximately a factor of 2, in agreement with the previous studies of Arango and Miguez (1996) and Moss et al. (2008). At higher values of normalised cone tip resistance, the consequences of liquefaction are limited by dilatation, and correlations to $q_{c,N}$ for Holocene soils may be applicable to both Holocene and Pleistocene deposits. When combining these two methods in one plot, the strain based approach generally controls the behaviour of aged soils below $q_{c,N}$ of about 100 and the stress based approach above $q_{c,N} = 100$. There are some Pleistocene points that follow the trends of the cyclic strain lower limit in Fig. 4b; these need further investigation through controlled laboratory studies.

CONCLUSIONS

Cyclic strain theory produces a lower limit for liquefaction resistance through the threshold strain. Application of correlations between G_0 and q_c link cyclic stress and cyclic strain based assessment of liquefaction analyses within
traditional CRR versus q_{AEN} charts. For soils of low normalized cone tip resistance in which dilatation does not significantly increase liquefaction resistance, cyclic strain based assessment of liquefaction resistance matches well with cyclic stress based liquefaction limits in Holocene soils. For Pleistocene soils with higher ratios of stiffness to strength (i.e. high K_v), the lower limits of liquefaction resistance based on cyclic strain theory result in CRR values that are approximately twice those of Holocene soils for a q_{AEN} less than about 100. These higher levels of liquefaction resistance are consistent with previous observations and provide a conceptual framework for understanding this behaviour. A comprehensive programme of laboratory testing of uncremented, cemented and aged soils, with measurements of liquefaction strength and small-strain shear modulus, would help to extend the analysis discussed here.

REFERENCES

