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1     Abstract 
Bacterial cellulose (BC) is a sustainable alternative to petroleum-based polymer films for 

synthetic leather applications. Synthesized by a symbiotic culture of bacteria and yeast, BC is a 

three-dimensional structure composed of cellulose microfibrils. However, pure BC lacks certain 

desirable properties such as high tensile strength. Previous studies have shown that loading BC 

with nanoparticles to form nanocomposites has improved BC’s mechanical properties. However, 

this was not studied as a function of particle size. This study focuses on using silica/BC 

nanocomposites to model the impact that particle size and silica soaking concentrations have on 

the uptake efficiency of these particles into BC. Silica particles are incorporated into the BC 

hydrogel by diffusion, where 100 nm and 1300 nm silica particles at varying concentrations were 

tested. Scanning electron microscopy (SEM) was used to visually analyze the silica loading in 

the samples. The samples soaked with 1300 nm silica particles showed no visible particles on the 

film surface, while the samples soaked with 100 nm silica particles display a textured surface 

possibly attributable to silica particles on the surface of the BC. Thermogravimetric analysis 

(TGA) of the samples soaked with 1300 nm silica particles across all concentrations show no 

increase in silica weight percent, confirming our observations from SEM. However, the samples 

soaked with 100 nm silica particles showed an increase in inorganic residue of 2.23%, 4.11%, 

and 11.10% with increasing silica soaking concentration via TGA. Despite these findings, the 

data was not statistically significant to conclude successful increase in silica content with 

increasing soaking concentrations.  
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2     Motivations 
By 2022, the leather goods market in the U.S. is estimated to reach US$128.61 billion.1 As a 

material, leather has a wide variety of uses and sources. Traditionally, leather is made from 

animal hides, primarily cattle hide, but the sources of leather have widened to include petroleum-

based pseudo-leather also known as “pleather”, and other alternative sources. Leather finds use 

in a variety of applications: from more protective or structural applications in items such as 

shoes, furniture, or saddles, to more fashion-oriented applications in the form of clothing or 

personal accessories such as handbags. One reason that leather continues to be so popular as a 

textile is due to its association with quality products. This in part due to the tunable material 

properties that leather offers such as water resistance and thermal insulation, as well as variable 

malleability and high strength that depends on the thickness of the leather.2 However, since 68% 

of all manufactured natural leather comes from the cattle industry,3 this brings up major 

environmental concerns about natural bovine leather due to the negative environmental impacts 

and ethics surrounding the bovine livestock industry. 

 

2.1    The Environmental Impact of Leather 

Escalating environmental concerns over climate change have brought the negative impacts of the 

leather industry into focus. On the surface, leather is easy to portray as a relatively 

environmentally harmless textile. Proponents of the leather industry argue that since leather is 

made from the byproduct of the bovine meat industry, it is a natural renewable resource, and 

natural leather is biodegradable at the end of its life.4 Upon closer examination however, leather 

is inherently tied to the major sustainability problems associated with the bovine industry, as 

well as the additional problems related to the environmental hazards of the leather tanning 

processes. The bovine livestock industry, where 99% of cow leather hides are sourced from, has 

severe environmental impacts such as greenhouse gas emissions, deforestation (particularly the 

Amazon rainforest in Brazil), as well as both water and land overuse.5 Even with all the negative 

impacts of the livestock industry excluded, the leather tanning process utilizes toxic chemicals 

such as chromium and formaldehyde that pollute surrounding waterways and pose extreme 

health risks to humans 6 in countries without strict regulation. Additionally, the process of 

tanning turns biodegradable hides into non-biodegradable leather. Degradation studies have 

found that chromium tanned hides only reach 40% biodegradation after 2.5 months, while hides 
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undergoing more “natural” vegetable tanning reach 81% biodegradation in the same time period, 

which is still under the 90% specified for “full biodegradation” by the UNI EU standard.7 

Synthetic leather is often proposed as an alternative, and the comparison of the environmental 

impact of the two materials can be seen in Figure 1, where the relative carbon cost of different 

textile leather goods is compared.  

 
Figure 1. Comparison of the carbon cost of natural and synthetic leather goods.8 

 

While artificial leather has a lower carbon emission impact, petroleum-based artificial leather has 

its own set of linked negative environmental hazards and qualities. The most common materials 

used for synthetic leather is a polyester base fabric with a top coating layer that is primarily 

polyvinyl chloride (PVC) or polyurethane (PU). While polyester-based leather has a 

comparatively lower environmental impact than natural leather, it is still an overall high impact 

process tied to the environmental problems of the petroleum industry and synthetic 

petrochemical-based polymers. Since artificial leather is made from polyester with a PVC or PU 

coating, it is non-degradable and once thrown away; and it will only break up into smaller and 

smaller microplastics that never completely degrade.9 Additionally, the multiple types of 

polymers bound together into the layered structure of artificial leather makes it difficult to 

recycle. Due to the downsides of both natural and synthetic leather, more innovative and 

sustainable alternatives must be studied to reduce the leather industry’s environmental impact 

while still meeting the rising global demand for leather. 

 

2.2    Sustainable Alternatives to Leather 

One sustainable solution for leather use is utilizing recycled natural leather or synthetic leather 

made from recycled polymers. Most recycled natural leather utilizes pre-consumer production 

scraps that are the bonded together to make a useable textile. Similarly, recycled synthetic leather 

is made from recycled polyurethane to minimize the fact that polyester-based materials are non-
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biodegradable.5 While these solutions are certainly a step in the right direction, they cannot act as 

a long-term solution since each recycled fabric still utilizes the leather resulting from the 

environmentally harmful livestock industry or petrochemical industry.  

 

Alternatively, there are a variety of more environmentally oriented leather substitutes being 

developed and sold in the textile market. These include plant-based alternative leathers such as 

cactus leather, or leather made from fruit waste such as discarded mangos or discarded pineapple 

leaves. However, the difficulty with these alternatives is that often polyurethane is used as a 

coating for the fabrics to increase durability. While this coating process makes these alternatives 

more desirable fabrics, it also negatively impacts their biodegradability and ties the product’s 

success to the petrochemical industry.10 More recently, another leather alternative under 

development is bacterial cellulose. Bacterial cellulose is a sustainable biomaterial that can be 

grown using waste glucose sources such as sugarcane offcuts and bacteria. Due to its leather-like 

tactile feel, structure that offers tunable material properties, and the wide range of processing 

options for different textile results,11 bacterial cellulose is a promising candidate as a leather 

alternative meriting further study.  
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3     Background 
3.1    Bacterial Cellulose 

Cellulose is the most abundant polymer on the planet, and can be found in plants, algae, fungi, 

and bacteria.12 One form of cellulose comes from bacteria and is stronger than the cellulose 

found in plant cell walls. Bacterial cellulose (BC) is commonly grown with 

a Gluconacetobacter xylinus (G. xylinus) bacterial colony, where the cellulose is excreted from 

the bacteria when they are placed under extreme stress due to varying environmental conditions. 

Additionally, the bacteria need to be in a medium with a carbon source to grow the cellulose. 

This is usually supplied by glucose or fructose molecules, but can also come from other carbon 

rich food products.13 During excretion, the cellulose fibrils from the bacteria get tangled with 

each other, forming a hydrogel on the surface of the medium they are in. The hydroxyl groups 

off the main fibril structure also inhibit hydrogen bonding. This reinforces the secondary bonding 

within the fibrils and makes the BC strong. When grown in fermented tea, or kombucha, it is 

known as a Symbiotic Culture of Bacteria and Yeast (SCOBY). The structure of these fibrils are 

one-dimensional cellulose nanofibrils and have the chemical structure shown in Fig. 2. 

 
Figure 2. Cellulose repeating mer structure. 

 

3.1.1    Positive and Negative Aspects of BC 

Since a BC medium needs sources of carbon to form, this can be supplied by many natural and 

waste sources, decreasing the cost of production of BC. Waste products such as agro-industrial 

residues, rotten fruit, and wastewater from the nata de coco or sugarcane processing industries 

have all been proven sources that lead to successful synthesis of BC.13 Using these alternative 

sources utilizes materials that would otherwise be treated as waste and reduces the cost of the 

materials needed to produce BC. Additionally, the SCOBY growth process requires little 

external energy input for the bacterial cellulose to be grown since the bacteria facilitate the 
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growth process. However, the SCOBY growth process is traditionally done in batches, which is a 

noncontinuous processing method. SCOBYs must be grown one at a time after another, so at a 

small scale it would take a lot of time to obtain the materials needed to make a useable amount of 

textile material. This production reality is currently not favorable for large scale manufacturing 

of this product, but with continued research efforts has the potential to be translated to an 

industrial scale as semi-continuous and continuous batch processes are developed.14 Most of the 

current work being done in BC research is focused on the synthesis and improving mechanical 

and hydrophobic properties of it, and once solved will spur later efforts to mold the process to an 

industrial scale.  

 

Another benefit to BC is that the cellulose fibril structure. During synthesis, BC takes on the 

woven fiber structure shown in Fig. 3, where each cellulose fiber is made up of many cellulose 

nanofibrils bound together, making it a relatively high strength material. This makes the material 

eligible for textile applications where it will be stretched under various stresses in different 

directions. Additionally, the hydrogen bonding in the fibril structure keeps the BC strong and 

prevents tearing of the material when dry. Together, the price of starting materials for BC and its 

high strength makes BC a desirable sustainable alternative to leather. However, the film is often 

not homogenous in thickness due to the uncontrolled nature of cellulose production using 

bacteria. This can affect the mechanical properties across the material, and leave some spots 

weaker than others, which are more likely to fracture than the stronger counterparts. Without 

strengthening the material in a different way, the weaker spots will be the driving force for 

fracture which is not desirable in a product. 

 
Figure 3. Nanoscale structure of cellulose fibrils in the bacterial cellulose fiber matrix.15 
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3.1.2    Possible Solutions to Improve BC Properties 

To combat the inconsistencies in BC structure, researchers have previously investigated adding 

nanoparticles to improve the overall mechanical properties of the material. Iron oxide 

nanoparticles have been added to BC to improve the mechanical properties, and they also 

improve the electrical conductivity of BC.16 These particles have helped sustain the life of the 

BC with repeated electrical cycles and the associated thermal strain. However, these particles are 

not as effective on the mechanical properties other than thermal strain, so they are not the correct 

particles to be analyzing for leather purposes.  

 

Some two-dimensional nanocomposites such as montmorillonite (MMT) clays have also been 

used in reinforcing BC.17 These nanoparticles have been proven to improve the mechanical and 

thermal properties of BC while staying biocompatible for biomedical applications. A downside 

to this nanoparticle is that it has a long and tedious processing procedure to synthesize the clay 

into nanoparticles. Additionally, MMT is difficult to completely disperse into BC and prevent 

agglomeration without extensive processing, making this BC composite difficult to effectively 

develop in research, and impractical for larger-scale industrial applications.   

 

Another common nanoparticle used in nanocomposites is silica (SiO2), which has been used in 

polymer matrices such as polyurethanes.18 The addition of these nanoparticles improved the 

modulus and tensile strength of the polymer at a 40% weight of silica. Since this nanoparticle has 

improved the properties of polymer matrices, researchers have attempted to use silica particles in 

BC matrices as well (Yano et al., 2008). The particles ended up ruining the crystallinity of the 

BC by interrupting the fibril structure in the cellulose. No further research has been done on 

using silica nanoparticles of smaller sizes, which is a possible route for research in silica BC 

composites. Using this nanoparticle is also more practical in research because of the associated 

ease of particle synthesis and lower material price. Additionally, as-synthesized silica particles 

are inorganic, which means they will be easy to distinguish from the organic molecule-based BC.  
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3.2    Use of Silica Particles 

3.2.1    Developing Silica Particles as a Model System 

One of the main advantages for studying silica particle and bacterial cellulose nanocomposite 

films is the opportunity to better understand the impact of particle size on uptake into BC, and 

how that may impact the material properties of BC. Silica particles are a relatively easy particle 

(in comparison to other nanoparticles mentioned above) to study since their size, porosity, 

crystallinity, and shape can be precisely manipulated, and because they have large-scale 

synthetic availability. Additionally, silica can be well-dispersed in polar solvents like water 19 

which would theoretically allow for high levels of homogenous diffusion into a BC SCOBY 

immersed in water during the production of a BC/silica composite. The relative ease of size 

modification and incorporation of silica particles into BC makes silica a desirable particle to use 

to investigate the impact of particle size on the success of particle incorporation and resulting 

bulk properties of BC, which has not been studied. 

 

3.2.2    Impact of Silica Particle Size 

Previous research groups have attempted to quantify the effect of the addition of silica particles 

to BC. In the research performed by Yano et al., silica nanoparticles of size 40-50nm were 

incorporated into BC. The group found that incorporating the silica nanoparticles into the 

crystalline BC matrix decreased the failure strength of the material. This was theorized to be due 

to the disruption of the inter-fibril hydrogen bonding as seen in Figure 4, where the silica 

nanoparticles disrupt the uniform crystalline structure of the bacterial cellulose.20 

 
Figure 4. Disruption of the nanofibril structure of BC due to the addition of silica particles.20 

 

However, since the previous research only studied one size of nanoparticle, there is no data in the 

literature that gives insight to the correlation between silica particle size or concentration and the 
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resulting mechanical and physical properties of the resulting BC composite. This correlation 

could be important information when the silica/BC composite is considered as a model system. 

This could give insight into the impact of nanoparticles and microparticles of any type on the 

structure of bacterial cellulose and the efficacy of BC nanocomposites as a functional material.  

 

3.3    Research Question 

The goal of this research project is to investigate the difference in silica (SiO2) nanoparticle 

versus microparticle diffusion into BC films synthesized by Gluconacetobacter xylinus. To 

evaluate this phenomenon, the following objectives must be investigated:   
1. Confirm silica uptake for each particle size by analyzing percent residue using 

thermogravimetric analysis across multiple silica soaking concentrations and a control.   

2. Visually determine if uptake of silica particles into the BC occurred using scanning 

electron microscopy.  

3. Determine a model for the uptake of silica particles into BC as a function of silica weight 

percent and soaking concentration of each particle size.  

Objective: Develop a model system that demonstrates the relationship between uptake efficiency 

of silica particles in BC films as a result of the particle size.
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4     Methodology 
4.1    Sample Synthesis 

The kombucha SCOBY was synthesized in a sterile glass container inside a fume hood, 

following the process outlined in Figure 5. The culture medium was composed of the bacterial 

culture (G. xylinus and yeast) and a 1:1:10 ratio of apple cider vinegar, glucose, and steeped 

black tea. To prepare the culture medium, the water was boiled in a large beaker and then 

removed from heat before the black tea bag was added. The tea bag was left to steep for 15 

minutes before removal. Next, sugar was added and stirred with a stir bar until fully dissolved. 

Once the solution had cooled (approximately 30 minutes), it was transferred to a sterile container 

and the apple cider vinegar and bacteria culture were added. A lid with porous but tightly woven 

cloth was placed on top of the container to control the air flow. The container was then placed on 

a heated mat at 80ºC for four weeks to grow and was periodically checked to ensure no 

contamination had occurred. The fully grown SCOBY samples, also referred to as BC pellicles, 

ranged from 1.5-2cm in thickness across a pellicle. The pellicle was then cut up into smaller 

pieces to make the purification process easier (Figure 6a).  

 

To ensure a neutral bacterial cellulose, the fully grown BC samples were put through a 

purification process to remove any remaining acetic acid. To do this, the BC pellicle pieces were 

submerged in 90ºC NaOH at a 1.0M concentration for one hour and then rinsed with DI water. 

This step was repeated twice to ensure the samples were fully purified. Lastly, the BC pellicles 

were bleached in a 1.5% NaOCl solution for two hours at room temperature before being rinsed 

with DI water a final time (Figure 6b).  

 

The silica nano- and microparticles were synthesized following a procedure by Nozawa et al. 

The 1300 nm sized particles were synthesized following the 0.5mL/min injection rate of TEOS 

and the 100 nm particles followed the procedure outlines in Nozawa’s Table 1.21 The 100nm 

stock solution had a concentration of 2.267 mg/ml, while the 1300 nm stock solution had a 

concentration of 1.29 mg/ml. The 100 nm silica stock solution was modified to form three 

soaking solutions at concentrations 0.33x, 1x, 2.2x of the stock concentration. The 1300 nm 

silica stock solution was diluted to form three soaking solutions at concentration 0.1x, 0.33x and 

0.75x of the stock concentration. The varying concentration values and dilution factors were 
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dependent on the colloidal stability of the silica particles. Each soaking solution for both particle 

sizes were then placed into individual jars with a purified BC sample. Finally, the purified BC 

samples were soaked for two weeks before being dried in an oven at 50ºC for 20 hours (Figure 

6c), resulting in samples 100-200 µm thick. Sample naming conventions and the associated 

particle sizes and concentrations are outlined in Table I. All samples studied for the purposes of 

this paper were sourced from the same batch of BC pellicles. 

 
Figure 5. Preparation process of BC/silica nanocomposite samples. 

               
Figure 6. BC samples throughout the preparation process: (a) unpurified but fully grown BC samples, (b) BC 

samples after purification, and (c) a soaked and dried BC/silica nanocomposite sample.  
 

Table I. Compositions and Naming Conventions Used for BC/Silica Nanocomposite Samples. 

Sample 
Designation 

Silica Particle 
Size (nm) 

Concentration 
Factor 

Silica Solution 
Concentration (mg/mL) 

BC_control none none none 

BC_100nm_0.33x 100 0.33x 0.748 

BC_100nm_1x 100 1.0x 2.267 

BC_100nm_2.2x 100 2.2x 4.987 
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BC_1300nm_0.1x 1300 0.1x 0.129 

BC_1300nm_0.33x 1300 0.33x 0.426 

BC_1300nm_0.75x 1300 0.75x 0.968 

 

4.2    Scanning Electron Microscopy 

Scanning electron microscopy (SEM) micrographs of the BC nanocomposite sample surfaces 

were taken on an FEI Quanta 200. The high-resolution imaging allowed for visual assessment of 

the sample surface structure and silica particle presence on the sample surface. To determine the 

structure of the silica particles as-synthesized, pure silica particles suspended in water were drop-

cast onto individual silicon wafer squares with an average side length of 0.5 cm and left to dry 

for 24 hours. To image the surface of the BC samples, all samples were cut into a rectangular 

shape with average dimensions of 0.5cm x 1cm using a razor blade and were mounted 

horizontally. All samples were mounted on an aluminum pin stub mount using double-sided 

carbon tape to adhere the sample to the mount. After mounting, all samples were sputter coated 

with gold for thirty seconds before imaging to increase their interface conductivity and imaging 

resolution under high vacuum conditions. All samples were imaged under high vacuum, with an 

accelerating voltage of 30kV, a spot size of 3, and a scan speed of 94.25 seconds.   

 

4.3    Thermogravimetric Analysis 

Three replicates of each concentration and particle size were tested. Each sample was cut with a 

hole puncher to fit into the 90μL alumina pan and weighed to approximately 5mg. The sample 

was ramped up to 550ºC at 10ºC/min and held at an isothermal for 5 minutes before cooling to 

room temperature. The weight change was analyzed to obtain the percent residue. The inorganic 

matter left in the residue was assumed to be the silica content of the BC. This value was 

compared to the control residue to calculate the inorganic residue % silica that had diffused into 

the BC.  
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5     Results 
5.1    SEM Study of Surface Microstructural Characteristics 

Visual assessment of pure silica particles was performed via SEM at 20,000x for the 1300 nm 

(Figure 7a) and 100 nm (Figure 7b) particle sizes. Both samples show a variety of particle shapes 

and sizes, which is consistent with the observed size distributions for the as-synthesized 100 nm 

and 1300 nm diameter samples. The micrographs seem to show some agglomeration of particles, 

particularly for the 100nm sample. This agglomeration is possibly an artifact of the drying 

caused by the drop-casting method used to produce the samples or could be the standard shape of 

the as-synthesized particles.   

  
Figure 7. Representative SEM micrographs of drop-cast (a) 1300nm silica particles, and (b) 100nm silica particles.   
 

Surface characterization of a pure bacterial cellulose sample from the same batch as the 

composite samples was performed at 15,000x (Figure 8). The surface morphology has the 

characteristic structure of woven cellulose fibers layered together during the growth of the 

SCOBY and preserved during the sample preparation process. While there are many individual 

fibers, the surface appears to be relatively flat and uniformly textured.    
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Figure 8. Representative SEM micrograph of a pure bacterial cellulose sample (BC_control) sourced from the same 

batch as the nanocomposite samples studied.    
 

Surface characterization of the 1300 nm silica/BC composite sample (Figure 9) and 100 nm 

silica/BC composite sample (Figure 10) was performed at both 100x and 15,000x. In the macro-

scale perspective of the 1300 nm silica/BC nanocomposite sample in Fig. 9a, there seems to be 

two visually different regions. Fig. 9b is a closer examination of the area in the blue square in 

Fig. 9a, while Fig. 9c is a closer examination yellow square in Fig. 9a. Fig. 9b is relatively 

consistent with the surface morphology of the pure bacterial cellulose sample, with a small 

amount of 1300 nm silica particles present on the surface. However, Fig. 9c shows a very 

different surface morphology, which appears to have cellulose fibers lifted off the surface of the 

sample and entangled with a higher amount of silica particles.   

 
Figure 9. Representative micrographs of a BC_1300nm_0.33x sample at (a) 100x, (b) magnified to 15,000x in the 

upper left corner of micrograph 9a, and (c) magnified to 15,000x in the middle of micrograph 9a.   
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Similarly, the macro-scale perspective of the 100 nm silica/BC nanocomposite sample in Fig. 

10a again seems to have two visually different regions. Fig. 10b is a closer examination of the 

area in the blue square in Fig. 10a, while Fig. 10c is a closer examination of the yellow square in 

Fig. 10a. Again, Fig. 10b is relatively consistent with the surface morphology of the pure 

bacterial cellulose sample, with a slightly increased amount of 100 nm silica particles seemingly 

present on or right below the surface. However, Fig. 10c shows the other surface morphology, 

which again appears to have cellulose fibers lifted off the surface of the sample and entangled 

with a higher amount of silica particles. 

 
Figure 10. Representative micrographs of a BC_100nm_0.33x sample at (a) 100x, (b) focused to 15,000x on the left 

circle in micrograph 10a, and (c) magnified to 15,000x in the upper right corner of micrograph 10a.   
 

5.2    TGA Measurement of Composite Sample Silica Content 

The control BC sample showed an average percent residue of 29.64 (standard deviation of +/- 

2.8), and the 1300 nm and 100 nm samples were directly compared to this value to determine 

silica uptake. The 1300 nm comparison shown in Figure 11 compares the average of each 

concentration with the control. The BC_1300nm_0.33x sample has the lowest percent residue, 

followed by the BC_1300nm_0.1x and BC_1300nm_0.75x. The control has the same residue left 

over as the BC_1300nm_0.75x, and the other samples were recorded to be below the control. All 

resulting 1300 nm particle composites did not observe an uptake of silica from a quantitative 

perspective.  
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Figure 11. Representative TGA graph of the 1300 nm composites with the theoretical degradation of BC at 350°C  

 

The 100 nm composite samples showed an increase in percent residue with increasing soaking 

concentration (Figure 12). The BC_100nm_0.33x sample had the lowest soaking concentration 

and had an increase in 2.23% residue from the control. The 1.0x and 2.2x concentration 

increased 4.11% and 11.10% respectively with respect to the control. The average percent 

residue values for all concentrations can be found in Appendix I.   

 
 Figure 12. Representative TGA graph of the 100 nm composites with the theoretical degradation of BC at 350°C 
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The resulting percent residue for all samples is summarized in Figure 13, where the variability 

within samples can be seen in the error bars. The 1300 nm samples have low variability among 

the concentrations and their average percent residue change is minimal. The major overlap 

between soaking concentrations also implies no significant difference between processing 

methods. Analysis of variance (ANOVA) tests were run to prove statistical insignificance and 

can be found in Appendix II for the 1300 nm samples. The 100 nm samples show a mean 

increase in percent residue, but as the soaking concentration increases, the variability increases. 

With increasing variability, there is no significant difference in the soaking concentrations when 

comparing percent residue. The ANOVA test for the 100 nm samples can be found in Appendix 

III.  

 

 
 Figure 13. Summary TGA residue comparison across all samples expressed in average values with corresponding 

data variability.
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6     Discussion 
The combined results of the visual and thermal analysis of the different BC/silica composite 

samples seems to be consistent with the idea that as particle size decreases, particle uptake 

increases. Comparison of the SEM micrographs between the BC_100_0.33x and the 

BC_1300nm_0.33x samples seems to show an increased interaction between the surface of the 

BC and the silica particles as particle size decreases. Figure 8 of the BC_control sample seems to 

show good interfacial adhesion between the bacterial cellulose fibers, which can be similarly 

found in Fig. 9b and Fig. 10b which show similar surface structure. However, Fig. 9c and Fig. 

10c seem to show decreased interfacial adhesion between the cellulose fibers, which has caused 

more silica particles to become entangled on the surface of the samples rather than diffusing in as 

expected.  

 

In a paper published by Ashori et al. in 2012, the FE-SEM micrographs of their BC/silica 

composite samples showed similar surface structure to Fig. 9b and Fig. 10b, particularly with the 

BC_100nm_0.33x sample where the silica particles appear to be sitting in between cellulose 

fibers on the surface of the sample. The samples studied by Ashori et al. were synthesized using 

a very similar synthesis method, with the only significant differences being found in the fact that 

the silica particles were around 10-20nm in size, and the BC/silica nanocomposite samples were 

hot pressed (120°C at 2 MPa for 8-12 minutes) rather than oven dried at the end of their 

preparation.22 Due to the silica particles being a full size smaller in magnitude than the particles 

studied here, the increased presence and interaction between the BC surface and silica 

nanoparticles is consistent with the idea that decreasing particle size increases BC/silica 

interaction and success of particle diffusion into the BC during processing. One possible 

explanation for the lack of lifted cellulose fiber structures in the Ashori et al. paper that were 

observed in this study (Fig. 9c and Fig. 10c) could be attributed to the hot pressing processing 

step used that would likely have compressed any lifted surface structures.  

 

Similarly, the paper by Yano et al. published in 2008 shows surface structures that were 

observed using atomic force microscopy (AFM) that are comparable to the structures observed 

here and in the Ashori et al. paper. The samples studied by Yano et. al. were synthesized by a 

similar process used here, but again soaked the BC pellicles in a 20nm silica nanoparticle 
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solution before utilizing the same hot pressing method, alongside oven drying the samples for 1-

2 days at 100°C after the hot pressing was completed. Similar conclusions can be reached about 

decreased particle size increasing particle diffusion and presence on the sample surface, along 

with the hot pressing removing any lifted cellulose fiber surface structures. Additionally, it is 

important to note that Yano et al. hypothesized that since BC nanofibril and fiber formation is 

completed before silica is introduced into the system, the silica particles diffuse into the 

interfacial spaces between the cellulose fibers.20 This mechanism of silica incorporation via 

diffusion would then result in much less silica particle incorporation into the BC matrix, making 

the successful incorporation of silica particles via diffusion particularly dependent on particle 

size. This explanation would help support the evidence found that the larger 1300 nm silica 

particles had little to no interaction with the flat surface of the BC sample since the size of these 

particles is much larger than the interfacial spaces between cellulose fibers. The 100 nm silica 

particles should then more easily diffuse into the BC fiber structure due to their smaller size, 

which can be seen in the micrographs collected here. Finally, the 10-20 nm particles used in the 

Ashori et al. and Yano et al. papers would have the most incorporation via diffusion, which is 

corroborated by the data given in those papers.  

 

After quantitative analysis of silica uptake among the BC/silica nanocomposites, the 1300 nm 

data implies no silica uptake, while the smaller 100 nm particles have an increase in mean % 

residue but also a corresponding increase in variability. The lack of diffusion for the 1300 nm 

particles can likely be attributed to their large size in comparison to the interfacial spaces of the 

BC fibers. The 100 nm silica uptake mirrors data from Yano et al., where there is an increase up 

to 10% silica content with increasing silica soaking concentration. However, Yano et al. 

synthesized their nanocomposites with silica particles close to 20 nm, which is significantly 

smaller than our silica nanoparticle size. The findings of Yano et al. corroborates the trends 

found in the 100 nm silica composite samples but further testing with smaller particles sizes 

should be done, in order to draw more concrete conclusions. Similar conclusions were also made 

in a paper by Maeda et al., where there was an increase in silica content by 4% when doubling 

the soaking concentration of the silica.23 Although Maeda et al. uses a silanol solution rather than 

pure silica for particle uptake, it shows a relationship with soaking concentration that was 

observed in the TGA data in this experiment.  
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The large amount of variability in our samples is likely due to the heterogeneity of the BC sheets. 

After the drying process, there were varying thicknesses across the sample which may have 

affected the quantitative analysis of the BC. Since the thickness of the sample varied, during the 

silica soaking stage there may have been patches of excess voids for silica to diffuse into, where 

other areas had an insufficient amount of interfibrillar spaces for silica diffusion. Additionally, 

each BC pellicle varied in thickness even within a single sample, which could have had an 

impact on the uptake of silica into different regions, where thicker regions would theoretically 

have more space for silica particles to diffuse into. This would result in inconsistent TGA data, 

which can leave results inconclusive.  
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7     Conclusions and Future Recommendations 
After further visual and quantitative analysis of the BC/silica composites, the results are 

consistent with the idea that there is an inverse relationship between silica particle size and 

particle uptake. As the particle size decreases, there was an observed increase in % residue from 

TGA and more particles were observed on the surface of the BC. However, the resolution of the 

micrographs and statistical analysis of the data proves no statistical significance in the difference 

among soaking concentrations. For more robust and conclusive data, additional TGA 

experiments should be run for each soaking concentration to potentially determine a relationship 

between the soaking concentration and silica uptake.  

 

The silica interactions with the BC showed two distinguishable morphologies on the surface of 

the BC, one consistent with the control and one with the fibers being entangled with the silica. 

Future research should explore the chemical interactions between silica and the surface of the BC 

to investigate the morphology differences. Additionally, further research should be done that 

focuses on the effect that different BC sample processing methods have on sample morphology. 

The use of hot pressing versus oven drying may influence the final structure and material 

properties of the BC. 

 

For future experiments, data should be taken among multiple batches of BC. This experiment 

was run on one BC pellicle, and characterization across multiple pellicles would confirm if our 

synthesis process is replicable. Furthermore, the current BC synthesis process results in BC films 

of varying thicknesses, which could cause inconsistencies in data even within a singular BC 

pellicle. More replicate testing across the same BC pellicle and multiple different BC pellicles 

would increase the robustness of the data, minimizing outlying data points that would have much 

larger influence in smaller data sets.  
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9     Appendix 
9.1  Appendix I: Average % residue concentrations (TGA) for all samples 

Sample Name Particle Size Dilution Conc (mg/mL) % Residue 
BC_100nm_0.33x_1 100 0.33x 0.74811 33.399 
BC_100nm_0.33x_2 100 0.33x 0.74811 34.133 
BC_100nm_0.33x_3 100 0.33x 0.74811 28.086 
BC_100nm_1.0x_1 100 1x 2.267 37.12 
BC_100nm_1.0x_2 100 1.0x 2.267 29.131 
BC_100nm_1.0x_3 100 1x 2.267 34.99 
BC_100nm_2.2x_1 100 2.2x 4.9874 57.53 
BC_100nm_2.2x_2 100 2.2x 4.9874 37.0 
BC_100nm_2.2x_3 100 2.2x 4.9874 27.68 
BC_1300nm_0.1x_1 1300 0.1x 0.129 31.209 
BC_1300nm_0.1x_2 1300 0.1x 0.129 24.835 
BC_1300nm_0.1x_3 1300 0.1x 0.129 23.568 
BC_1300nm_0.33x_1 1300 0.33x 0.4257 29.801 
BC_1300nm_0.33x_2 1300 0.33x 0.4257 28.698 
BC_1300nm_0.33x_3 1300 0.33x 0.4257 26.159 
BC_1300nm_0.75x_1 1300 0.75x 0.9675 32.115 
BC_1300nm_0.75x_2 1300 0.75x 0.9675 30.485 
BC_1300nm_0.75x_3 1300 0.75x 0.9675 28.422 

 

9.2  Appendix II: ANOVA test values for 1300 nm silica composite samples 
Source of Variation SS df MS F P-value F crit 
Between Groups 16.76388 3 5.58796 0.8784 0.523385 6.591382 
Within Groups 25.44608 4 6.361521 

   
       

Total 42.20996 7         

 

9.3  Appendix III: ANOVA test values for 100 nm silica composite samples 
Source of Variation SS df MS F P-value F crit 

Between Groups 130.9602 2 65.4801 0.752 0.511182 5.143253 
Within Groups 522.4476 6 87.0746 

   
       

Total 653.4078 8         

 


