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Abstract

Modern chess engines have the ability to augment their evaluation by using
massive tables containing billions of positions and their memorized solutions.
This report examines the importance of these tables to better understand the
circumstances under which they should be used.

The analysis conducted in this paper empirically examines differences in
size and speed of memorized positions and their impacts on engine strength.
Using this technique, situations where memorized tables improve play (and
situations where they do not) are discovered.
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1 Introduction

1.1 Memorized Positions in Chess

Memorizing positions is a common technique used in modern chess engine develop-
ment. By saving a board state and a value or optimal “solution” move to disk, a
properly-coded engine can ensure that the position is correctly handled in all future
cases.

Not all engines employ memorization-based techniques, but the authors of those
that do cite improvements to playing strength, speed, and variety.

Format 5 piece 6 piece 7 piece
Nalimov 7.1 GiB 1.2 TiB -

Lomonsov - - 140 TiB
Syzygy 939 MiB 150.2 GiB -

Table 1: Sizes of commonly used endgame tablebases [1]

On the other hand, memorized tables can be extremely large and introduce access
time delays. The recently released 7-piece Lomonsov tablebases, for instance, are
a cumbersome 140 Terabytes [2]. It is believed by some that chess engines are
sophisticated enough that the performance gained from memorizing vast amounts is
no longer enough to justify their size.

Because of the large state-space complexity of chess, it is typically only feasible to
memorize positions in the first several moves or after many pieces have been removed
from the board. Although mid-game moves can be memorized, it is difficult to come
up with optimal solutions and there is little guarantee a position will ever be seen
more than once.

1.2 Problem Statement

Despite their relatively common inclusion in modern engines, the pros and cons to
the use of large amounts of memorized information are not well understood. How
can the use of memorization in chess be optimized as storage becomes faster and
cheaper, as engines improve, and as networked cloud storage becomes more widely
used? What are the different strategies that a programmer should employ when
developing on a supercomputer versus a mobile phone? Are memorized tables even
necessary at all for modern engines, which do an excellent job of quickly finding good
moves?
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This report seeks to examine and potentially resolve these issues by examining
some of the following questions:

• What performance gains/losses can be expected when using memorized posi-
tions? Where do they come from?

• Will memorized positions give a larger performance boost to stronger or weaker
engines?

• What effect does the amount of time an engine is given have on the usefulness
of memorized positions?

• Are memorized positions required to compete at the highest level of chess
engine performance?

• What effect does tablebase completeness have on performance? Are entire
tablebases required for an engine to gain the benefits of tablebases?

• How important is the access speed of the medium that the memorized infor-
mation is stored on? Will slower mediums negatively impact performance, and
if so, by how much?

A precise answer and explanation for these questions regarding the importance
(or lack thereof) of memorized positions would benefit engine creators, who must
balance the strength and size of their programs, as well as engine users, who must
make informed decisions on which engines/tablebases to use and/or buy.

Interestingly, better knowledge about endgame memorization could also benefit
human players. Although humans are not able to memorize positions to the same
accuracy or extent as computers, knowledge about the most common and/or tricky
endgames could still be helpful. Some commonly occuring endgames could be worth
memorizing for a human player, while others might be workable from other knowledge
and therefore not require memorization.

1.3 Topic Overview

The following topics will be addressed in this design report:
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1.3.1 Literature Review

The literature review section of this report covers a variety of topics and publications
related to memorized positions in chess. Some of these papers and articles are briefly
described below:

• Programming a Computer for Playing Chess - Described the statistical com-
plexity of “solving” 32-piece chess

• Retrograde analysis of Certain Endgames - Outlined (and later used) an algo-
rithm to completely “solve” certain endgames

• Space-Efficient Indexing of Chess Endgame Tables - Contained optimizations
which drastically reduced the amount of space required to store memorized
information about endgame positions

• Can Endgame Tablebases Weaken Play? - Described the five cases in which
memorized endgame information could hurt an engine’s performance

• Mechanisms for Comparing Chess Programs - Outlined ways in which chess
engines could be tested and compared

1.3.2 Background

The background section of this report covers topics that are important to under-
standing its content and analysis. Broadly speaking, these topics are:

• Complexity in games and chess, and how it puts constraints on what can be
memorized

• Evaluating the playing strength of chess engines

• Comparing chess engines using metrics like Elo rating and likelihood of supe-
riority

• The common protocols used by modern chess engines

1.3.3 Analysis

The analysis section of this report will empirically test a variety of chess engines in
order to better understand how they respond to changes in memorized information.

The following three tests will be performed:

3



• Analyze tablebaes usefulness at different time controls in order to determine
the effect of time control on tablebase importance

• Test smaller, incomplete tablebase performance against complete tablebase per-
formance to determine a relationship between tablebase size and tablebase per-
formance

• Examine performance loss when storing tablebases on a slower storage medium
to determine the relationship between tablebase access time and engine perfor-
mance

By carefully conducting these experiments and analyzing their effects on various
engines, conclusions can be drawn regarding when and where tables of memorized
information is most (or least) useful. This will allow engine developers and users to
better optimize the performance of their chess engines.
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2 Literature Review

2.1 Comparing Chess Players

2.1.1 Selection of the Best Treatment in a Paired-Comparison Experi-
ment

Published in 1963, Selection of the Best Treatment in a Paired-Comparison Exper-
iment by Trawinski and David laid out much of the mathematical and statistical
framework that would later be applied to chess players.

This paper outlined the comparison of two “treatments” which are presented in
pairwise comparisons to some judge. Based on the judge’s rulings, the “treatments”
are scored and the best treatment is defined as the one with the highest score.
This paper omitted expressions of no preference, which would be necessary in its
adaptation to chess.

This paper and several like it became the foundation for the Elo rating system,
which was developed around 1960 by Arpad Elo to simply and accurately compare
an arbitrary number of chess players. The Elo rating system has been the most
widely used method to rate chess players since. This system and its mathematical
foundations are described in much further detail in Section 3.4.2.

2.2 Complexity in Chess

2.2.1 Programming a Computer for Playing Chess

In 1949, Claude E. Shannon published his paper Programming a Computer for Play-
ing Chess [17]. This paper is commonly regarded as the first in-depth discussion of
computer chess and contains much of the groundwork for future advancements in the
field.

This paper estimated the state-space complexity of chess (the number of unique
boards states that can be achieved in real games) to be approximately 1043, using
the following formula:

64!

32!8!22!6
≈ 1043 (1)

This calculation provided an improvement on previous ones, but did not account
for captures or promotions and included many redundant or impossible combinations
of material.

More information about the state-space and game-tree complexity of chess can
be found in Section 3.1.
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2.2.2 Searching for Solutions in Games and Artificial Intelligence

Victor Allis’s 1994 thesis Searching for Solutions in Games and Artificial Intelligence
improved on previous complexity estimates and expanded them to include more
games [9]. This thesis attempted to better understand non-trivial zero-sum games
and their likelihood of being solved by humans in the near or far future. This paper
sought to examine current AI topics in these games and potential future issues that
would need to be overcome.

In his thesis, Allis estimated the state-space complexity of chess to be bounded
below 5× 1052, which included captures and promotions and therefore improved on
Shannon’s calculation. Based on this upper bound, he estimated the actual state-
space complexity to be on the order of 1050.

More information about the state-space and game-tree complexity of chess can
be found in Section 3.1.

2.3 Endgame Tablebases

2.3.1 Retrograde analysis of Certain Endgames

In 1986, Ken Thompson published Retrograde Analysis of Certain Endgames, one
of the first papers to offer a strategy for memorizing massive amounts of optimal
endgame board states [18]. This paper pioneered the technique of exhaustive retro-
grade analysis that is still used today. Thompson would later publish further papers
covering various 5 and 6 piece endgame tablebases as they were created in 1990,
1991, and 1997.

The retrograde analysis algorithm proposed by Thompson works roughly as fol-
lows to generate distance-to-mate metrics:

• Begin with all board states that represent checkmate. Consider these positions
as “mate in 0”.

• All positions that can be reached from “mate in 0” positions by the current
side to move are marked as ”mate in 1”.

• All positions that only lead to “mate in 1” positions are marked as “mate in
2” positions.

• This continues until all positions are covered and determined as an unavoidable
“mate in X”or as a draw.
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This algorithm presents a number of advantages, including its simplicity, ease of
parallelizing, and guarantee of optimality. This algorithm and algorithms like it are
commonly used today to calculate tablebases.

On the contrary, this algorithm and algorithms like it require a vast amount of
RAM and CPU time to calculate larger tablebases. Creation of 6-piece Syzygy table-
bases requires an estimated 16 GB of RAM and creation of 7-piece tables requires
roughly 1 TB.

2.3.2 Space-Efficient Indexing of Chess Endgame Tables

The 2000 paper Space-Efficient Indexing of Chess Endgame Tables, written by Nal-
imov, Haworth, and Heinz, examined and improved on tablebase compression tech-
niques [14]. This paper suggested and quantified methods for improving tablebase
indexing, removing more redundant or impossible positions from tables. As a re-
sult of significantly reducing tablebase size, these methods were later adopted and
improved on in future tablebase design.

Prior to this paper’s publication, many tablebases were indexed using the follow-
ing simple, but naive scheme (or schemes like it):

index = position\_white\_King + position\_black\_King * 64

for each piece {

index = index * 64 + position

}

This paper suggested removing the many redundant or impossible positions, in-
cluding:

• Symmetrical positions

• Positions with adjacent kings

• Positions with pawns on ranks 1 or 8

• Full indexing up to 64 is not needed after the first piece: further pieces only
have 63 possible locations.

Because of their usefulness in compacting endgame tablebases, these improve-
ments and improvements like them have been integrated into most modern endgame
tablebase formats, including Nalimov’s own tablebases (discussed further in Section
3.2.3.2).
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2.3.3 Reference Fallible Endgame Play

Published in 2002, G.M C. Haworth’s paper, Reference Fallible Endgame Play at-
tempted to address a discovered issue of endgame tablebase use: among positions
that were theoretically drawn or lost, a “perfect” player according to endgame table-
bases would not attempt to win [12]. Although this result is expected against a
perfect opponent, it felt unrealistic when playing against a fallible player. This pa-
per presents a solution to the issue, which attempts to make optimal moves (that do
not make the position theoretically worse) while also trying win or tie otherwise lost
positions.

These tablebase probing algorithms that attempt to punish non-optimal savvy
players are now used in many chess engines, often known as “contempt” or “swin-
dling.” With these features activated, engines will use their analysis in tablebase
positions in order to attempt to force wins or draws.

Although these features make engines feel more human-like, they do not improve
playing strength against optimal opponents and can therefore be considered unnec-
essary or even superfluous at the highest levels of play.

2.3.4 Can Endgame Tablebases Weaken Play?

In 2003, Horizon Chess published an article titled Can use of endgame tablebases
weaken play? [4]. This article addressed experimental results that occasionally
showed a slowdown in engine speed when using tablebases. This article addressed
and laid out several cases in which endgame tablebases could weaken positional
strength:

• Incomplete tablebase issue

• Tablebases don’t account for castling

• Tablebases don’t account for the 50-move rule

• “Knowing too much” problem

• Disk access slows down a search

By outlining these ways in which endgame tablebase use could potentially weaken
play, engine users and programmers were able to better understand where perfor-
mance gains/losses originated from. Some of these potential sources of errors will be
addressed in this report.
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2.4 Creating and Testing Engines

2.4.1 Programming a Computer for Playing Chess

Claude E. Shannon’s 1949 paper, Programming a Computer for Playing Chess, is
commonly credited as the first in-depth analysis of computer chess [17]. This paper
considers chess and how computers can . For its time, this paper was extremely
detailed and accurate, and as a result would heavily influence future chess engines
and publications.

This paper proposes a separation of chess engines into two tasks, which very
closely resemble engine tasks today:

• Evaluation - A computer chess program would be able to evaluate a board
state. Based on material and piece position, the computer could estimate the
utility for a given board. Shannon proposes some simple evaluation functions,
including material, pawn strength, rook mobility, and king safety.

• Searching - Given approximate evaluations of positions, a computer can search
between

This paper also predicted that future engines would follow one of two types: Type
A, engines that used a brute-force approach, and Type B, those that used a best-first
approach. Today, most top engines are iterative deepening “Type A” versions, as a
best-first search “Type B” engines are too prone to missing crucial moves.

Although some its estimations and predictions are inaccurate, Shannon’s paper
carefully analyzed many aspects of computer chess and laid much of the groundwork
for research that would come in the future.

2.4.2 Mechanisms for Comparing Chess Programs

In 1973, Tony Marsland and Paul Rushton published Mechanisms for Comparing
Chess Programs [13]. This article theorized different ways in which engines could
be tested and their playing strength determined, before engines could be reliably
connected together. Although advances in technology and processing power have
largely obsoleted some techniques described in this paper, others remain relevant
today.

This paper suggested the following methods of testing and comparing chess en-
gines:
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• Measuring resource utilization - By keeping track of an engine’s memory and
CPU usage, it is possible to get a better idea of the engine’s performance in
comparison to other engines.

• Playing engine games from a starting position - An engine’s response to a
variety of starting positions can be tested to get a wider idea of its chess-
playing ability.

• Games between two engines - Although not feasible at the time, Marsland and
Rushton propose this as a method of quickly comparing two engines.

• Comparison to master-level games - By using the same moves and comparing
an engine’s response to that of a recorded master-level player, the strength of
an engine can be deterministically evaluated using only one computer.

Despite being published well before large-scale automatic chess engine testing
or games between multiple automated engines was viable, some of the methods pre-
sented in this paper are still in use today (Section 3.3 goes into more detail on modern
comparison strategies).

However, the rise of computers as super-human chess players has largely obsoleted
comparisons to master-level games, and massive advances in computing power means
that limiting games between engines to partial ones is no longer necessary.

2.4.3 Statistical Minefields with Version Testing

Jeff Rollason’s 2007 article Statistical Minefields with Version Testing discusses some
of the primary issues with modern engine development and how to improve on them
[15]. The article describes the issues with testing for small improvements and the
large sample size required to make sure a change is a positive one. Because modern
engine development typically revolves around large amount of these additive small
improvements (and small hindrances to be avoided), this topic is crucial for engine
development.

The article then suggests the following techniques to mitigate the aforementioned
issues:

• Using statistical analysis of results to determine the impact and significance of
changes

• Maximizing sample size of test games to increase sample size
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• Using continual round-robin testing between different archived engine versions
to ensure changes are positive

• Using a consistent testing plan and schedule to prevent testing issues from
causing unexpected results

The techniques and potential pitfalls described in this article are now widely
understood adopted. Modern engine development typically involves round-robin
version testing and extensive parameter tuning and testing. Some of the techniques
described in this article will be used in this report’s analysis.
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3 Background

3.1 Complexity in Chess

3.1.1 State-space Complexity of Chess

State-space complexity is measured by the total number of legal positions that are
possible to reach in a particular game. In chess, this value has traditionally been
best approximated by the number of ways to legally arrange pieces on the board,
which provides an estimate to the number of positions that are actually possible to
reach in real games.

The state-space complexity of chess was originally approximated by Claude Shan-
non in his landmark 1949 paper, Programming a Computer for Playing Chess. Shan-
non used the following equation, which included some illegal positions and omitted
legal ones which followed promotions and captures, for his estimate [17]:

64!

32!8!22!6
≈ 1043 (2)

This estimate was further refined by Victor Allis in his 1994 paper Searching for
Solutions in Games and Artificial Intelligence. In this paper, Allis calculated an
upper bound of 5x1052 possible unique positions for the state-space complexity of
chess, with captures and promotions included [9].

3.1.2 Game-tree Complexity of Chess

Game-tree complexity is a measurement of the total number of unique games that
can be played. Due to the 50-move rule, every chess game must eventually end and
thus this complexity is bound to a finite number.

In the same 1949 paper, Claude Shannon provided a lower bound for the game-
tree complexity of chess, which became known as Shannon’s Number. His estimate
of 10120 was based on an average game length of 40 moves per side and an average
of 103 possible outcomes per pair of turns [17].

The number of possible chess games can be greatly reduced by limiting games to
“sensible” ones. By assuming 3-4 reasonable moves per turn, the estimate is lowered
to around 1045.
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3.1.3 Solving Chess

A “strongly solved game” is one where an optimal move is known for every possible
turn. Strongly solving chess would thus require an optimal move to be given for
every available position, as described in Section 3.1.1.

If chess was ever strongly solved, the generation of memorized 32-piece tablebases
would enable engines to play the game perfectly. This has been described as “playing
chess with god”, a perfect opponent. Accomplishing this is considered fairly unlikely
based on our current understanding of physics, due to two major issues that stem
from chess’s state-space complexity:

• Calculating solutions to 5x1052 different positions would take an exceedingly
long time. While theoretically conceivable given enough time, this would re-
quire time on the order of an estimated 1090 years with current technology
[17].

• Should they be calculated somehow, storing information about that many po-
sitions in a database is not expected to ever be feasible.

3.2 Memorized Positions in Chess Engines

3.2.1 Why is Memorization Used in Chess Engines?

Memorizing positions is a common technique used in modern chess engine develop-
ment. By saving a board state and a value or optimal “solution” move to disk, a
properly-coded engine can ensure that the position is correctly handled in all future
cases.

Not all engines employ memorization-based techniques, but the authors of those
that do cite the method’s many improvements to playing strength, including:

• Faster Analysis of Memorized Positions - Looking up a known solution is often
faster than calculating one on the fly, especially for complex board states.
Theoretically, this is even more true for low-end computers or engines, where
deeply calculating optimal moves is more difficult.

• More Precise - Memorized solutions to board states can be calculated using
extremely precise and specialized metrics which often aren’t available or suit-
able to an engine normally, such as exhaustive retrograde analysis. A weaker
engine can, for instance, be made to copy a known strong engine’s opening or
endgame play-style to improve its own play.
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• Encourages Diversity - Having multiple memorized solutions to randomly choose
from can make an engine unpredictable and more interesting to play against.
Without a random selection of moves, an engine can become deterministic or
repetitive in similar-looking games.

• Faster Analysis of Near-Memorized Positions - Because calculating the util-
ity of an unknown position in chess requires analysis of potential resultant
positions, memorizing information about positions can also improve play in
near-memorized ones. If an engine can preemptively discard a possible line as
“losing” using a memorized endgame analysis, it’s more likely to find a stronger
move.

Despite these cited benefits of memorized solutions to common board states,
issues can also arise which can negatively impact playing strength, such as:

• Imperfect Moves - Aside from exhaustive retrograde analysis, there’s no guar-
antee that a particular memorized move or strategy is truly optimal. As a
result, any non-perfect memorized move can potentially introduce error into
an engine’s analysis.

• Incomplete Memorization - An engine following a powerful memorized line or
technique might get itself into a position it cannot play well after the memorized
line ends. Even though a memorized line is optimal for a skilled engine, a
weaker one that attempts to follow it can be lead astray.

• Assumes Perfect Play - Typically, memorized lines assume perfect reactions by
an opponent. As a result, unexpected responses are less likely to be memo-
rized. Additionally, memorized lines do not account for an opponent’s potential
mistakes and might lead an engine to preemptively call or play for a loss or
draw.

• Drive Access Time - Accessing a large database of memorized moves introduces
file overhead. In some cases, this overhead can cause an engine to slow down
and play worse moves.

Further complications with the general memorization of positions, as well as
specific cases, are discussed in the following sections.
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3.2.2 Current Limits of Memorization in Chess

As discussed in Section 3.1, chess games rapidly increase in state-space complexity
after the first several moves. Even when limited to ‘good’ moves, the amount of
different board positions quickly becomes intractable and impossible to thoroughly
and completely analyze with current technology. Despite memorization of these
complicated middlegame positions appearing useful,

The rapidly expanding state-space complexity of chess also places limits on what
information can be stored on modern storage drives. Even with state-of-the-art
compression techniques, maintaining optimal moves for boards of 7 pieces requires
140,000 gigabytes of drive space [2]. This issue is further compounded by the fact
that, as discussed in Section 3.2.1 and 3.4.1.3, drive access time plays a factor in en-
gine performance–limiting maximum performance memorized information to faster,
more expensive drives.

As a result of these issues and constraints, memorization in chess is typically only
feasible during the first several moves along commonly played lines, and after many
pieces are removed and the number of possible unique positions decreases. The fol-
lowing section, 3.2.3, discusses and further analyzes these places where memorization
is viable for chess engines using current technology.

3.2.3 Places Where Memorization is Currently Feasible

3.2.3.1 Opening Book

An opening book contains a memorized list of commonly occurring opening positions
or strategies which an engine can use and access. Additionally, opening books can
be swapped between engines to encourage or practice certain playstyles.

This memorized information found in opening books is typically either hand-
crafted or created by an analysis of many highly rated games games. These can
either come from professional human games, or games played between top engines.

Opening books can improve engine speed when dealing with common positions
in the opening, but can also cause slowdowns due to file I/O and are not guaranteed
to produce optimal moves. Despite this, their importance will be examined in the
analysis of this report, which will be primarily focusing on endgame tablebases.

3.2.3.2 Endgame Tablebase

An endgame tablebase is an exhaustive database of all possible board states below a
certain number of pieces. These tables are calculated using retrograde analysis and
contain an expected game result and a distance to achieve that result from a given
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position. Because they are created using exhaustive analysis, endgame tablebases
are guaranteed to be optimal, assuming perfect play from both players.

Endgame tablebases typically keep track of positions using two measurements,
which allow an engine consulting them to identify which moves improve the position
and which degrade it:

• Depth to Mate (DTM) - The number of moves until checkmate is reached.

• Depth to Zeroing (DTZ) - The number of moves until a pawn move or a capture,
upon which the 50-move rule will be reset.

• Win/Loss/Draw (WDL) - Whether a position is won, lost, or drawn, assuming
optimal play from both players.

Because they cover every possible board state below a certain number of pieces,
endgame tablebases become large quickly. Table 2 shows the sizes of some of the
ones most commonly used in modern engines.

Format Metric 5 piece 6 piece 7 piece
Nalimov DTM 7.1 GiB 1.2 TiB -

Lomonsov DTM - - 140 TiB
Syzygy WDL + DTZ 939 MiB 150.2 GiB -

Table 2: Sizes and metrics of commonly used endgame tablebases [1]

More information regarding the creation and compaction of endgame tablebases
can be found in the Literature Review, Section 2.

Endgame tablebases are commonly used in engines and have potential to improve
a chess engine’s play by saving time and providing optimal moves. However, they
are often very large and the file I/O associated with them can slow down an engine’s
play as well. As a result, their importance will be carefully examined in the analysis
of this report.

3.2.3.3 Endgame Bitbases

Endgame bitbases are compacted versions of endgame tablebases that trade a much
smaller size for less information about the positions they describe. An endgame
bitbase will usually encode the result of a board position in a single bit as won or
not won or in two bits as won, drawn, lost, or invalid.
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As a result of their smaller size, endgame bitbases can more easily fit into faster
memory, increasing search speed while still providing some of the benefits of exhaus-
tive endgame tablebases. Having a fast reference to whether a position is won, lost,
or drawn can allow an engine to navigate endgames more carefully and prune off
losing moves quickly. However, endgame bitbase’s lack of direction or progress in
won positions can lead to mistakes or wasted moves.

Because fewer engines support them in favor of the more widely used endgame
tablebases, the importance of endgame bitbases will not be thoroughly examined in
the analysis of this report.

3.3 Evaluating Chess Engines

Beyond what is possible to analyze through exhaustive retrograde analysis, playing
chess well is not yet perfectly understood. The vast majority of moves, positions, and
players cannot be evaluated exactly, but are understood and approximated in terms
of how likely they are to win, lose, or tie a given game. This can lead to unresolvable
disagreements in positions or moves, where two equally rated engines or players will
come up with different evaluations for the same issue.

However, this lack of a universal, perfectly accurate method of evaluating the
ability of an agent to play chess does not disqualify chess from being analyzed in a
logical way. This subsection will go over various quantifiable ways in which chess
engines can be more precisely understood and ultimately compared.

3.3.1 What Makes a Chess Engine Good?

Before being able to answer the question of “How strong is a chess engine?” it is nec-
essary to quantify the distinguishing characteristics of engines. The most important
of these can then be examined and used to estimate playing strength.

There are many different characteristics which engines are currently understood
and evaluated by. Engines will often exemplify one or more of these aspects, and can
be tweaked to focus them as necessary:

• Middlegame Strength - Ability to search accurately and deeply to find material
or positional advantages in middlegame positions. An engine with a strong
middlegame can find advantages and snowball them to wins.

• Endgame Strength - Ability to find wins/ties in positions with few pieces. An
engine with a strong endgame can play out technical positions that
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• Aggressiveness - Desire to attack and pressure the opponent’s king. An engine
with an aggressive playstyle will try to apply pressure and gain tempo when
possible.

• Overall Strength - Overall ability to beat other engines in full games. This
metric provides a realistic overall estimate of an engine’s validity and skill at
chess.

• Adaptation - Ability of an engine to adapt to its opponent’s playstyle and make
changes to its own where necessary.

• Optimism - Desire to play into positions the engine is unsure of. An optimistic
engine will play lines that are more “risky”.

Although characteristics like aggressiveness and adaptability might make an en-
gine more interesting to use, the overall strength of a chess engine is best understood
in terms of its ability to win games of chess against a wide range of opponents. Met-
rics like “Endgame Strength” and “Middlegame Strength” can be used to estimate
an engine’s playing capacity in a particular phase of the game, but these metrics are
inherently biased when being used to evaluate overall playing strength because they
ignore the other important phases of the game.

Additionally, it is important that engines are tested with a variety of opponents,
to eliminate biases caused by one engine’s playstyle naturally doing well against
another’s.

3.3.2 Determining Strength by Evaluating Board Positions

Evaluating the best move for a particular board position is the main function of
modern engines. Theoretically, the best engine will be the one that can find and
make the best move at each board position it encounters, from the start to the end
of a game.

To this end, board position tests are an extremely common and lightweight
method of testing engines. These tests, often referred to as “tactics puzzles” or
“debugging suites” are contrived board layouts with an intended best move (or se-
quence of moves). Although this intended solution is subjective and prone to error, it
is usually verified by top humans and engines given hours of thinking time. Coming
up with the solution to these puzzles typically requires a search of reasonable depth
and/or a difficult decision between two or three good-looking candidate moves.
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Figure 1: The Djaja position. White to move and draw

Figure 1, the “Djaja position,” is an example of a well-known tactics puzzle that
can be used to quickly test engines. The solution, Nh6!, is not obvious by any
means, and requires careful analysis to discover. By moving the knight out of the
way, White gains access to a perpetual check using their rook which prevents Black
from promoting his/her pawn and winning the game.

Like every method of testing engines, however, solving contrived tactics puzzles
has downsides and pitfalls that must be understood when using them:

• Tactics puzzles typically resemble middlegame positions, and might not give an
accurate representation of an engine’s ability to play the earlygame or endgame.

• Often, tactics puzzles are fairly short-sighted, and do not require a deep search
to solve. This puts them contrary to many real chess positions, where an
optimal solution can require a deep search and evaluation.

• The solution to a tactics puzzle is typically the best move by a wide margin. As
a result, the puzzles often do not correspond to actual chess positions, where
the best move is uncertain and an engine must pick between several seemingly
viable moves.

Some of these issues can be mitigated by smart test development and usage,
but others will always remain an issue for evaluating via board positions. Overall,
tactics puzzles are useful as very lightweight tests for an “at-a-glance” overview of an
engine’s playing power, but not as an in-depth, all-inclusive analysis of an engine’s
strength. As a result, they will be used for a quick estimate of strength in the later
testing.
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3.3.3 Determining Strength by Playing Partial Games

Playing partial games attempts to determine an engine’s overall aptitude in a fixed
scenario. These tests begin at a predetermined state and have an expected result.
Unlike simple tactics puzzles, these positions will not have markedly “correct” and
“incorrect” moves, but a certain outcome will be expected, which still makes them
useful in a quantitative analysis.

Partial games attempts to remedy some of the issues presented by evaluating
static board states, while preserving their lightweight and simple evaluation. These
games are more flexible and can be used to estimate an engine’s “long-term” playing
prowess. Still, however, playing non-full games can introduce bias into the evalua-
tion of an engine, as certain parts of a game might be over-represented or under-
represented.

Figure 2: The BNK vs K checkmate. White to win in 29 moves

Figure 2 features one of the more difficult forced checkmate sequences. With
proper play, White can force a win in 29 moves in this position or any like it. This
checkmate sequence requires foresight and careful square control and manipulation of
the Black king. With improper or impatient play from White, however, the game will
be drawn due to the 50-move rule. Positions like these can test an engine’s ability to
find and execute long-term strategies that might not be immediately apparent with
a simple low-depth search.

Overall, partial games are useful to gather a slightly more detailed estimation of
an engine’s playing strength, but are not as useful or unbiased as playing full games.
As a result, they will be omitted in place of full games for the testing and analysis
of this report.
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3.3.4 Determining Strength by Playing Full Games

Playing entire, start-to-end games seeks to determine an engine’s overall strength at
playing chess. By comparing an engine’s results with other engines or humans, it
is possible to get an estimate of their overall ability to play chess well and produce
wins. This approach does not restrict the evaluation to any specific phase of the
game, but rather tests an engine’s ability to navigate positions and game phases as
they arise during actual play.

As a result, this approach eliminates many of the biases which can be intro-
duced using other testing methods. Because of this, testing an engine’s strength by
playing full games is typically considered the most accurate and faithful method for
determining overall playing strength.

Despite its increased overall fidelity and immunity to being biased by uncommon
game states, using full games to determine an engine’s strength has a few notable
downsides:

• Hundreds, if not thousands of games are required in order to get accurate
results. Since engine games have an element of uncertainty and randomness, a
large sample size is usually required to be sure of two engine’s relative strength.

• Testing full games against another engine uses the most CPU time, RAM, and
other resources out of any testing method. Large numbers of longer games, as
well as the requirement of running a reference engine, causes this method to be
very costly in terms of computing resources. As a result, thorough tests will
often require hours to days.

• Often this method requires many other engines to test against for a sufficient
sample size. Only testing against a few other engines will potentially introduce
a selection bias–an engine may appear strong when it is actually just strong
against the opponents that were selected for it. In order to avoid this bias, a
variety of opponent engines must be considered and tested against.

These downsides, however, can typically be mitigated with careful testing and
planning. Playing full games will always have value for determining the overall
ability of an engine to play chess. As a result, this report will make extensive use of
this testing technique to ensure accurate, complete, and unbiased results.
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3.4 Comparing Chess Engines

3.4.1 Variables to Consider when Evaluating Engines

The ability of a chess engine to play well can be evaluated across many variables.
Depending on an engine’s purpose, requirements, and resources, certain variables will
inevitably be prioritized over others. Because of this, it is necessary to understand
and evaluate each of these variables as they relate to an engine’s performance as a
whole.

The following section provides an overview of some of the more common variables
and outlines their use in this report.

3.4.1.1 Move Strength

Move strength is a measurement of the overall “correctness” of an engine’s moves.
An engine that finds and makes stronger moves will be more likely to gain advantages
and ultimately win games. This report will consider move strength primarily in terms
of Elo and LOS, discussed in Sections 3.4.2 and 3.4.3 respectively.

Most engines will attempt to optimize move strength at the cost of other variables.
Making strong moves that promote winning is the goal of most engines, which will
attempt to do so within whatever other constraints are presented.

For the purpose of this report, move strength will be treated as a dependent
variable. As other variables are changed, move strength will be used to determine
the validity and importance of changes made.

3.4.1.2 Move Difficulty

Move difficulty is a measurement of the complexity of a board position that an engine
must analyze. “Easier” positions have a smaller (or more easily prune-able) search
space, due to checks, recaptures, mate threats, or other similarly forcing features. On
the other hand, “harder” positions might involve many seemingly-valid but important
decision points that will impact the game many turns into the future. Move difficulty
is not measured empirically, but rather is measured in terms of how much trouble
the moves present for other engines and/or human players.

Generally, more difficult moves will come at the cost of move strength and time
taken. Difficult moves will take longer to evaluate and are less likely to result in
optimal moves, with all else equal.

For the purpose of this report, move difficulty will be treated as a constant. All
engines will be evaluated using the same techniques to ensure that they are accurately
compared to one another.
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3.4.1.3 Hardware Speed

Hardware speed is a measurement of the performance of the various components a
chess engine runs on. Performance is measured in terms of GHz, Cores, ms, RPM,
response time, and others.

An engine that uses higher performing hardware is generally expected to make
moves faster and more accurately than one using slower, weaker hardware.

For this report, most hardware speed will be treated as a constant and will not
change between tests. However, storage speed for memorized positions will be tested
in order to better understand how overall performance depends on .

3.4.1.4 Time Taken

Time taken is a measurement of the amount of time it takes for an engine to determine
the best move. On modern hardware, time taken is usually measured in either
seconds or minutes, but can also sometimes be taken in terms of hours or days.

Figure 3: Relative Elo vs. Seconds per Move for AlphaZero and Stockfish [11]

In standard chess games, time is allocated on either a per-turn basis, a per-game
basis, or a combination of the two. Typically, engines that are given more time to
search will be able to find stronger moves, with all other factors equal. Figure 3
illustrates this trade-off for the engines AlphaZero and Stockfish.

For the purpose of this report, an engine’s time will be used as an independent
variable. Multiple trials will be performed using different time settings in order to
determine the relevance of time to the results and how other variables depend on it.
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3.4.1.5 Memory Usage

Memory usage is the space on RAM and on disk used by an engine. For modern
chess applications, memory usage is considered in terms of Megabytes, Gigabytes, or
Terabytes.

Typically, the less memory a program has to keep track of important information,
the slower and less accurate its moves will be.

For the purpose of this report, disk space allocated to memorized information
will be used as an independent variable. Tests and trials will be performed to better
understand the influence of limited disk space on engine performance.

3.4.2 Elo Rating System

The Elo rating system is a mathematical model which attempts to approximate an
agent’s skill in a zero-sum game based on its performance in games against other
players. This system was originally developed by Arpad Elo in 1939 as a statistically
sound improvement to the existing Harkness system, which was prone to misrepresent
player strength under certain circumstances. Although the Elo rating system makes
a number of simplifying assumptions, its simplicity and general accuracy have made
it the most commonly accepted method of comparing chess players today.

Under the Elo rating system, a player’s skill is represented as a single number,
which is adjusted as they win or lose games. A player’s new rating after a match is
calculated using the following formula [10]:

Rnew = Rold +
K

2

(
W − L +

1

2

ΣiDi

C

)
(3)

Where Rold is the player’s old rating, W is the number of wins, L is the number
of losses, Di is the difference in rating between players, and C and K are tuning
constants (typically C = 200, K = 32). Larger K values allow faster rating changes
and are therefore used when a player’s rating is more uncertain.

The expected score of a player, EA with rating RA versus an opponent with a
rating RB can be calculated as follows [10]:

Rnew =
1

1 + 10(RB−RA)/400
(4)

For a 100-point Elo advantage, the more highly rated player is expected to score
64%. For a 200-point gap, the expected score increases to 76%.

In order to use this mathematical model to predict player outcomes and condense
player skill into a single number, a number of simplifying assumptions must be made:
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• Since performance can only be inferred from wins, losses, or draws, it is assumed
that the player who wins any given game performed at a higher skill level than
their opponent.

• Since a player may perform above or below his/her “true skill” in any single
game, it is assumed that a player’s performance is normally distributed around
his/her rating. Therefore, stronger players are expected to occasionally have
weak performances, and vise-versa.

Because more points are awarded for upset wins and upset losses, the Elo rating
system is self-correcting and generally statistically sound. A player who goes on a
lucky streak and ends up above his/her “skill level” will eventually fall back down
once his/her luck changes.

Despite its popularity and simplicity, the Elo rating system has a few weaknesses.
The system can often punish players whose “true skill” is below their current rating.
For these players, playing a rated game against any opponent is a losing proposition.
Likewise, savvy players can attempt to exploit the Elo rating system by targeting
players who they perceive to be overrated, and avoiding those who seem underrated.
Additionally, accurately determining a player’s rating typically requires a large sam-
ple of games, which can be problematic if a player is inactive or otherwise cannot
play a statistically significant number of games.

Because of its widespread acceptance in comparing human chess players, the Elo
rating system has become the de facto method used to compare engines. Although
it loses some nuance and precision, abstracting an engine’s ability to play well into a
single number makes comparisons between them much simpler. The issues presented
by the Elo rating system are largely overcome when applied to engines that can play
hundreds or thousands of games against each other.

Because of its usefulness when comparing engines, Elo rating estimates will be
used in this report’s analysis.

3.4.3 Likelihood of Superiority

Likelihood of superiority, often abbreviated as LOS, is a measurement of statistical
significance that attempts to estimate the probability that one player is more skilled
than another. LOS does not attempt to indicate how much more skilled a player is
their opponent, only the statistical likelihood of them being a stronger player based
on a particular set of results. LOS can also be understood in terms of the Elo rating
system discussed in 3.4.2 as a probability that a player’s Elo rating is at least one
point higher than their opponent’s.
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From a mathematical perspective, LOS can be approximated using the following
formula, developed by Remi Coulom and Kai Laskos in 2009 [6]:

LOS =
1

2

[
1 + erf

( wins− losses√
2(wins + losses)

) ]
(5)

Because White has a first-move advantage in chess, accurate usage of this formula
to calculate LOS requires that both players have played an equal number of games
as black and white. Failing to do so will bias this LOS calculation towards whichever
player played as White more. Additionally, this formula omits drawn games as a
simplifying assumption.

LOS is a very specialized measurement for comparing two engines or players
that appear roughly equal in skill. Because LOS is a statistical measurement of
probability, it is possible to quantitatively compare two engines that would otherwise
be within the Elo rating system’s margin of error.

In circumstances where two players are not equal in skill, however, LOS is not
typically a useful measurement and will only reiterate what is apparent from Elo
ratings.

Because of its usefulness when analyzing engines, especially those that are nearby
in skill level, LOS estimates will be used in this report’s analysis to determine which
results are statistically significant.

3.5 Chess Engine Communication Protocols

In order to test engines automatically, a common communication protocol for inter-
facing between engines or between a testing suite is required. Two of such protocols
are currently in use: the Universal Chess Interface and the Chess Engine Communi-
cation Protocol.

What follows is a general overview of each protocol and a brief analysis of their
pros and cons.

3.5.1 Chess Engine Communication Protocol

The Chess Engine Communication Protocol, also known as XBoard or WinBoard
(hence referred to as XBoard for brevity), was first developed in the 1990s by Frank
Quinsinsky as a method to connect chess programs absent of a GUI. The XBoard
protocol regulates chess engines using plaintext commands send over a program’s
standard input and output. The protocol was not centrally created, and grew over
time as an extension to GNU chess. As a result, the protocol contained “several bugs
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and deficiencies” but was nonetheless used for automatic chess engine communication
[3].

Figure 4: UML State Diagram of the XBoard Protocol by Alessandro Scotti [16]

As shown in Figure 4, XBoard is a stated protocol and requires that an engine
match its expected state to establish correct communication.

In 2009, Harm Geert Muller established a Version 2 of the protocol, which mod-
ernized the protocol and supported nonstandard chess varients.

3.5.2 Universal Chess Interface

The Universal Chess Interface, or UCI, was released in November 2000 by Rudolf
Huber and Stefan Meyer-Kahlen. UCI was designed from the ground-up to be a chess
engine communication protocol, and has become the de facto modern replacement
for XBoard.

Much like the XBoard protocol, UCI regulates a chess game using commands
sent over an engine’s standard input and output using plaintext commands. UCI
also supports non-standard chess variants and allows the customization of engine
parameters, like the modern revision to XBoard [5].
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Unlike XBoard, UCI is a stateless protocol. Because of this, UCI is regarded as
simpler to implement and less prone to bugs. Some developers have criticized UCI’s
stateless design, but by and large UCI has become the predominantly supported
protocol amongst newer chess engines.

UCI options are set using the following syntax, in plaintext communication. The
most commonly used arguments are tablebase locations and hash sizes (setting them
is discussed in Sections B.5 and B.6):

setoption name <optionname> value <optionvalue>

Because of its wider support and more common adoption, the engines and soft-
ware used in this report will all conform to the UCI protocol to ensure cross-
functionality and cross-compatibility.
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4 Analysis

4.1 Goals of Analysis

This report seeks to examine the importance of memorizing information in computer
chess. By carefully analyzing the positions and situations where memorized positions
have a small, large, or negligible impact, engine developers and users can make more
informed design decisions.

The main questions this analysis seeks to examine and provide an answer for are
as follows:

• What performance gains/losses can be expected when using memorized posi-
tions? Where do they come from?

• Will memorized positions give a larger performance boost to stronger or weaker
engines?

• What effect does the amount of time an engine is given have on the usefulness
of memorized positions?

• Are memorized positions required to compete at the highest level of chess
engine performance?

• What effect does tablebase completeness have on performance? Are entire
tablebases required for an engine to gain the benefits of tablebases?

• How important is the access speed of the medium that the memorized infor-
mation is stored on? Will slower mediums negatively impact performance, and
if so, by how much?

Answering these questions will help to better outline situations where the gains
for using memorized positions is worth the drawbacks associated with them.

The approach, tools, and methods used to answer these questions are examined
below.

4.2 Overall Approach

Because of the massive complexity involved in analyzing chess positions (discussed
in Section 3.1), the semi-random nature of engines, and the wide variation between
different strategies and techniques, it is difficult if not impossible to conclusively
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solve the above questions using pure theory. As a result, the questions proposed in
Section 4.1 will be examined by empirically testing chess engines as they respond to
changes in memorized information.

By carefully conducting and examining experiments whereby an engine’s knowl-
edge or environment is changed, it is possible to gain quantitative information about
the stated goals and the usefulness of certain memorized information techniques.
The exact tools and methods by which these experiments will be run are discussed
below.

4.3 Tools Used

4.3.1 Strategic Test Suite

The Strategic Test Suite, or STS, is a collection of 1500 chess positions and expected
moves used to test and debug engines (See Section 3.3.2 for more information on how
this is done). The STS was originally constructed by Dann Corbit and Swaminathan
Natarajan and covers a variety of middlegame topics.

The STS is one of the largest testing suites available and its solutions have been
verified by top engines and players with hours of thinking time [7].

In 2015, Ferdinand Mosca published an analysis tool named STS Ratings v3,
which can be used to automatically test and and evaluate an engine using the Strate-
gic Test Suite.

Because of its large sample size, ease of use, relatively fast runtime, and accuracy,
this analysis will use STS Ratings V3 to provide a quick estimate of an engine’s
midgame playing strength.

4.3.2 Cutechess-CLI

Cutechess-CLI is an open-source command-line interfaced tool that was first pub-
lished by Arto Jonsson in 2009. It can be used to organize games, matches, or
tournaments between two or more engines and record the results.

Cutechess-CLI supports the two most commonly used chess engine protocols, the
Chess Engine Communication Protocol and the Universal Chess Interface, which are
discussed further in Section 3.5. As a result, it is compatible with most modern
engines when properly configured. Cutechess-CLI also supports a variety of cus-
tomization opens and engine options, including chess variants and automatic output
of results to .PGN files.

Because of its overall usefulness and flexibility, cutechess-CLI v1.0.0 will be used
in this analysis in order to organize, execute, and record games between engines that
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are being tested.

4.3.3 Bayeselo

Bayeselo is a freeware command-line tool developed by Rémi Coulom in 2005. Bayeselo
takes a sample of games between players and estimates the player’s relative Elo and
likelihood of superiority (discussed in Sections 3.4.2 and 3.4.3 respectively) which
can be used to further analyze results.

Bayeselo has a number of features that make it an ideal analysis tool. Bayeselo
accounts for chess’s first-move advantage and behaves correctly when players have
widely varying ratings. Additionally, Bayeselo has built-in support for chess game
result files, .PGN, which makes it an ideal choice for analyzing chess games.

Because of its accuracy, LOS calculation, and ability to extract wins, losses, and
players from .PGN files, Bayeselo will be used in this analysis. Bayeselo will be used
in order to more precisely examine the differences between engine strength under
different circumstances.

4.3.4 PGN-Extract

PGN-Extract is an open-source command-line tool developed by David J. Barnes.
PGN-Extract allows for the manipulation and analysis of chess game result files
(.PGN files). This manipulation can be done automatically using in game factors
like game length or opening.

This analysis will use PGN-Extract v17-55 to split game results based on game
length and number of pieces remaining. By analyzing games separately across these
variables, it will be possible to better understand when and how engines make use
of endgame memorized positions.

4.3.5 PolyGlot

PolyGlot is an open-source command-line interfaced tool developed by Fabien Letouzey.
PolyGlot is an opening book manager and an adapter which allows communication
between tools that rely on the normally incompatible Universal Chess Interface and
Chess Engine Communication Protocols (which are discussed in more detail in Sec-
tion 3.5).

PolyGlot supports engine configuration options, which are provided to it using a
polygot.ini file. This feature allows UCI engines to be configured using the command
line by invoking PolyGlot in the following way:

polygot polyglot.ini [-ec engine] [-ed enginedirectory]
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This analysis will make use of PolyGlot v2.03 in order to translate between
XBoard and UCI engines and to configure UCI engines using command-line argu-
ments.

4.3.6 Nalimov Tablebases

The Nalimov Tablebases are the most commonly used 3-6 piece tablebases (discussed
in further detail in Section 3.2.3.2). 5-piece Nalimov bases were completed in 1998 by
Eugene Nalimov and offered many advantages in compression over other tablebases
of the time. As a result of their early completion and efficiency, Nalimov tablebases
have become the most widely supported engine tablebase format.

This analysis will use and test 5-piece Nalimov tablebases for engines that support
them.

4.3.7 Sygyzy Tablebases

The Sygyzy tablebases, completed in 2013 by Ronald de Man, are also exhaustive
endgame references for boards with 3-6 pieces. As a result of more modern compres-
sion techniques, the Sygyzy tablebases are smaller than the previously used Nalimov
ones by a factor of around eight times (see Section 3.2.3.2 for more information
on their sizes). As a result, some modern engines have migrated to using Sygyzy
tablebases.

This analysis will use and test 5-piece Sygyzy tablebases where possible for en-
gines that support them.

4.4 Overall Method

In order to answer the questions proposed in Section 4.1, the following three tests
will be performed on an engine and a version of it that has been altered in some way.
These tests are described in further detail in their individual sections: 4.5, 4.6, and
4.7 respectively:

• Time Control - An engine with no tablebase will play against an engine with
a tablebase, at two different time controls.

• Tablebase Size - An engine with a complete 5-piece tablebase will be compared
to one with a smaller partial tablebase.

• Drive Speed - An engine with its tablebase stored on an solid-state drive will
play an engine with its tablebase stored on a traditional hard drive.
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Each of these tests will be performed on a strong engine of around 3400 Elo, a
medium-strength engine of around 3000 Elo, and a weaker engine of around 2600 Elo
in order to understand how the results vary with an engine’s overall playing strength.

Each test will involve STS suite comparisons and/or several hundred games engine
games. The engine games played will be roughly split up as follows, to avoid biasing
the results towards one or two engines:

• 50% head-to-head games between an engine and its modified counterpart.

• 25% games between the original engine and unmodified engines of similar skill,
to establish a baseline for comparison.

• 25% games between the modified engine and unmodified engines of similar skill,
which will be compared with its unmodified results.

These results will be broken down into games that lasted longer than 50 turns
(per player) and games that lasted longer than 80 turns (per player) to better un-
derstand tablebase influence. The percentage of games that fall into each of these
categories will also be given, as this information could be relevant for determining
engine strength/ability with tablebases, as well as sample size. Games that before
turn 50 are less likely to have been influenced by the presence of tablebases, whereas
games that end after this point are much more likely to have been calculated using
memorized tablebase information.

All results will be carefully examined using Bayeselo to estimate differences in
playing strength and likelihood of superiorities between engine versions.

4.4.1 Constants

Except when otherwise noted, the following parameters will remain constant through-
out testing:

• Memorized information will be stored on a 120GB Intel 530 SSD with a read
latency of 80 microseconds. When a HDD is used, it will be a 7200 RPM WD
Blue drive with a read latency of 6 Gb/s.

• An Intel Core i5 4670k CPU @ 3.40GHz will be used for all testing.

• A single thread will be given to each engine during testing.

• 10 seconds will be given to each engine for each game, to allow for more games
to be played, unless otherwise stated.
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• 256MB of DDR3 memory will be allocated for engine hashing using the UCI
parameter “Hash=256”.

• 128MB of DDR3 memory will be used for tablebase hashing where possible
using the UCI paremter “NalimovCache=128”.

• Default engine settings will be used when changes are not explicitly stated.

4.4.2 Engines Tested

The engines used in this analysis are shown in figures 3, 4 and 5. The engines in
bold will be tested with and without tablebases, while those not in bold will be used
as reference comparison engines.

Name Tablebase Format CCRL 40/40 Rating Supported Protocol(s)
Aristarch 4.50 - 2597 XBoard/UCI
Amyan 1.72 - 2591 XBoard/UCI

Muse - 2591 XBoard/UCI
N2 0.4 Nalimov 2591 UCI

Table 3: Weaker engines that will be used and their CCRL 40/40 ratings [8]

Name Tablebase Format CCRL 40/40 Rating Supported Protocol(s)
Wasp 2.6 - 3047 UCI
iCE 3.0 - 3042 UCI

Spike 1.4 Nalimov 3021 XBoard/UCI
Spark 1.0 - 2973 UCI

Table 4: Medium-strength engines that will be used during analysis and their CCRL
40/40 ratings [8]

Name Tablebase Format CCRL 40/40 Rating Supported Protocol(s)
Stockfish 9 Sygyzy 3444 UCI
Komodo 9 - 3315 UCI

Houdini 1.5a - 3239 UCI

Table 5: Strong engines that will be used and their CCRL 40/40 ratings [8]
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4.5 Test 1: Time Control

4.5.1 Test-Specific Goals

This test will analyze the impact of time on tablebase usefulness. It will compare
performance gains when using tablebases during 10 second games to performance
gains when using tablebases during 50 second games.

By better understanding the relationship between time and tablebase usefulness,
engine developers and users will be able to make more informed choices about when
to use tablebases. If tablebase performance was found to be more useful during
shorter games, for instance, a user who wanted his/her engine to excel during these
games would be much more inclined to use memorized information in his/her engine.

4.5.2 Variables

The following variables will be examined during this test:

• Time Control - Performance gains/losses for using a tablebase during short 10
second games will be compared to performance gains/losses during longer 50
second games.

• Engine Strength - Tests will be run on all three strengths of engine to find any
correlations between engine strength and how time control affects performance.

4.5.3 Method

The following process will then be repeated for all three engine strength levels:

• 250 head-to-head games will be played between the engine with no tablebase
and the same engine with a complete tablebase at a 10-seconds per-game, per-
side time control.

• 100 additional head-to-head games will be played between the same engines at
a 50 seconds per-game, per-side time control.

4.5.4 Results

4.5.4.1 Weak Engine

The results of the 250 head-to-head games played between weak engines with a 10-
second time control are shown in Table 6. Tablebase use appears to significantly
improve play, especially in the endgame.
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Player Opponent Filter % Games W L D Score Est. Elo LOS
N2 N2 NoTB - 100% 88 71 91 53% +22 89%
N2 N2 NoTB 50 moves 96% 86 70 84 53% +22 87%
N2 N2 NoTB 80 moves 54.4% 48 29 59 57% +46 97%

Table 6: Results of 250 weak engine games played at 10s

The results of 100 head-to-head games between N2 using tablebases and its no-
tablebase counterpart are shown in Table 7. Tablebase use does not appear to in-
crease playing strength at this longer time control.

Player Opponent Filter % Games W L D Score Est. Elo LOS
N2 N2 NoTB - 100% 14 16 70 49% -6 41%
N2 N2 NoTB 50 moves 94% 14 16 65 48% -8 36%
N2 N2 NoTB 80 moves 64% 7 12 45 46% -18 27%

Table 7: Results of 100 weak engine games played at 50s

4.5.4.2 Medium-Strength Engine

The results of 250 head-to-head games played between medium-strength engines with
a 10-second time control are shown in Table 8. Tablebase use appears to significantly
strengthen overall play.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Spike Spike NoTB - 100% 86 68 96 54% +24 90%
Spike Spike NoTB 50 moves 83.2% 83 58 67 56% +40 97%
Spike Spike NoTB 80 moves 32% 30 19 31 57% +40 89%

Table 8: Results of 250 medium-strength engine games played at 10s

The results of 100 head-to-head games between Spike using tablebases and its
no-tablebase counterpart are shown in Table 9. Tablebase use appears to increase
playing strength, albeit to a smaller degree.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Spike Spike NoTB - 100% 15 13 72 51% +6 58%
Spike Spike NoTB 50 moves 73% 15 13 45 51% +4 55%
Spike Spike NoTB 80 moves 25% 5 5 15 50% -2 47%

Table 9: Results of 100 medium-strength engine games played at 50s
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4.5.4.3 Strong Engine

The results of 250 head-to-head games played between strong engines with a 10-
second time control are shown in Table 10. Tablebase use appears to increase playing
strength, although not as significantly as it does for weaker engines.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Stockfish Stockfish NoTB - 100% 31 21 198 52% +10 73%
Stockfish Stockfish NoTB 50 moves 88.4% 31 21 159 52% +12 77%
Stockfish Stockfish NoTB 80 moves 30.4% 16 10 25 54% +18 73%

Table 10: Results of 250 strong engine games played at 10s

The results of 100 head-to-head games between Stockfish using tablebases and its
no-tablebase counterpart are shown in Table 11. Tablebase use appears to increase
playing strength at a longer time control.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Stockfish Stockfish NoTB - 100% 12 4 84 54% +18 76%
Stockfish Stockfish NoTB 50 moves 89% 12 4 73 54% +20 76%
Stockfish Stockfish NoTB 80 moves 44% 9 4 31 56% +20 70%

Table 11: Results of 100 strong engine games played at 50s

4.5.5 Analysis of Results

From the results found in Section 4.5.4, the following conclusions can be made about
the variables outlined in Section 4.5.2:

• Tablebase use has a significant performance benefit across all tested levels of
play when using a short time control. This gain can be expected to be approx-
imately +20 Elo points for engines similar to those tested.

• In longer games, Tablebase use tends to help stronger engines more. Stockfish
saw an 18-point gain on increased time settings, whereas Spike and N2 had
changes of +6 and -6, respectively.

As a result of these statements, the following conclusions can be drawn about
engine use and development:
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• Tablebase use is important for optimal performance in short time control
games. An engine that does not use them can expect to perform approxi-
mately 20 Elo points worse than an engine that does.

• Tablebase use only becomes important at higher playing strengths in long time
control games.

4.6 Test 2: Tablebase Size

4.6.1 Test-Specific Goals

This test will analyze the relevance of tablebase size to engine performance. It
will compare performance obtained when using complete tablebases to performance
obtained using partial ones.

By determining the cost of using incomplete tablebases, engine devlopers and
users will be able to make more informed choices about which tablebases to use.
For example, if tests found that some tablebase files did not contribute noticably to
engine performance, a user with only 100MB of memory on his/her phone could use
only specific tablebases to maximize engine performance given his/her constraints.

4.6.2 Variables

The following variables will be examined during this test:

• Tablebase Completeness - An engine using complete 5-piece tablebases will be
compared to an engine using partial 5-piece tablebases to analyze the impact
of tablebase completeness on engine performance.

• Engine Strength - Tests will be run on all three strengths of engine to find any
correlations between engine strength and how tablebase completeness affects
performance.

4.6.3 Method

Sections B.2 and B.3 describe the process by which “trimmed” (slightly reduced
tablebases with most functionality) and “stripped” (significantly reduced tablebases
with only vital functionality remaining) tablebases will be obtained. The total sizes
of these tablebases are shown in figure 12.
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Name Full Size Trimmed Size Stripped Size
Nalimov 5-Piece 7.05 GB 5.48 GB 481 MB
Sygyzy 5-Piece 938 MB 784 MB 93.3 MB

Table 12: Sizes of trimmed and stripped tablebases

The following process will then be repeated for all three engine strength levels in
order to approximate the usefulness of “trimmed” and “stripped” tablebases:

• An engine with a full tablebase, an engine with a trimmed tablebase, and an
engine with a stripped tablebase will be analyzed using the Strategic Test Suite
three times, with their median score recorded.

• 250 head-to-head games will be played between the engine with a full tablebase
and the same engine with a trimmed tablebase.

• 250 additional head-to-head games will be played between the engine with a
full tablebase and the same engine with a stripped tablebase

4.6.4 Results

4.6.4.1 Weak Engine

STS results for the weak engine, N2, are shown below in Table 13:

Configuration NumPos BestCount Score Score(%) Rating
N2 1500 511 6974 46.5% 1827

N2 TrimmedTB 1500 510 6964 46.4% 1825
N2 StrippedTB 1500 511 6974 46.5% 1827

Table 13: STS comparison between N2, N2 TrimmedTB, and N2 StrippedTB

The results of the 250 head-to-head games played between a weak engine using its
full and trimmed tablebases are shown in Table 14. The trimmed tablebase appears
to affect performance erratically, if at all.

Player Opponent Filter % Games W L D Score Est. Elo LOS
N2 N2 TrimmedTB - 100% 87 85 78 50% +2 54%
N2 N2 TrimmedTB 50 moves 96% 87 83 70 51% +6 61%
N2 N2 TrimmedTB 80 moves 46.4% 35 44 37 46% -20 22%

Table 14: 250 weak engine games played between complete and trimmed tablebases
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Table 15 shows the results of the 250 head-to-head games played between a weak
engine using its full and stripped tablebases. Interestingly, this test seems to indicate
that the stripped tablebase might improve play, if it has any impact.

Player Opponent Filter % Games W L D Score Est. Elo LOS
N2 N2 StrippedTB - 100% 78 91 81 47% -18 17%
N2 N2 StrippedTB 50 moves 95.2% 77 86 75 48% -12 24%
N2 N2 StrippedTB 80 moves 53.6% 44 42 48 51% +4 56%

Table 15: 250 weak engine games played between complete and stripped tablebases

4.6.4.2 Medium-Strength Engine

STS results for the medium-strength engine, Spike, are shown below in Table 16:

Configuration NumPos BestCount Score Score(%) Rating
Spike 1500 814 9941 66.3% 2708

Spike TrimmedTB 1500 807 9877 65.8% 2689
Spike StrippedTB 1500 816 9953 66.4% 2711

Table 16: STS comparison between Spike, Spike TrimmedTB, and Spike StrippedTB

The results of the 250 head-to-head games played between the medium-strength
engine using its full and trimmed tablebases are shown in Table 17. This test shows
a small performance boost for using trimmed tablebases.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Spike Spike TrimTB - 100% 67 76 107 48% -12 26%
Spike Spike TrimTB 50 moves 81.6% 59 70 75 47% -20 16%
Spike Spike TrimTB 80 moves 29.2% 20 21 32 49% -8 41%

Table 17: 250 medium-strength engine games played between complete and trimmed
tablebases

Table 18 shows the results of 250 head-to-head games played between the medium-
strength test engine using its full and stripped tablebases. This test indicates a small
performance boost for using full tablebases.

40



Player Opponent Filter % Games W L D Score Est. Elo LOS
Spike Spike StripTB - 100% 76 66 108 52% +12 76%
Spike Spike StripTB 50 moves 83.6% 67 58 84 52% +14 75%
Spike Spike StripTB 80 moves 28.8% 19 20 33 49% -4 45%

Table 18: 250 medium-strength engine games played between complete and stripped
tablebases

4.6.4.3 Strong Engine

STS results for the strong engine, Stockfish, are shown below in Table 19:

Configuration NumPos BestCount Score Score(%) Rating
Stockfish 1500 1062 12036 80.2% 3330

Stockfish TrimmedTB 1500 1059 12034 80.2% 3329
Stockfish StrippedTB 1500 1061 12043 80.3% 3332

Table 19: STS comparison between Stockfish, Stockfish TrimmedTB, and Stock-
fish StrippedTB

The results of the 250 head-to-head games played between Stockfish using its full
and trimmed tablebases are shown in Table 20. This test shows no major difference
between the tablebases.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Stockfish Stockfish TrimTB - 100% 23 24 205 49% -2 42%
Stockfish Stockfish TrimTB 50 moves 81.6% 20 24 160 49% -4 42%
Stockfish Stockfish TrimTB 80 moves 33.2% 14 14 55 50% +0 50%

Table 20: 250 strong engine games played between complete and trimmed tablebases

Table 21 shows the results of 250 head-to-head games played between the strong
test engine, Stockfish, using its full and stripped tablebases. This test shows a
noticable improvement in performance when using the full tablebases.

Player Opponent Filter % Games W L D Score Est. Elo LOS
Stockfish Stockfish StripTB - 100% 26 15 209 52% +10 75%
Stockfish Stockfish StripTB 50 moves 81.2% 26 15 162 53% +12 76%
Stockfish Stockfish StripTB 80 moves 32.8% 20 9 53 57% +34 88%

Table 21: 250 strong engine games played between complete and stripped tablebases
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4.6.5 Analysis of Results

From the results found in Section 4.6.4, the following conclusions can be made about
the variables outlined in Section 4.6.2:

• The tablebase files removed in the trimming/stripping process did not impact
STS scores.

• Performance remained roughly the same between trimmed and untrimmed
tablebases across all engine strengths

• Performance took a small hit for using stripped tablebases, especially in the
stronger engines.

As a result of these statements, the following conclusions can be drawn about
engine use and development:

• When solving tactics puzzles, less tablebase information can be used with little
performance loss, if any.

• Tablebases can be trimmed or stripped to use less disk space while maintaining
their performance benefits.

4.7 Test 3: Drive Speed

4.7.1 Test-Specific Goals

This test will analyze the relevance of drive speed to tablebase performance. It will
compare performance obtained when using tablebases on solid-state memory versus
performance on slower HDD memory.

By determining the cost of using an engine on slower memory, engine developers
and users will be able to make more informed decisions on when and where to use
tablebases. For instance, if tests found a negligable difference between SSD and
HDD tablebase speed, a user could potentially obtain a performance benefit from
downloading larger tablebases for use on his/her slower but less expensive memory.

4.7.2 Variables

The following variables will be examined during this test:
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• Drive Speed - An engine using tablebases stored on a SSD will be compared to
the same engine using tablebases stored on a HDD to better understand how
drive speed impacts the performance of memorized positions.

• Engine Strength - Tests will be run on all three strengths of engine to find any
correlations between engine strength and how drive speed affects performance.

4.7.3 Method

The following process will be repeated for all three engine strength levels:

• The engine using SSD-using engine and its HDD-using counterpart will be
tested using the Strategic Test Suite three times. The median result will be
used in analysis.

• 250 head-to-head games will be played between the SSD-using engine and its
HDD-using counterpart.

• 120 games will be played between the SSD-using engine and the similar-strength
opponents outlined in Tables 3-5.

• 120 games will be played between the HDD-using counterpart and its similar-
strength opponents.

4.7.4 Results

4.7.4.1 Weak Engine

STS results for the weak engine, N2, are shown below in Table 22:

Configuration NumPos BestCount Score Score(%) Rating
N2 1500 511 6974 46.5% 1827

N2 SlowTB 1500 511 6969 46.5% 1826

Table 22: STS comparison between N2 and N2 SlowTB

The results of the 250 head-to-head games played between a weak engine using
SSD and HDD tablebases are shown in Table 23. The faster tablebase access appears
to noticeably improve overall play in this strength bracket.
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Player Opponent Filter % Games W L D Score Est. Elo LOS
N2 N2 SlowTB - 100% 98 73 79 55% +34 96%
N2 N2 SlowTB 50 moves 96% 96 73 71 55% +32 95%
N2 N2 SlowTB 80 moves 49.6% 48 37 39 54% +30 88%

Table 23: 250 weak engine games played between SSD and HDD tablebases

Table 24 shows the results of the 240 games played between N2 and its similar
engines. These results seem to indicate a performance loss when using the faster
tablebases.

Player Opponent W L D Score Est. Elo LOS
N2 Aristarch 19 13 8 56% - -
N2 Amyan 20 5 15 69% - -
N2 Muse 12 20 8 40% - -

N2 SlowTB Aristarch 14 10 16 55% - -
N2 SlowTB Amyan 20 11 9 61% - -
N2 SlowTB Muse 19 9 12 62% - -

N2 N2 SlowTB - - - - -45 11%

Table 24: 240 games played between N2 variants and their weak opponents

4.7.4.2 Medium-Strength Engine

STS results for the medium-strength engine, Spike, are shown below in Table 25:

Configuration NumPos BestCount Score Score(%) Rating
Spike 1500 814 9941 66.3% 2708

Spike SlowTB 1500 811 9889 65.9% 2692

Table 25: STS comparison between Spike and Spike SlowTB

Table 26 shows the results of 250 head-to-head games played between a medium-
strength engine using SSD and HDD tablebases. The faster tablebase access appears
to have a significant effect on overall playing strength in most of the games.
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Player Opponent Filter % Games W L D Score Est. Elo LOS
Spike Spike SlowTB - 100% 87 56 107 56% +38 98%
Spike Spike SlowTB 50 moves 85.2% 80 52 81 57% +42 98%
Spike Spike SlowTB 80 moves 30.4% 24 21 31 52% +10 61%

Table 26: 250 medium-strength engine games played between SSD and HDD table-
bases

The results of the 240-game test between Spike and similar engines are shown in
Table 27 below. In this test, the increase in tablebase access time seems to have had
a negligable impact on Spike’s performance.

Player Opponent W L D Score Est. Elo LOS
Spike Wasp 4 22 14 28% - -
Spike iCE 6 25 9 26% - -
Spike Spark 38 0 2 95% - -

Spike SlowTB Wasp 6 22 12 30% - -
Spike SlowTB iCE 4 25 11 24% - -
Spike SlowTB Spark 40 0 0 100% - -

Spike Spike SlowTB - - - - -15 37%

Table 27: 240 games played between Spike variants and their medium-strength op-
ponents

4.7.4.3 Strong Engine

STS results for the strong engine, Stockfish, are shown below in Table 28:

Configuration NumPos BestCount Score Score(%) Rating
Stockfish 1500 1062 12036 80.2% 3330

Stockfish SlowTB 1500 1061 12014 80.1% 3323

Table 28: STS comparison between Stockfish and Stockfish SlowTB

Table 29 shows the results of 250 head-to-head games played between a strong
engine using SSD and HDD tablebases. The difference in tablebase access time seems
to have an exceedingly small effect on Stockfish’s performance, if any.
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Player Opponent Filter % Games W L D Score Est. Elo LOS
Stockfish Stockfish SlowTB - 100% 27 27 196 50% +0 51%
Stockfish Stockfish SlowTB 50 moves 82% 27 27 151 50% +0 51%
Stockfish Stockfish SlowTB 80 moves 39.6% 18 16 40 51% +4 54%

Table 29: 250 strong engine games played between SSD and HDD tablebases

The results of the 240-game test between Stockfish and similar engines are shown
in Table 30 below. In this test, the increase in tablebase access time seems to have
had a strong impact on Stockfish’s performance.

Player Opponent W L D Score Est. Elo LOS
Stockfish Komodo 35 1 24 78% - -
Stockfish Houdini 56 1 3 96% - -

Stockfish SlowTB Komodo 29 8 23 68% - -
Stockfish SlowTB Houdini 47 3 10 87% - -

Stockfish Stockfish SlowTB - - - - +103 98%

Table 30: 240 games played between Stockfish variants and their strong opponents

4.7.5 Analysis of Results

From the results found in Section 4.7.4, the following conclusions can be made about
the variables outlined in Section 4.7.2:

• Tablebase access speed has a slight overall correlation with engine performance
in real games. Tablebase speed has little to no impact on solving the Strategic
Test Suite.

• Engine strength does not appear to have any relationship with tablebase ac-
cess speed and relative performance gains/losses. Performance gains/losses are
situational, if relevant.

As a result of these statements, the following conclusions can be drawn about
engine use and development:

• When solving tactics puzzles, tablebases can be stored on slower mediums with
little performance loss, if any.

• Tablebase speed has a highly situational effect on engine performance, and
varies based on engine and opponent.
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5 Conclusion

This report sought to gain quantitative insight on the pros and cons of using massive
tables of memorized data in a difficult, large search-space game like chess. To this
end, the analysis measured performance differences among chess engines over multiple
variables.

In order to better understand the importance and impact of memorized positions
in modern chess engines, each of the following factors was analyzed in depth:

• Influence of time control on tablebase importance

• Relationship between tablebase size and tablebase performance

• Importance of tablebase access time to engine performance

Through this analysis, the following conclusions were demonstrated and observed:

• Tablebase use is important for optimal performance in short time control
games. An engine that does not use them can expect to perform approxi-
mately 20 Elo points worse than an engine that does.

• Tablebase use only becomes important at higher playing strengths in long time
control games.

• When solving tactics puzzles, tablebases can be stored on slower mediums with
little performance loss, if any.

• Tablebase speed has a highly situational effect on engine performance, and
varies based on engine and opponent.

• When solving tactics puzzles, less tablebase information can be used with little
performance loss, if any.

• Tablebases can be trimmed or stripped to use less disk space while maintaining
their performance benefits.

These discovered results can be used to better tune and customize chess engines
to meet the needs of specific applications. The results found can inform researchers,
engine programmers, and engine users in the future. Although this information
is relatively specific to chess, the techniques, tactics used, and general principles
discovered can be applied to many other complex topics.
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5.1 Future Work

Opening Books This report focused heavily on endgame tablebases. Further
analysis can be done on the importance of opening books in modern strong and
weak engines.

Deeper Testing on a Per-Engine Basis This report used a wide approach to
engine testing in order to gain insight about engine trends. Future work could look
very closely at a single engine’s source code to discover the circumstances in which
memorized positions have value.
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B Appendix

B.1 Tablebase File Notation

Tablebase files are usually organized in the following format:
K<piece><piece><...>[v]K<piece><...>

With piece being replaced by a piece’s letter and a v sometimes being added for
clarity.

For example, a tablebase file containing information about a king and two pawns
versus a lone king would be named similarly to:

KPPvK.rtbz

B.2 Trimming 5-Piece Tablebases

The goal of creating a “trimmed” 5-piece tablebase is to remove completely super-
fluous endgames that do not contribute to engine performance in order to save some
drive space. The tablebases that will be trimmed are those that are either exceedingly
unlikely to occur in a real game or those that are trivial to win for any competent
player.

To this end, the following tablebase files will be removed to create a “trimmed”
tablebase file (reference Section B.1 for information on what these labels mean):

• KBBB versus K - An endgame with 3 bishops of the same color is exceedingly
unlikely to ever occur between two players trying to win, as it requires under-
promotion of a pawn.

• KNNN versus K - Likewise, an endgame with 3 knights of the same color is
unlikely to ever occur.

• KQQ versus anything - This matchup is generally trivial to win or calculate
for the side with two queens, even against a single queen.

• KQR versus anything - This matchup is also trivial to calculate. Even against
a queen this is an easy win for the Queen + Rook side.

• KQN versus anything except another queen - Against any piece lower than a
queen, this matchup is an easy win.

• KQB versus anything except another queen - See above.

• KRR versus anything except a queen - See above.
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This process results in a size reduction of roughly 20%. The ramifications of these
reductions are analyzed and discussed in Section 4.6.

B.3 Stripping 5-Piece Tablebases

The goal of creating a “stripped” 5-piece tablebase is to remove all but the most
common and useful 5-piece endgames to significantly reduce tablebase size while
maintaining some of the benefits of tablebases.

To this end, the following 5-piece tablebase files will be kept from a “trimmed”
tablebase in order to create a “stripped” tablebase file (reference Section B.1 for
information on what these labels mean). All other 5-piece files will be discarded:

• KQP versus KQ - This matchup is difficult to play correctly and easily be
drawn.

• KRP versus KR - Same as above.

• KPP versus KP - Same as above.

• KPP versus KR - This matchup can sometimes be won or drawn by the side
with two pawns using proper planning.

• KRB versus KR - This matchup is usually a draw if played correctly, but
tablebase use can lead to surprising wins.

• KRN versus KR - Same as above.

“Stripping” a tablebase as described results in a size reduction of roughly 90%.
The ramifications of this massive reduction is analyzed and discussed in Section 4.6.

B.4 Using PGN-Extract

Using PGN-Extract to output the games which lasted for X or less moves from in.pgn

to out.pgn is done as follows. This is done using a .bat file and is repeated for 50
and 80 moves:

pgn-extract -blX --output out.pgn in.pgn
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B.5 Using Cutechess CLI

Cutechess CLI is used to organize games played between two or more engines. For
this analysis, it was typically called using a .bat file as follows, with some slight
modification based on the specific test:

Figure 5: The .bat file used to run Cutechess CLI

• -engine - indcates that following parameters describes a single engine. Two
uses of this command are used to set up the engines

• cmd= - indicates the path to an engine’s executable

• name= - the name an engine will be given in the output file

• option.OPTIONNAME= - sets an engine’s option to the specified value. This is
used to set up tablebases and hash size

• -each - indicates that following parameters describe both engines

• proto= - the protocol this engine uses

• tc= - the time control this engine will use

• -rounds - the number of games to play

• -pgnout - the output file for game results

• -concurrency - the number of games that can be played at once via multi-
threading

B.6 Using STS With Engine Options

PolyGlot is used in order to properly configure engines that are being run by the
Strategic Test Suite. In this process, STS will run PolyGlot, which will properly
configure and then run the appropriate engine.

The .bat file used to run PolyGlot using the Strategic Test Suite is as follows,
where sts.epd contains the tests:
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STS_Rating_v3 -f "sts.epd" -e "polyglot pg.ini" --proto uci -h 256 --getrating

The pg.ini is a PolyGlot initialization file and contains information about which
engine to run and which settings to use. A standard one is shown below:

Figure 6: A simple PolyGlot initialization file

B.7 Testing to Ensure Tablebases are Properly Configured

Unless an engine has a logging feature, it’s difficult to tell when endgame tablebases
are correctly loaded. There is no universally-supported way for an engine to inform
a user of improper tablebase configuration. Because tablebase use is central to this
project, the following test is used with all new engines and tablebases to ensure they
had been properly configured and were working as intended:
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Figure 7: The tablebase test position. Ke4 leads to a draw in 15 moves, but all other
positions lead to Black winning

The position shown above was used to test that engines were correctly accessing
the 5-piece tablebases. When played according to a tablebase, Ke4 is the only good
move. When an engine tries to play this position without a tablebase, however,
it typically choses Ke5. As a result, a mis-configured engine can be immediately
detected.

This test was automated using Cutechess CLI using a .bat file with the following
one-line command. Refer to Section B.5 for more information about using Cutechess:

Figure 8: The .bat file used to execute the cutechess tablebase test. checkTB.pgn
contains the position to test

This command gives TestEngine1 the path to the tablebases, but does not give
it to TestEngine2. Cutechess plays the same position from both sides and records
the results. If the tablebases are correctly configured, TestEngine1 will tie as White
(making the Ke4 move discussed above). If the tablebases are incorrectly configured,
TestEngine1 will lose as White (making the mistake move Ke5).
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Figure 9: An output file of a successful test

The above picture shows the beginning of an output file after proper configuration.
Note the tied result of ”1/2-1/2” and the first move of Ke4.

B.8 Using Bayeselo

Information about W/L/D, Elo, and LOS were calculated using the following Bayeselo
commands:

readpgn input.pgn

This command reads player names and game records out of a Portable Game
Notation (.PGN) file.

The elo command opens Bayeselo’s Elo-estimation interface.
The mm command will then compute maximium likelihood Elo ratings from the

given data and print the amount of time it took.
The exactdist command then computes Elo intervals assuming exact opponent

Elo ratings.
The ratings command then prints out a table of all players and their relative

ratings.
The los command then prints a likelihood-of-superiority matrix, which can be

used find an engine’s LOS with any other one analyzed.
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B.9 Glossary

50-Move Rule A player may claim a draw if no pawn movement or capture has
been made in the last 50 moves (50 moves for each player). Some endgames have
forced checkmate sequences that take more than 50 moves and are thus counted as
draws due to this rule.

Solid-State Drive A solid-state drive is a nonvolatile memory that has a faster
access time and lower latency than traditional platter-based hard disk drives. Be-
cause of this, solid-state drives are often recommended by engine developers and
other computer users trying to get the fastest performance out of large, long-term
memories.

B.10 Full Code

Note that these files refer to file locations as they were set up on my machine. This
code could require modification to work on machines where the files are located in
different places.
extract50.bat:

pgn−e x t r a c t −bl50 −−output match50 . pgn in . pgn

extract80.bat:

pgn−e x t r a c t −bl80 −−output match80 . pgn in . pgn

RunSTSRating v3.bat:

STS Rating v3 −f ”STS1−STS15 LAN . epd” −e ” p o l y g l o t p o l y g l o t .
i n i ” −−proto uc i −h 256 −−g e t r a t i n g

polyglot N2.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64

EngineCommand = n2 x64 . exe

[ Engine ]

NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nalimov
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NalimovCache = 128
Hash = 256

polyglot N2 SlowTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64

EngineCommand = n2 x64 . exe

[ Engine ]

NalimovPath = G:\Nalimov
NalimovCache = 128
Hash = 256

polyglot N2 StrippedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64

EngineCommand = n2 x64 . exe

[ Engine ]

NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nal imov str ipped

NalimovCache = 128
Hash = 256

polyglot N2 TrimmedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64

EngineCommand = n2 x64 . exe

[ Engine ]
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NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nalimov trimmed

NalimovCache = 128
Hash = 256

polyglot Spike.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3000\ sp i k e 14

EngineCommand = Spike1 . 4 . exe

[ Engine ]

NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nalimov

NalimovCache = 128
Hash = 256

polyglot Spike SlowTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3000\ sp i k e 14

EngineCommand = Spike1 . 4 . exe

[ Engine ]

NalimovPath = G:\Nalimov
NalimovCache = 128
Hash = 256

polyglot Spike StrippedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3000\ sp i k e 14

EngineCommand = Spike1 . 4 . exe
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[ Engine ]

NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nal imov str ipped

NalimovCache = 128
Hash = 256

polyglot Spike TrimmedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3000\ sp i k e 14

EngineCommand = Spike1 . 4 . exe

[ Engine ]

NalimovPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nalimov trimmed

NalimovCache = 128
Hash = 256

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3400\ s t o c k f i s h−9−win\Windows

EngineCommand = s t o c k f i s h 9 x 6 4 . exe

[ Engine ]

SyzygyPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
syzygy

Hash = 256

polyglot Stockfish SlowTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3400\ s t o c k f i s h−9−win\Windows

EngineCommand = s t o c k f i s h 9 x 6 4 . exe
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[ Engine ]

SyzygyPath = G:\ syzygy
Hash = 256

polyglot Stockfish StrippedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3400\ s t o c k f i s h−9−win\Windows

EngineCommand = s t o c k f i s h 9 x 6 4 . exe

[ Engine ]

SyzygyPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
syzygy s t r i pped

Hash = 256

polyglot Stockfish TrimmedTB.ini:

[ PolyGlot ]

EngineDir = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About3400\ s t o c k f i s h−9−win\Windows

EngineCommand = s t o c k f i s h 9 x 6 4 . exe

[ Engine ]

SyzygyPath = C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
syzygy trimmed

Hash = 256

checkTB.pgn:

[FEN ”8/1k6/1 p1r4 /5K2/8/8/8/2R5 w − − 0 1” ]

cutechess checkN2.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About2500\n2 x64\n2 x64 . exe ” name=”
TestEngine1 ” opt ion . NalimovPath=C:\ Users\Chris \Desktop\

62



S e n i o r P r o j e c t S t u f f \Nalimov opt ion . NalimovCache=128 −
eng ine cmd=”C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64\n2 x64 . exe ” name=”TestEngine2 ” −each
opt ion . Hash=256 proto=uc i tc =40/10 −pgnout checkTBout . pgn
−concurrency 3 −r epeat −rounds 2 −openings f i l e=checkTB .

pgn format=pgn order=random

cutechess checkN2 slow.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About2500\n2 x64\n2 x64 . exe ” name=”
TestEngine1 ” opt ion . NalimovPath=G:\Nalimov opt ion .
NalimovCache=128 −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About2500\n2 x64\n2 x64 . exe ” name=”
TestEngine2 ” −each opt ion . Hash=256 proto=uc i tc =40/10 −
pgnout checkTBout . pgn −concurrency 3 −r epeat −rounds 2 −
openings f i l e=checkTB . pgn format=pgn order=random

cutechess checkSpike.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About2500\n2 x64\n2 x64 . exe ” name=”
TestEngine1 ” opt ion . NalimovPath=C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \Nalimov opt ion . NalimovCache=128 −
eng ine cmd=”C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
About2500\n2 x64\n2 x64 . exe ” name=”TestEngine2 ” −each
opt ion . Hash=256 proto=uc i tc =40/10 −pgnout checkTBout . pgn
−concurrency 3 −r epeat −rounds 2 −openings f i l e=checkTB .

pgn format=pgn order=random

cutechess checkSpike slow.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3000\ sp i k e 14 \Spike1 . 4 . exe ” name
=”TestEngine1 ” opt ion . NalimovPath=G:\Nalimov opt ion .
NalimovCache=128 −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3000\ sp i k e 14 \Spike1 . 4 . exe ” name
=”TestEngine2 ” −each opt ion . Hash=256 proto=uc i tc =40/10 −
pgnout checkTBout . pgn −concurrency 3 −r epeat −rounds 2 −
openings f i l e=checkTB . pgn format=pgn order=random

cutechess checkStockfish.bat:
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cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3400\ s t o c k f i s h−9−win\Windows\
s t o c k f i s h 9 x 6 4 . exe ” name=”TestEngine1 ” opt ion . SyzygyPath
=C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \ syzygy −eng ine

cmd=”C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \About3400
\ s t o c k f i s h−9−win\Windows\ s t o c k f i s h 9 x 6 4 . exe ” name=”
TestEngine2 ” −each opt ion . Hash=256 proto=uc i tc =40/10 −
pgnout checkTBout . pgn −concurrency 3 −r epeat −rounds 2 −
openings f i l e=checkTB . pgn format=pgn order=random

cutechess checkStockfish slow.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3400\ s t o c k f i s h−9−win\Windows\
s t o c k f i s h 9 x 6 4 . exe ” name=”TestEngine1 ” opt ion . SyzygyPath
=G:\ syzygy −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3400\ s t o c k f i s h−9−win\Windows\
s t o c k f i s h 9 x 6 4 . exe ” name=”TestEngine2 ” −each opt ion . Hash
=256 proto=uc i tc =40/10 −pgnout checkTBout . pgn −
concurrency 3 −r epeat −rounds 2 −openings f i l e=checkTB .
pgn format=pgn order=random

cutechess Nalimov.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About2500\n2 x64\n2 x64 . exe ” opt ion .
NalimovPath=C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \
Nalimov\3−4−5 opt ion . NalimovCache=128 name=”N2” −eng ine
cmd=”C:\ Users\Chris \Desktop\ S e n i o r P r o j e c t S t u f f \About2500\
amyane\amyan . exe ” name=”Amyan” −each opt ion . Hash=256
proto=uc i tc =40/10 −rounds 40 −pgnout N2 vs Amyan . pgn −
concurrency 3

This bat file was reused and modified for the following engines:

• N2, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About2500\n2 x64\n2 x64.exe

• Muse, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About2500\muse0953\muse64 0953.exe

• Aristarch, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About2500\aristarch-
engine\Aristarch.exe

• Amyan, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About2500\amyane\amyan.exe
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• Wasp, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3000\wasp 260\wasp260-
x64.exe

• Spike, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3000\spike 14\Spike1.4.exe

• Spark, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3000\spark-
1.0\spark-1.0-win64-mp.exe

• iCE, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3000\ice full v3 658\ice3-
x64.exe

This bat file was reused and modified for the following tablebases:

• Normal Nalimov, located at C:\Users\Chris\Desktop\SeniorProjectStuff\Nalimov

• Trimmed Nalimov, located at C:\Users\Chris\Desktop\SeniorProjectStuff\Nalimov trimmed

• Stripped Nalimov, located at C:\Users\Chris\Desktop\SeniorProjectStuff\Nalimov stripped

• Slow Nalimov, located at G:\Nalimov

This bat file was reused and modified for the following output files:

• N2 SlowTB vs Amyan.pgn

• N2 SlowTB vs Aristarch.pgn

• N2 SlowTB vs Muse.pgn

• N2 vs Amyan.pgn

• N2 vs Aristarch.pgn

• N2 vs Muse.pgn

• N2 vs N2 NoTB.pgn

• N2 vs N2 SlowTB.pgn

• N2 vs N2 StrippedTB.pgn

• N2 vs N2 TrimmedTB.pgn

• Long N2 vs N2 NoTB.pgn
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• Spike SlowTB vs iCE.pgn

• Spike SlowTB vs Spark.pgn

• Spike SlowTB vs Wasp.pgn

• Spike vs iCE.pgn

• Spike vs Spark.pgn

• Spike vs Wasp.pgn

• Spike vs Spike NoTB.pgn

• Spike vs Spike SlowTB.pgn

• Spike vs Spike StrippedTB.pgn

• Spike vs Spike TrimmedTB.pgn

• Long Spike vs Spike NoTB.pgn

cutechess Syzygy.bat:

cutechess−c l i −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3400\ s t o c k f i s h−9−win\Windows\
s t o c k f i s h 9 x 6 4 . exe ” opt ion . SyzygyPath=G:\ syzygy name=”
Stockf ish SlowTB ” −eng ine cmd=”C:\ Users\Chris \Desktop\
S e n i o r P r o j e c t S t u f f \About3400\komodo−9 9dd577\Windows\
komodo−9.02−64 b i t . exe ” name=”Komodo” −each opt ion . Hash
=256 proto=uc i tc =40/10 −rounds 60 −pgnout
Stockfish SlowTB vs Komodo . pgn −concurrency 3

This bat file was reused and modified for the following engines:

• Houdini, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3400\Houdini 15a\Houdini 15a x64.exe

• Komodo, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3400\komodo-
9 9dd577\Windows\komodo-9.02-64bit.exe

• Stockfish, located at C:\Users\Chris\Desktop\SeniorProjectStuff\About3400\stockfish-
9-win\Windows\stockfish 9 x64.exe

This bat file was reused and modified for the following tablebases:
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• Normal syzygy, located at C:\Users\Chris\Desktop\SeniorProjectStuff\syzygy

• Trimmed syzygy, located at C:\Users\Chris\Desktop\SeniorProjectStuff\syzygy trimmed

• Stripped syzygy, located at C:\Users\Chris\Desktop\SeniorProjectStuff\syzygy stripped

• Slow syzygy, located at G:\syzygy

This bat file was reused and modified for the following output files:

• Stockfish SlowTB vs Houdini.pgn

• Stockfish SlowTB vs Komodo.pgn

• Stockfish vs Houdini.pgn

• Stockfish vs Komodo.pgn

• Stockfish vs Stockfish NoTB.pgn

• Stockfish vs Stockfish SlowTB.pgn

• Stockfish vs Stockfish StrippedTB.pgn

• Stockfish vs Stockfish TrimmedTB.pgn

• Long Stockfish vs Stockfish NoTB.pgn
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