Analysis of Job-sites in San Luis Obispo County Adapting to Unforeseen Wet Conditions

Wet conditions are unpredictable factors that nonetheless, are estimated and incorporated onto a long term project schedule. Effective scheduling does mitigate the productivity of a job-site, however, when you factor in unforeseen wet conditions, it could result in schedule delays, material damages, and a discontent client. This paper presents an analysis on how job-sites adapted or were affected by the unpredicted amount of rain received in San Luis Obispo County. The initial findings, based on qualitative attitudinal research, are presented to show if schedules accounted for the amount of rain received, if their schedules were delayed, if material was damaged on the job-site, if they missed out on financial opportunities, and if they adapted to unforeseen wet conditions. Further discussions, based on qualitative exploratory research, are presented to identify strategies used by general contractors who mitigated the delays associated with rain days. The survey results indicate general contractors in San Luis Obispo County struggled to adapt during unforeseen wet conditions. The interview results analyzed common or successful strategies used by five different general contractors. With the identification of proper strategies, one could improve the productivity on the job-site during unforeseen wet conditions.

Keywords: wet conditions, job-site, schedule delays, productivity, strategies

GOAL
To analyze how job-sites adapted or were affected by the unpredicted amount of rain received and to identify strategies used by general contractors in order to mitigate delays associated with rain days.

METHODOLOGY
Phase A: Selecting Potential Candidates for Evaluation
Phase B: Surveying General Contractors
Phase C: Identifying Potential Candidates for Data Analysis
Phase D: Interviewing General Contractors

DATA COLLECTION
Qualitative attitudinal research for Phase B.
Qualitative exploratory research for phase D.

Rain Accumulation (July 1, 2018 - June 1, 2019)

Rain Accumulation (%)