
PYTHON MANUAL:

A LEARNING GUIDE FOR STRUCTURAL ENGINEERING STUDENTS

BY

KENNEDY A. GOMEZ, MEILEEN YEE, AARON C. DEWEY

SENIOR PROJECT REPORT

California Polytechnic State University, San Luis Obispo, CA

December 2023

Senior Project Advisor & Co-author:

Anahid A. Behrouzi, PhD

 PYTHON MANUAL | ABOUT THE AUTHORS i

About the Authors

Aaron Dewey, Meileen Yee, and Kennedy Gomez

Kennedy, Aaron, and Meileen were fourth year undergraduate students studying Architectural

Engineering (ARCE) at California Polytechnic State University in San Luis Obispo at the time of

writing the Python manual for their ARCE senior project with advising from faculty member

Anahid Behrouzi. The authors share an interest in structural engineering and its intersection with

computer science and are passionate about helping students learn and use Python. While working

on the manual, all three authors leveraged their unique programming background and skill set.

As students, the authors were familiar with the curriculum and the use of Python in ARCE lab

classes. They wanted to create a tool that would be useful for students just like themselves. The

Python manual also aimed to motivate students to learn Python by showing the relevance and

value of computer programming in structural engineering industry. Kennedy, Aaron, and

Meileen hope this will be a resource future ARCE students use for years to come.

 PYTHON MANUAL | ACKNOWLEDGMENTS ii

Acknowledgments

We would like to thank our professor and senior project advisor Anahid Behrouzi for presenting

us with the idea for this manual and guiding us through the process. They would also like to

acknowledge faculty member Peter Laursen for his technical review and feedback on this

document. In addition, we would like to thank all the students and industry professionals who

took the time to respond to our surveys.

 PYTHON MANUAL | ACKNOWLEDGMENTS iii

Abstract

This Python programming manual is a resource to assist architectural, civil, or structural

engineering students as they learn to create scripts to solve various structural analysis and

dynamics problems. Beyond providing guidance on Python libraries that enable numerical and

symbolic mathematics (NumPy, SciPy, SymPy), the manual also focuses on the creation of

tabular and plot outputs useful to communicate results through technical reports (Pandas,

Matplotlib).

The content of this document was developed based on detailed review of curriculum for three

architectural engineering computing courses typically offered to upper class students at Cal Poly,

San Luis Obispo as well as surveys with students who had completed the courses and industry

members. The authors recognize that programming is challenging enough without having to use

a textbook with example problems from other unfamiliar technical fields or where each Python

library has its own separate documentation website to navigate.

The document includes 24 chapters on how to use both the Spyder integrated development

environment and a range of Python programming topics. The chapters include explanations,

graphics, and examples related to structural engineering so that students can follow and apply

programming skills to their coursework, but also appreciate its broader utility for their careers.

The goal with this resource is to address students’ common knowledge gaps in Python along

with building confidence and motivating them to learn how to program, better equipping them

for success in the computing courses and in leveraging programming as a tool when they enter

industry.

 PYTHON MANUAL | TABLE OF CONTENTS iv

Table of Contents

ABOUT THE AUTHORS ... I

ACKNOWLEDGMENTS ... II

ABSTRACT ... III

TABLE OF CONTENTS ... IV

1 . INTRODUCTION.. 1

1.1 Using this Manual ... 1

2 . DOWNLOADING ANACONDA ... 3

3 . SPYDER INTERFACE ... 4

3.1 Spyder Interface Layout .. 4

3.2 Setting Preferences.. 6

3.3 Managing Files.. 8

3.4 Setting Up Your Code ... 9

4 . VARIABLES .. 12

4.1 Naming Variables ... 12

4.2 Clearing ... 13

5 . OPERATORS AND EXPRESSIONS .. 14

5.1 Numeric Operators .. 14

5.2 Boolean Operators .. 14

5.3 Boolean Truth Tables .. 14

5.4 Order of Evaluation... 15

6 . DATA TYPES .. 17

6.1 Strings ... 17

6.2 Integers .. 17

6.3 Floats ... 17

6.4 Booleans .. 17

6.5 Identifying Data Types ... 18

6.6 Converting Between Data Types .. 18

7 . LISTS .. 20

7.1 Indexing .. 20

7.2 Slicing ... 21

7.3 List Operations .. 21

8 . DICTIONARIES .. 23

9 . BUILT-IN FUNCTIONS ... 26

9.1 Range .. 26

10 . FUNCTIONS .. 27

10.1 Function Structure ... 27

 PYTHON MANUAL | TABLE OF CONTENTS v

10.2 Importing Functions .. 29

10.3 Scope ... 31

11 . IF, ELIF, AND ELSE STATEMENTS .. 32

11.1 If .. 32

11.2 Elif... 33

11.3 Else .. 34

11.4 Nesting .. 35

12 . FOR LOOPS... 37

12.1 For Loop Structure .. 37

12.2 Nested Loops .. 39

12.3 Break ... 40

12.4 Continue .. 40

13 . WHILE LOOPS ... 41

13.1 While Loop Structure .. 41

13.2 Manually Ending Program .. 43

14 . ACCESSING FILES .. 44

15 . LIBRARIES.. 46

15.1 NumPy Library ... 46

15.2 Matplotlib Library ... 48

15.3 SciPy Library .. 49

15.4 Pandas Library .. 50

16 . ARRAYS AND MATRICES ... 51

16.1 Initializing an Array or Matrix .. 51

16.2 Indexing and Determining the Length of an Array or Matrix 53

16.3 Performing Basic Matrix Operations .. 57

16.3.1 Adding and Subtracting Matrices .. 57

16.3.2 Multiplying Matrices ... 58

16.3.3 Transpose of a Matrix .. 59

16.3.4 Inverse and Determinant .. 61

16.4 Solving Eigenvalue Problems ... 61

17 . SYMPY LIBRARY .. 64

18 . PLOTTING LINE AND SCATTER PLOTS .. 68

18.1 Plotting Basics .. 68

18.2 Multiple Curves on a Single Plot .. 72

18.3 Subplots... 73

18.4 Displaying and Saving a Plot .. 77

18.5 Using Polyfit ... 79

18.6 Finding Roots .. 81

19 . BAR CHARTS, HISTOGRAMS AND PIE CHARTS ... 83

 PYTHON MANUAL | TABLE OF CONTENTS vi

19.1 Bar Charts ... 83

19.2 Histograms .. 89

19.3 Pie Charts .. 91

20 . PRINTING.. 93

20.1 Printing Basics .. 93

20.2 Tabular Output .. 95

20.3 Printing to Excel ... 98

20.4 Printing Tables in Figures ... 101

20.5 Printing/Displaying Special Characters .. 101

21 . USER INPUT ... 103

22 . SCRIPT & RESULTS PRESENTATION IN REPORTS ... 107

22.1 Transferring Script to a Word Processing Document ... 107

22.2 Exporting Plots with High Image Quality .. 108

23 . ERRORS & TROUBLESHOOTING .. 110

23.1 Deciphering Error Messages ... 110

23.2 Common Error Message Types .. 110

23.2.1 SyntaxError .. 111

23.2.2 NameError.. 112

23.2.3 TypeError ... 112

23.2.4 AttributeError ... 114

23.2.5 IndexError .. 114

23.2.6 ValueError.. 115

23.2.7 ImportError and ModuleNotFoundError ... 115

23.3 General Troubleshooting Tips .. 116

24 . WHERE TO GET HELP & ADDITIONAL RESOURCES ... 120

24.1 W3schools ... 120

24.2 GeeksforGeeks .. 122

24.3 Library Websites ... 124

24.4 Quick Sheets ... 124

24.5 YouTube Video Tutorials ... 124

24.6 Cloud-Based Programming Tool: Replit .. 125

 PYTHON MANUAL | 1 INTRODUCTION 1

1. Introduction

As someone going into the field of structural engineering, you may be asking: why do I need to

know how to code? While it may not seem like an integral part of the job, you are more than

likely applying code every single day. Be it structural analysis software, drafting applications, or

a simple Excel spreadsheet; structural designers are constantly utilizing code to make their work

more efficient, organized, and accurate. Having a deeper understanding of how coding language

works allows us to not only make better use of applications but also extend their capabilities to

solve any number of problems. Having this skill can also set you apart and add value to your

team by potentially saving hundreds of hours on repetitive and detailed tasks that can be

expedited by developing scripts to automate this work.

In fact, we conducted a survey of industry professionals, and you may be surprised to learn that

100% of structural engineers who responded say they have coded as a part of their position. We

learned about so many applications; for example, Cal Poly civil engineering alumni Jesse

Bluestein, PE developed a program that takes AutoCAD plans and builds a full RISA 3D model

from it. Several other survey respondents mentioned developing programs that automatically set

up and run load cases through analysis software, that generate spreadsheets to organize and store

analysis tool results, or even programs that determine the amount of embodied carbon in various

floor build-ups. The possibilities are endless.

Implementing Python coding activities into the lab courses of the Cal Poly architectural

engineering (ARCE) curriculum encourages students to always look for and create efficient

solutions, like these, going forward. It also requires a deeper understanding of engineering topics

since you need to deconstruct problems to create a solution in the form of code. In the Cal Poly

ARCE department, Python is used in conjunction with courses in matrix structural analysis,

structural dynamics, as well as various graduate level topics. This manual will look to provide a

general overview of Python basics and go more in depth with respect to these course topics to

ultimately help students as they enter their structural engineering careers with:

1. Manipulating, postprocessing, and visualizing large datasets

2. Automating repetitive calculations

3. Transferring data between CAD and structural analysis platforms

and more…

As we get started with programming, a brief summary on Python (What is it? Why is it so

popular?) can be viewed at https://www.youtube.com/watch?v=Y8Tko2YC5hA .

1.1 Using this Manual

Coding in the context of this document refers to writing Python scripts that are executed from the

command line rather than writing software (i.e., compiled programs). This manual is divided into

sections each focusing on individual coding concepts; however, concepts in later sections may

rely on information already explained prior.

https://www.youtube.com/watch?v=Y8Tko2YC5hA

 PYTHON MANUAL | 1 INTRODUCTION 2

Each section will start with a brief overview and then delve into examples and explanations

formatted as follows:

Blue boxes indicate areas containing Python code

A horizontal black line separates input code from output code

Output code is also prefaced with a ‘>>’

print('Hello World!')

>>Hello World!

Users of this manual can copy and paste input code directly from examples into the command

window of the Spyder (Python coding environment) to produce the output code shown.

Courier font is also used to indicate coding language outside of these blue sections.

Green boxes indicate a Motivation Station. These sections are meant to provide

some inspiration for how these coding topics can or have been used! A lot of the

information found here is based on responses from a survey of professional

engineers and how they use coding to solve problems in structural engineering.

White text boxes within blue sections provide

commentary. This is not a part of the code itself.

 PYTHON MANUAL | 2 DOWNLOADING ANACONDA 3

2. Downloading Anaconda

An Integrated Development Environment (IDE) is a software through which you utilize Python.

There are multiple IDEs, and we recommend using Spyder. Download Spyder through Anaconda

so that you can access all libraries that come with Anaconda.

Follow these steps to download Anaconda on your Windows laptop or computer (note the exact

language and organization on the Anaconda website may have changed since the publication of

this manual, but the process should be largely similar):

1. Go to Anaconda’s website > Products > Anaconda Distribution or click here:

https://www.anaconda.com/products/distribution

2. Under “Product Distribution” click “Download”

3. Go to your downloads and open the Anaconda installer application

4. Follow the prompts, and choose a file path and destination folder that you will remember

5. Once Anaconda is downloaded, go to the destination folder that you chose previously and

open this application to access Python

Follow these steps to download Anaconda on your Mac laptop or computer:

1. Go to Anaconda’s website > Products > Anaconda Distribution or click here:

https://www.anaconda.com/products/distribution

2. Under “Get Additional Installers” click the Apple icon

3. Click on “64-Bit Graphical Installer (688 MB)”

4. Go to your downloads and open the Anaconda installer application

5. Follow what is prompted, and choose a file path and destination folder that you will

remember

6. Once Anaconda is downloaded, go to the destination folder that you chose previously and

open the app to access Python

https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution

 PYTHON MANUAL | 3 SPYDER INTERFACE 4

3. Spyder Interface

This section provides an overview of how to utilize different aspects of the Spyder interface,

manage your files, and set up basic structure of your code.

3.1 Spyder Interface Layout

The picture below displays what Spyder looks like when you first open the software.

① Script window: This is where you type the script of your code and run your code.

② Output/Command window: This is where your code will output or “print” results when it is

run. You can also utilize the command window to troubleshoot by typing individual lines of

code of operations and functions to see an immediate result (see Section 23.3 for how to use

the command window to troubleshoot errors).

 Quick tips:

• Type clear in the command window to clear it of prior commands and output

• Hit the up arrow on your keyboard to repeat the last command (or hit the up arrow

multiple times to access earlier commands)

③ Variable Explorer/Help/Plots/Files/Find window: Out of these five different tools in this

window, you will mostly utilize Variable explorer (see Section 4 for more information on

variables) and Plots (see Sections 18 and 19 for more information on plotting) to see your

variables and plots.

①

②

③

④

 PYTHON MANUAL | 3 SPYDER INTERFACE 5

Variable explorer: This is where you can view all the variables after running the lines in

your script where they are defined. The variable explorer is helpful because it

summarizes all the relevant information about your variables, including the name, data

type, size, and value(s) of each. You can also double-click on any array in variable

explorer to see a grid format of the array.

Plots: This is where you can all the plots that have been generated after running the lines

in your script where they are defined. It is possible to zoom in/out as well as save or copy

the plot from this interface into a report. However, it is not possible to modify the

formatting of the plot within this “inline” window. This is possible by changing the plot

viewing preference (see Section 3.2 for instructions).

 PYTHON MANUAL | 3 SPYDER INTERFACE 6

④ Top Ribbon Icons: Some of the ribbon icons that will be useful have been circled in red.

• The green play button will run your entire script

• The icon to the right of it will run the current cell (see Section 3.4 for how to use cells)

• The white icon with the cursor will run the current line or a highlighted section of code

• The four arrows pointing outward or inward will make Python full screen on your device

or will exit full screen

• The wrench will open your preferences

3.2 Setting Preferences

To change your font size, font type, or color theme, go to the top ribbon: Preferences (the

wrench symbol) > Appearance.

Changing font: Select a font from the dropdown under “Fonts.” “Plain text” is the text that

appears in script, output, and variable explorer windows; whereas “Rich text” is text that appears

in the Help window.

Changing font size: Select a font size from the dropdowns next to “Size.” See the above

statement on “Plain text” versus “Rich text.”

Changing background/text color theme: Choose from the dropdown under “Syntax

highlighting theme,” where “Spyder Dark,” is the default theme. For a coding environment with

a white background and distinct font colors you can consider trying the theme “IDLE”. As a

 PYTHON MANUAL | 3 SPYDER INTERFACE 7

note, the visuals and associated descriptions in this manual are produced in the “Spyder Dark”

theme.

To change your plot viewing window, go to the top ribbon: Preferences (the wrench symbol) >

IPython console > Graphics > Graphics backend > Automatic.

This will open the figure in a separate window. It may be necessary to click on a new taskbar

icon that appears at the bottom of your computer screen to open. Other than panning /zooming

and saving the figure a few other useful functions are circled in red and described below.

Changing the size of the graph within the figure: selecting the icon with slider bars allows you

to change the border dimension and other spacing of the graph in the figure.

 PYTHON MANUAL | 3 SPYDER INTERFACE 8

Changing graph formatting: selecting the icon with the curve on graph axes allows you to

change the axes settings including specifying lower and upper bound values, a scale for axis tick

mark spacing (linear vs. logarithmic), figure title, and axes labels. It is also possible to change

curve parameters including the name to use in the legend, as well as line and marker

styles/size/color. You can also turn the legend on/off from this interface.

Displaying x-y coordinates: the display in the upper right of the figure window will update with

new x-y coordinates when moving your mouse cursor over any location within the figure space,

which can be helpful to identify critical points in the graph while analyzing data.

3.3 Managing Files

Saving a Python File: When saving a Python file, we recommend saving it to your OneDrive for

easy access on different devices. Follow these steps to save a Python file to your Cal Poly

OneDrive on a school computer:

 PYTHON MANUAL | 3 SPYDER INTERFACE 9

1. Open the OneDrive application on the computer

2. Sign into OneDrive using your Cal Poly email

3. In Python, go to File > Save File

4. Save your Python file under “OneDrive – Cal Poly” (make sure it includes “ – Cal

Poly”)

Sharing a Python File: To share a Python file with yourself or another person, utilize a shared

folder on OneDrive or email the Python file in a zipped folder, as non-zipped Python files cannot

be emailed. Follow these steps to save a Python file in a zipped folder/as a zipped file:

1. In Python, go to File > Save File

2. Save your Python file wherever you want

3. In File Explorer, right click on the Python file and click on “Compress to ZIP file”

3.4 Setting Up Your Code

Now that you know how to save your file, you can start on your code! Here is a basic layout of

how we recommend setting up your code.

The lines of code shown above have four main parts: the header, importing libraries, setting your

variables, and the rest of your code.

① Header: In the portion of your code between the lines with ”””, include your name, date,

course, lab number of the assignment, and a description of what tasks your code is executing

in this Python file. Using a header is good bookkeeping practice, especially as you enter

industry if you share code you produced with others in your structural engineering office or

even when referring back to code you may have written years prior.

①

②

③

④

 PYTHON MANUAL | 3 SPYDER INTERFACE 10

② Importing libraries: If you will be using libraries in your code, which is highly likely,

import them at the beginning of your code. You can import a library at any point before a

line in which you are using the library, but importing the libraries at the top of your code

makes for good organization. Rename them using a short abbreviation for your convenience

in the form import [library] as [abbreviation]. See Section 15 for more

information on libraries.

③ Setting variables: As with importing libraries, you can set a variable at any point before a

line that uses the variable, but we recommend defining important variables at the beginning

of your code for good organization so that you can easily view and modify these variables

(described in Section 4 and 17).

④ The rest of your code: The rest of your code can be set up to your preference, depending on

what problems you are solving or what you are programming.

There are two other elements shown above that will be useful to utilize:

Comments: Commenting allows you to make notes without interfering with execution of your

code. It can be utilized on its own line to explain what an entire section of code does or next

to a single line with text (for example, to indicate the units used for variables). To make

comments, simply type # followed by text. Comments will be shown in gray text.

Cells: Cells break up your code visually and are a helpful organizational tool. A cell can be

individually run using a button in the top ribbon (see Section 3.1 for useful ribbon buttons),

which is helpful for troubleshooting issues in your code (see Section 23 for troubleshooting

your code). To set a cell, type #%% and the following lines will be included in that cell.

Visually this is delineated with a horizontal gray line at the beginning of the cell.

Other Quick Tips

• When your cursor is placed just to the right of a variable, that variable will be highlighted

in purple/blue wherever it appears in your code.

 PYTHON MANUAL | 3 SPYDER INTERFACE 11

• Autocomplete: Sometimes a small gray box will pop up while you are typing your code

in Spyder to try to help you autocomplete to either functions that exist in the libraries you

have imported or variables you have already defined. It is recommended that users

examine the contents of the pop up to help determine what inputs they need to provide to

functions and to correctly reference previously defined variables.

If the autocomplete does not appear to be working then update Preferences (the wrench

symbol) > Help > Automatic connections and toggle the desired plug-in to show an

object’s help information.

 PYTHON MANUAL | 4 VARIABLES 12

4. Variables

Variables can contain any type of data and they allow programmers to abstract and manipulate

data. When data is assigned to a variable, the variable is internally associated with that data and

can then be used in place of the data. Data types are described in depth in Section 6.

Example 4.1
a = 'this data is stored in a'

print(a)

>> this data is stored in a

Example 4.2
a = 14

b = 9

c = (a - b)*2

print(c)

>> 10

Notice, variables interact as though they are the data they are representing. Variables act exactly

like the data they contain because the data internally replaces the variable each time the variable

is evaluated. See Section 5.4 to understand the order of evaluation presented in the example.

Example 4.3
a = 14

a = 10

print(a)

>> 10

Notice variables can be overwritten so that the first data stored in the variable is lost. It is best

practice to avoid overwriting variables.

4.1 Naming Variables

Variables can be named almost anything; however, it is important to use descriptive variable

names for clarity. There are many different practices for naming variables and over time each

programmer will develop his or her own style. Variable names have some constraints, they can

only consist of alpha characters (A-Z), numbers (0-9), and underscores (_). Variable names

cannot start with a number. Furthermore, variable names cannot be Python syntax terms, such as

functions from a library, and will overwrite functions if they are named the same. Also note, that

variables are case sensitive, so X is not the same as x.

Invalid Variable

Names

Valid Variable

Names

Why is the variable name invalid?

beam 2 beam_2 Names cannot contain spaces

x,0 x_0 Names cannot contain commas

for FOR “for” is a predefined Python term

3tree tree3 Names cannot start with a number

#num num Names cannot contain hashtags

For discussion on local and global variables see Section 10.2.

 PYTHON MANUAL | 4 VARIABLES 13

4.2 Clearing

When editing and running a code several times, you can often end up with many variables, plots,

or code in the command window. Python will not automatically delete old variables after

rerunning code so you may be looking at inaccurate values. Therefore, it is helpful to clear old

information quickly.

There are a couple ways to do this including the delete buttons in the variable explorer as shown

in Figure 4.2.1.

Figure 4.2.1 Delete Button

A. Delete all variables

B. Delete selected

 variable (right click

 on variable for drop-

 down menu)

However, it may be more efficient to use the command window to delete variables. Listed below

are methods for clearing the variable explorer executed via code in the command window.

Function Description

%reset Clears all user defined variables

del a, b Clears chosen variables (i.e., a and b)

clear Clears the command window

exit Clears everything your code has created, including variables, plots, and the

command window

If you want all variables to automatically delete every time you run your code (recommended),

use the following lines at the beginning of your script:

from IPython import get_ipython

get_ipython().magic('reset -sf')

A

B

A

 PYTHON MANUAL | 5 OPERATORS AND EXPRESSIONS 14

5. Operators and Expressions

Python supports all the standard math and logic operators as well as some other useful functions.

Operators combined with data are used to form expressions. Informally, an expression is just a

bit of code that produces a value when it is run.

5.1 Numeric Operators

Operator Description Example

+ Addition 1 + 2 = 3

- Subtraction 4 – 2 = 2

* Multiplication 5 * 2 = 10

/ Division 7 / 2 = 3.5

** Exponent 2**3 = 8

% Modulus 10 % 3 = 1

// Floor Division 7 // 2 = 3

A few of these numeric operators are uncommon in traditional calculations but can serve a very

useful purpose in programming. These are modulus (remainder in a division calculation) and

floor division (division solution rounded down to the nearest integer).

5.2 Boolean Operators

Comparative operators and logic operators will always evaluate to a Boolean (either True or

False).

Operator Description True Examples False Examples

== Equal 1 == 1 3 == 2

!= Not equal 1 != 3 5 != 5

< Less than 2 < 4 2 < 2

> Greater than 5 > 4 3 > 4

<= Less than or equal to 3 <= 3 6 <= 5

>= Greater than or equal to 1 >= 0 2 >= 8

not Switches Boolean not False not True

or Evaluates to True if either are True False or True False or False

and Evaluates to True only when both

are True

True and True False and True

5.3 Boolean Truth Tables

The expected outputs of Boolean operations (and, or) can be expressed diagrammatically in

truth tables. Truth tables show the expected output for each corresponding input variation.

Truth Table (and)

A and B A = True A = False

B = True True False

B = False False False

 PYTHON MANUAL | 5 OPERATORS AND EXPRESSIONS 15

Truth Table (or)

A or B A = True A = False

B = True True True

B = False True False

5.4 Order of Evaluation

The key to writing expressions is understanding the order Python will evaluate each portion or

subexpression. A precedence chart shows exactly the order of operations for a programming

language. The table below is an abbreviated Python precedence chart with some common

expressions. When there is no preference between subexpressions, Python will evaluate the line

from left to right.

Order Operator Description

1 () Parentheses

2 ** Exponent

3 * / % // Multiply, Divide, Modulus, Floor Division

4 + - Add, Subtract

5 <= < > >= Comparison Operators

6 == != Equality Operators

7 is is not Identity Operators

8 in not in Membership Operators

9 not or and Logical Operators

The following examples diagrammatically show expressions evaluated step by step. If these

operations are typed in the command window, Python will compute these steps internally and

only display the final value. In these examples, lines that start with => indicate an intermediate

calculation step, and only the final answer after >> will appear in the command window.

Notice expressions are evaluated from left to right when there is no subexpression preference:

2 + 2 + 5

=> 4 + 5

>> 9

Notice multiplication is evaluated before addition:

3 + 4 * 2

=> 3 + 8

>> 11

 PYTHON MANUAL | 5 OPERATORS AND EXPRESSIONS 16

Notice the subexpression in the parentheses is evaluated first:

(3 + 4) * 2

=> 7 * 2

>> 14

Notice conditional expression evaluate to Booleans first, and then logical operators are executed:

True and not 3 > 4

=> True and not False

=> True and True

>> True

5 - (7 + 2) * 3 +1

=> 5 – 9 * 3 +1

=> 5 – 27 +1

=> -22 +1

>> -21

Notice that the variable num must be evaluated as a separate step and that step does not occur

until num is needed:

num = 4

2 * num - (3 + 4)

=> 2 * num - 7

=> 2 * 4 - 7

=> 8 – 7

>> 1

result = True

False or ((3 >= 3) and result)

=> False or (True and result)

=> False or (True and True)

=> False or True

>> True

 PYTHON MANUAL | 6 DATA TYPES 17

6. Data Types

Python, like every coding language, has different types of data. It is important to know which

data type you are using because most operators and functions require a specific type of data.

However, some functions and operators will work with several types of data. A resource for

learning about data types: https://www.w3schools.com/python/python_datatypes.asp .

6.1 Strings

A string is a data type that stores written information. Strings can use any typed character. They

often contain letters and words, but can also use numbers and special characters (see Section

20.4). To write a string enclose the contents of the text with single or double quotation marks.

'Words: 1'

>> 'Words: 1'

6.2 Integers

Integers are whole number values. Integers can be positive or negative but not fractional or

decimal values. Many mathematical operations will return integers.

1 + 1

>> 2

6.3 Floats

Floats are floating point numbers, meaning that unlike integers they contain decimal values

(e.g., 2.718); however, a whole number followed by a decimal containing a zero is also a float

(e.g., 3.0). Floats can be positive or negative. Many mathematical expressions will return floats

even if integers are used in the expression when the result is fractional in nature (e.g., 7/3). Floats

cannot be larger than ±1.798 × 10308 or result of infinity (represented by inf) will result.

1 + 1.5

>> 2.5

Notice that in the example above 1 is not a float but 1.5 and 2.5 are. In most contexts, Python

allows integers and floats to be used in expressions together without producing an error message.

6.4 Booleans

Booleans are the binary logical conclusions: True and False. Booleans commonly result from

conditional expressions (e.g., 4 < 2 producing a result of False) and they can be assigned to

variables just like strings, integers, and floats. Booleans are critical for the flow of if, elif,

and else statements (see in Section 11).

6 > 4

>> True

https://www.w3schools.com/python/python_datatypes.asp

 PYTHON MANUAL | 6 DATA TYPES 18

6.5 Identifying Data Types

When troubleshooting, it is often useful to check the data type of variables. The Spyder interface

displays all defined variables and their data types in the Variable Explorer Window (see Section

3.1). A variable’s data type can also be determined by using the type() function.

Example 6.5.1

a = 1

b = 2.718

c = 'or to take arms against a sea of troubles' # Hamlet

print(type(a))

print(type(b))

print(type(c))

>> <class ‘int’>

>> <class ‘float’>

>> <class ‘str’>

Data

Types

Python

Notation

Description Example/Reference

Strings str Typed characters 'word', "$0.99", 'My name is '

Integers int Whole numbers 1, 5920, -23

Floats float Floating decimal numbers 0.5, 3.14, 1.0

Booleans bool Logical conclusions True, False

Lists list Ordered set of elements [0,1,2] (See Section 7)

Dictionary dict Unordered table of elements { 'a':1, ' b':2} (See Section 8)

Functions function Callable code (See Section 10)

6.6 Converting Between Data Types

It is often necessary to convert one type of data to another because a function or expression

requires a specific type of data. For example, to concatenate an integer or float to a string the

integer or float must be converted to a string.

Float converted to string:

str(1.5)

>> '1.5'

String combined with integer converted to string:

'score: ' + str(98)

>> 'score: 98'

Float converted to integer (results in float being truncated to the whole number portion):

int(1.5)

>> 1

 PYTHON MANUAL | 6 DATA TYPES 19

Integer converted to float (results in a decimal value of zero being included in number):

float(2)

>> 2.0

 PYTHON MANUAL | 7 LISTS 20

7. Lists

Lists are ordered containers of data. In Python, lists can hold strings, integers, floats, Booleans,

or a combination of any of those. Lists can even contain other lists! Lists are an extraordinarily

useful way to store data.

7.1 Indexing

One useful way to access the contents of a list is by indexing. Every element in a list has a

position or index. The element in the first position has an index of 0. The element in the second

position has an index of 1 and so on (see Example 7.1.1)

Example 7.1.1
L = [3,4,5]

print(L[0])

print(L[2])

>> 3

>> 5

Aa list can also be indexed from the end. In Example 7.1.2, you can see that last element in a list

is assigned an index of -1 the prior entries have increasing negative index values.

Example 7.1.2
L = [0,1,2]

print(L[-1])

>> 2

In Example 7.1.3, L is a list that contains two lists. The index of 0 is evaluated to select the first

list then the index of 2 is evaluated to select the third element in that list.

Example 7.1.3
L = [[1,3,5],[2,4,6]]

print(L[0][2])

>> 5

 PYTHON MANUAL | 7 LISTS 21

7.2 Slicing

Sometimes it is useful to slice or select a range of values in a list. The range of the desired

indexes can be specified with this syntax: [first index : last index + 1]. For Example 7.2.1, where

L[1:4] the indexing can be interpreted as the inequality expression: 1 ≤ index < 4.

Example 7.2.1
L = [10,11,12,13,14,15,16]

print(L[1:4])

>> [11,12,13]

It is also possible to slice from one index to the end of the list or from the beginning of the list up

to an index using an colon : (see Example 7.2.2).

Example 7.2.2
L = [10,11,12,13,14,15,16]

print(L[1:])

print(L[:4])

>> [11,12,13,14,15,16]

>> [10,11,12,13]

 print(L[1:]) print(L[:4])

7.3 List Operations

There are many standard functions to help use and manipulate lists, here are three of these:

Operator Description Example Input Example

Output

+ Adds elements of list, makes new list [1, 2] + [3, 4] [1, 2, 3, 4]

.append() Appends element to one index at the end L = [1, 2]

L.append(3)

[1, 2, 3]

len() Returns the length of the list len([0,1,2]) 3

 PYTHON MANUAL | 7 LISTS 22

Example 7.3.1
L1 = [7,2,6]

L2 = [0,0,0]

L3 = L1 + L2

L1.append(L2)

print(L3)

print(len(L3))

print(L1)

print(len(L1))

>> [7,2,6,0,0,0]

>> 6

>> [7,2,6,[0,0,0]]

>> 4

Notice the distinction between the two list combination approaches: L1 + L2 and L1.append(L2).

The first approach maintains a single list and adds in the new entries, while the latter inserts a

second inner list after the entries from the preexisting outer list. Since the length function only

counts the number of elements in the outer list, the inner list of zeros that has been appended in

L1.append(L2) is counted as one element.

 PYTHON MANUAL | 8 DICTIONARIES 23

8. Dictionaries

A dictionary is another data type similar to lists in that it contains a set of elements of any data

type. However, dictionaries and lists differ in how they access elements. Instead of using the

position index, dictionaries can use user set keys. Every element in a dictionary is accessed by a

key. Unlike indexes, keys can be almost any data type (strings, integers, floats, Booleans, etc.).

In the following examples all the keys are strings.

Example 8.1 Build and Access a Dictionary

Create a dictionary named members with keys: beams, girders,

and columns.

members = {'beams': 8, 'girders': 2, 'columns': 6}

Add an additional key to the members dictionary: joists.

members['joists'] = 16

Print dictionary and data stored under individual keys.

print(members)

print(members['beams'])

print(members ['joists'])

>> {'beams': 8, 'girders': 2, 'columns': 6, 'joists': 16}

>> 8

>> 16

Notice elements can be inserted into the dictionary after it is created. An empty dictionary can be

initiated with curly braces ({}) or the dict() function.

 PYTHON MANUAL | 8 DICTIONARIES 24

Example 8.2 Calculate moment and deflection of framing members using similar dictionaries.
Set up dictionary entries defined by identical keys. For the

beams listed, the keys are: shape, moment of inertia, and span.

beam1 = {'shape': 'W6X25', 'I': 53.4, 'span': 240} #in^4, in

beam2 = {'shape': 'W6X20', 'I': 41.4, 'span': 120} #in^4, in

beam3 = {'shape': 'W6X15', 'I': 29.1, 'span': 150} #in^4, in

Create the dictionary called framing from the entries above.

framing = [beam1, beam2, beam3]

Compute moment and deflection for each beam in the framing

dictionary, treat as simply supported with uniform load.

w = 0.1 # k/in

E = 29000 # ksi

for ii in range(0,len(framing)):

 M = w*(framing[ii]['span']**2)/8

 dfc = 5*w*(framing[ii]['span']**4)/(384*E*framing[ii]['I'])

 print(framing[ii]['shape'])

 print('Moment =', str(M), 'k-in')

 print('Deflection =', str(round(dfc,2)), 'in\n')

>> W6X25

>> Moment = 720.0 k-in

>> Deflection = 2.79 in

>>

>> W6X20

>> Moment = 180.0 k-in

>> Deflection = 0.22 in

>>

>> W6X15

>> Moment = 281.25 k-in

>> Deflection = 0.78 in

Dictionaries help organize data that follow a similar structure. Keys for all entries in a dictionary

- for framing: shape, I, and span - must have identical names to access data in a for loop

(see Section 12).

Note: the round function was used in this script to round the deflection dfc to two decimal

spaces, to learn more about this function visit this link.

https://www.w3schools.com/python/ref_func_round.asp#:~:text=Python%20round%20()%20Function%201%20Definition%20and%20Usage.,use%20when%20rounding%20the%20number.%204%20More%20Examples

 PYTHON MANUAL | 8 DICTIONARIES 25

Example 8.3 Build and access nested dictionary structure

Set up dictionary entries, beams like in prior example.

beam1 = {'shape': 'W6X25', 'I': 53.4, 'span': 240} #in^4, in

beam2 = {'shape': 'W6X20', 'I': 41.4, 'span': 120} #in^4, in

Assign beams to each bay.

bay1 = [beam1, beam1, beam2]
bay2 = [beam2, beam1, beam2]
bay3 = [beam1, beam1, beam1]

Assign bays to a given floor.

roof_framing = [bay1, bay2, bay3]

Set up dictionary with the building floors.

project = {'name': 'Bldg 21', 'roof': roof_framing}

Output the value of interest - span of a beam in a bay of the

roof. Refer to the diagram below for nesting logic.

print('Span =',project['roof'][1][2]['span'], ' ft')
>> Span = 120 ft

Notice how datatypes like lists and dictionaries can form complex nested structures. Accessing

data within these nested structures can be challenging and it is crucial to understand how each

step is evaluated. At the same time, a dictionary like Example 8.3 with its nested structure can be

extremely advantageous since it would be possible to expand this data structure to have every

building on our university’s campus with each floor, every bay in that floor, and all the

individual beam elements per bay. Even though this would be an enormous amount of data it

would then be relatively easy to complete calculations and visualize information using for

loops.

Key: floor

Key: span

First index = [1]

Second index = [2]

 PYTHON MANUAL | 9 BUILT-IN FUNCTIONS 26

9. Built-In Functions

Python supports a few built-in functions. These functions can be used without importing

libraries. Some of the common built-in functions are shown in the table below. This section only

explores the function range in depth. For all of Python’s built-in functions and more

information go to https://docs.python.org/3/library/functions.html .

Function Description Example

abs() Absolute Value abs(-10) => 10

type() Returns the data type type('hello') => str

len() Length (returns number of elements in a list) len([7,8]) => 2

sum() Sums values in a list sum([1,5,3]) => 9

max() Returns maximum value in a list max([1,5,3]) => 5

min() Returns minimum value in a list min([1,5,3]) => 1

append() Adds element to end of list L = [4, 2]

L.append(1) => [4,2,1]

range() Returns sequence (See Section 9.1)

9.1 Range

Range produces a sequence of integers with consistent increment and is commonly used in

conjunction with a for loop. The range function can take one, two, or three integer arguments

(start value, stop value, step size). Of these only the stop values is required, if no other values are

given the start value will be assumed as zero and the increment size as one. The range will

include the start value but excludes the stop value (start value ≤ range < stop value).

For a step size of 2:

range(0,8,2) => (0,2,4,6)

If the step size is not specified (i.e., only two arguments), the step size is assumed to be 1.

range(0,8) => (0,1,2,3,4,5,6,7)

If only one argument is given, the range will use a starting value of 0 and a step size of 1.

range(8) => (0,1,2,3,4,5,6,7)

When setting up a for loop, the range function is commonly used with the len() function

because it is an easy way to loop through the indexes of a list. See Section 12 on for loops.

range(len([8,2,5,6])) => (0,1,2,3)

L = [4,8,1]

for ii in range(0,len(L)):

 print(L[ii])

>> 4

>> 8

>> 1

https://docs.python.org/3/library/functions.html

 PYTHON MANUAL | 10 FUNCTIONS 27

10. Functions

Functions are the heart of programing. They package up multiple lines of code to make Python

script more manageable. Functions make code easier to read and less repetitive.

In Python, any data type can be passed into a function. It is crucial to know the data types that

are used for the input and the output of a particular function. A function can take any number of

inputs, even no inputs. If more than one input is used, the order of the inputs is critical. A brief

resource for creating user-defined functions: https://www.programiz.com/python-

programming/user-defined-function .

10.1 Function Structure

Functions have two parts: the function definition and the function call. Functions are often

defined towards the top of the code or in a separate file. The function must be written or

imported before the function call. The function call results in “entry” to the function where

provided inputs are used to execute the lines of code and produce specified outputs. When the

function is done running, the code continues running from where the function was called.

To define a function, start a new line of code that starts with def followed by a function name.

Functions should have specific clear names that identify the purpose of the function. Function

names follow the same rules as variables names (see Section 4.1) and can be overwritten by

variables or other functions with the same name. The function name is followed by parentheses

containing input variables the function will use. This initial line of code is terminated by a colon.

The next line(s) inside the function are indented and are comprised of calculations and other

tasks conducted using the input variables. Also indented is the use of return at the end of the

function definition outputs data from a function and is saved using the variable name assigned on

the left-hand side of the equal sign in the function call. Data not returned will not be stored in the

Variable Explorer and cannot be accessed once the function call ends. Furthermore, return

immediately ends a function call.

Note: matching order of inputs and outputs between function definition and call are critical.

Function definition: Function Call:

def functionname (input1, input2): output1, output2 = functionname (input1, input2)

code to execute

return output1, output2

https://www.programiz.com/python-programming/user-defined-function
https://www.programiz.com/python-programming/user-defined-function

 PYTHON MANUAL | 10 FUNCTIONS 28

Example 10.1 demonstrates a function that requires no inputs. Any time the function is called

using hi() the word ‘hello’ is printed to the command window.

Example 10.1.1
def hi():

 print('hello')

hi()

>> hello

Example 10.2 shows a function with a single numerical input (float or integer) with the variable

name num. The function call provides a numerical input of 6 for num and this is used to compute

a value for calc, which is then returned and assigned the variable name result. After running

this code, you will find one variable named result with a value of 8 in the Variable Explorer.

Example 10.1.2
def add_two(num):

 calc = num + 2

 return calc

result = add_two(6)
print(result)

>> 8

Functions help us to avoid repeating code. Once a function is defined it can be called as many

times as is needed. Example 10.3 demonstrates a function being executed multiple times, where

it is carrying out the same calculation for different numerical inputs in a list. Specifically, the

for loop is used to pull a single value from list_of_nums and plug it in as num in the

function call. The function is executed and the output is appended to list_new_nums. This is

repeated for all values in the list_of_nums. After running this code, you will find one

variable named list_new_nums with five list entries in the Variable Explorer.

Example 10.1.3 Repeating Functions
def add_two(num):

 calc = num + 2

 return calc

list_of_nums = [8, 1, 5, 2, 2]

list_new_nums = []

for number in list_of_nums:

 list_new_nums.append((add_two(number)))

print(list_new_nums)

>> [10, 3, 7, 4, 4]

The append function adds the number to

the list (see Section 7.3 List Operations).

The function definition creates the function.

The function call activates the function.

 PYTHON MANUAL | 10 FUNCTIONS 29

Writing a few comments above the function definition helps to communicate what the function

does and how to use it. Often these comments state the purpose of the function as well as inputs

outputs. Example 10.4 demonstrates how to lay out these comments and specifically how to

indicate to the user what each input/output variable means and its datatype.

When passing multiple inputs to a function, the parameters are recognized by Python using order

(not variable name). For example, the first parameter in the function definition corresponds to the

first argument in the function call. The second parameter corresponds to the second argument in

the function call. The return statement uses order and works the same way.

After running this code, you will find two variables which are both lists named above and

below in the Variable Explorer.

Example 10.1.4 Commenting on Functions
Objectives: Sorts list into 2 lists by above and below value

Inputs: list (list[int]), value of interest (int)

Outputs: list of numbers above or equal to value (list[int])

and list of numbers below value (list[int])

def split_list(L_nums, value):

 L_above = []

 L_below = []

 for num in L_nums:

 if num >= value:

 L_above.append(num)

 else:

 L_below.append(num)

 return L_above, L_below

above, below = split_list([9,0,4,6,1,7], 3)
print(above)

print(below)

>> [9,4,6,7]

>> [0,1]

10.2 Importing Functions

Storing functions in separate files can make it easier to organize your code. When you want to

use a function from a separate file you must import it. There are two ways to import a function.

1. Importing the entire file that contains the function

2. Importing only the function from the file

Let us suppose we have a file named utility_functions.py that contains the three

functions we have written in Examples 10.1-10.4.

Notice that a function can take

any number of inputs and return

any number of outputs.

Inputs can be passed to a

function as variables.

 PYTHON MANUAL | 10 FUNCTIONS 30

Example 10.2.1 utility_functions.py
utility_functions file

def hi():

 print('hello')

def add_two(num):

 calc = num + 2

 return calc

def split_list(L_nums, value):

 L_above = []

 L_below = []

 for num in L_nums:

 if num >= value:

 L_above.append(num)

 else:

 L_below.append(num)

 return L_above, L_below

To be able to import the functions from utility_functions.py into the main script these

two files need to be stored in the same directory/folder. If the name for the file containing the

functions is long, it is possible to rename it to an abbreviation during the import command. In

Example 10.5.2 the utility_functions is abbreviated to ufxns.

Method 1: Importing the entire functions file

Example 10.2.2 main
main file

import utility_functions as ufxns

ufxns.hi()

print(ufxns.add_two(8))

>> hello

>> 10

Method 2: Importing individual function(s)

Example 10.2.3 main
main file

from utility_functions import hi

hi()

>> hello

When the entire file is imported the function call

requires the file name. The file name can be

shortened when it is imported.

Only the hi function has been

imported into the main file.

The file name is not required to call the

function when it is imported individually.

 PYTHON MANUAL | 10 FUNCTIONS 31

Example 10.2.4 main
main file

from utility_functions import hi, add_two

hi()

print(add_two(8))

>> hello

>> 10

10.3 Scope

Functions can add layers to programming. A function call results in “entry” to the function and

execution of the commands packaged within it and then proceeds with the rest of the main script

when the function finishes evaluation. Functions are “nesting” when they call other functions.

Scope refers to the fact that variables can be defined locally (inside a function) or globally

(outside functions). Functions have access to locally defined variables and any global variables

that were provided as inputs.

Example 10.3.1 Locally and Globally defined Variables
def example(x, y, string):

 slope = y/x

 print('Local x =',x)

 print(string, slope)
 return slope

x = 5

word = 'Answer ='

result = example(2, x, word)

print('Global x =',x)

print('Result =',result)

>> Local x = 2

>> Answer = 2.5

>> Global x = 5

>> Result = 2.5

It is best practice to avoid confusion like this in your code: where the local and global values of x

have the same name but different values. Give variables unique and descriptive names between

functions and your main script to provide clarity. Avoid giving variables the exact same name.

Multiple individual functions can be

imported at the same time.

The arguments (2, x, word) map to the

positions of the parameters (x, y, string).

Therefore, the global variable x maps to the

local variable y, not x.

Inside the function, the locally defined x takes

precedence over the global x. Outside the

function the locally defined x does not exist and

globally defined x takes precedence.

 PYTHON MANUAL | 11 IF, ELIF, AND ELSE STATEMENTS 32

11. If, Elif, and Else Statements

Conditional structures(if , elif, and else) have two abilities. First, they check existing

variables in the code for one or more conditional statements to produce a True or False

result. Then, that result is used to make decisions that can change the path of the code. This

allows for the execution of specified code under regulated conditions. For information on

Boolean conditions used to develop conditional statements see Section 5.2. A resource to learn

about if-elif-else statements: https://www.w3schools.com/python/python_conditions.asp .

11.1 If

Conditional structures start with an if statement. If the expression on the line with if evaluates

to True, the code indented under the if statement runs. If the expression is evaluated to

False, the indented code under the if statement does not run and proceeds to check any

subsequent elif or else statements and then the subsequent lines of un-indented code.

In Example 11.1.1 two independent if statements are evaluated. Since the first conditional

statement evaluates as True then the text ‘hi’ is printed; however, the second conditional

statement evaluates as False so ‘hello’ is never printed. This logic is described in the flowchart

below where a diamond represents a decision-making node, and the True/False branches

indicate what actions will be executed based on the result of each conditional if statement.

Example 11.1.1
if 5 > 3:

 print('hi')

if 1 > 3:

 print('hello')

>> hi

https://www.w3schools.com/python/python_conditions.asp

 PYTHON MANUAL | 11 IF, ELIF, AND ELSE STATEMENTS 33

11.2 Elif

elif is an abbreviation of “else if” and works very similarly to if. elif statements must have

an expression that evaluates to either True or False. Unlike if, elif is only evaluated if

the previous if and elif statements evaluate to False.

The order of the if and elif statements is important and test cases should be developed to

ensure that each of these conditional statements are executed in the desired order and produce the

anticipated result. To demonstrate this, the order of the conditional statements is swapped in

Example 11.2.1 and 11.2.2. The former produces the correct output, while the latter does not.

Example 11.2.1
a = 4

if a > 3:

 print('greater than 3')

elif a > 1:

 print('between 3 and 1')

>> greater than 3

Example 11.2.2
a = 4

if a > 1:

 print('between 3 and 1')

elif a > 3:

 print('greater than 3')

>> between 3 and 1

 PYTHON MANUAL | 11 IF, ELIF, AND ELSE STATEMENTS 34

The issue in Example 11.2.2 can be resolved by using Boolean Operators like and to produce a

two-part conditional statement shown in Example 11.2.3.

Example 11.2.3
a = 4

if a > 1 and a < 3:

 print('between 3 and 1')
elif a > 3:

 print('greater than 3')

>> between 3 and 1

11.3 Else

Unlike if and elif, else is never accompanied by an expression. The code indented under

the else statement will run every time all the if and elif statements evaluate to False. An

else statement allows for a “catch all” option, anything that passes the if and elif

statements will run the else statement.

Example 11.3.1
a = 2

if a > 3:

 print('greater than 3')

else:

 print('less than or equal to 3')

>> less than or equal to 3

Example 11.3.2 Determine outfit based on the weather.
temperature = 70 #degrees F

if temperature <= 45:

 clothing = 'winter jacket'

elif temperature <= 65:

 clothing = 'sweater'

else:

 clothing = 't-shirt'

print('The temperature is', str(temperature),

 ' F you should wear a', clothing)

>> The temperature is 70 F you should wear a t-shirt

if 1 < a < 3:

Another alternative to create a lower

and upper bound check without

needing a Boolean operator.

 PYTHON MANUAL | 11 IF, ELIF, AND ELSE STATEMENTS 35

11.4 Nesting

If statements can be nested to add additional branching paths. In Example 11.4.1 the first

assessment is whether a number is positive or negative, and the second is whether it is greater

than |±3|. There are different commands that get executed based on the True/False result at

each of these decision-making nodes as illustrated in the flowchart below.

Example 11.4.1
x = -2

if x >= 0:

 print('positive')

 if x < 3:

 print('small')

else:

 print('negative')

 if x < -3:

 print('large')

>> negative

 PYTHON MANUAL | 11 IF, ELIF, AND ELSE STATEMENTS 36

 PYTHON MANUAL | 12 FOR LOOPS 37

12. For Loops

For loops cycle or iterate through code. They are useful for repeated operations because they

execute the same code on each iteration and are frequently used to iterate through lists. However,

Python also allows iteration through other variable types like 1-D arrays, 2-D matrices,

dictionaries with nested information, and other objects. This manual will focus on the use of for

loops to iterate through lists and arrays. A resource to learn about for loops:

https://www.w3schools.com/python/python_for_loops.asp .

12.1 For Loop Structure

To define a for loop, start a new line of code that starts with the word for followed by a

counter named according to convention described in Section 4.1. This is followed by the word

in and a list of values (referred to as range list) that the counter will use to iterate. The most

common approach to setting the range list uses the range function described in Section 9.1. This

initial line is terminated by a colon, and the next line(s) inside the for loop are indented.

 for counter in range:

 code to execute

When the loop starts, the counter variable is created and assigned the value of the first entry in

the range list. Then the indented code below the for loop runs and upon completion the second

element in the range list is assigned to the counter variable, overwriting the first. The for loop

continues iterating until there are no more entries in the range list. In this way, for loops are

bounded loops since they will stop automatically after iterating exactly the number of times as

specified in the range list. Then the un-indented code below the for loop block will run.

Suggestion for naming counters: use variable names that are easy to find with Ctrl + F and

reserved to use as for or while loop counters in your code like double letters (ii, jj) or ‘num’.

In Example 12.1, the range list [0,1,2,5] contains four elements, so the for loop will iterate

four times and execute a print statement on each iteration. This is illustrated in the flowchart

below, where the diamond is used to indicate the for statement evaluation.

Example 12.1.1
for ii in [0,1,2,5]:

 print(ii)

>> 0

>> 1

>> 2

>> 5

After you have run Example 12.1, notice how the counter variable ii is redefined each time the

for loop iterates: first ii = 0, then ii = 1, then ii = 2, and finally ii = 5.

https://www.w3schools.com/python/python_for_loops.asp

 PYTHON MANUAL | 12 FOR LOOPS 38

In Example 12.2, the range list L =[9,-1,2] contains three elements so there will be three

iterations executing two calculations and a print statement. Note that the loopnum += 1 is

shorthand for incrementing the variable by one, equivalent to loopnum = loopnum + 1.

Example 12.1.2 Using a for Loop to Sum a List

L = [9,-1,2]

total = 0

loopnum = 1

for num in L:

 total = total + num

 print('Loop #',loopnum,'total =',total)
 loopnum += 1

print('Final total=',total)
>> Loop # 1 total = 9

>> Loop # 2 total = 8

>> Loop # 3 total = 10

>> Final total = 10

It is common to use indexing with a for loop. One method of creating an iterable object of list

indexes is to use the built in functions len() and range(), see Section 7.1 and 9.

In Example 12.1.3, len(L) produces a value of 3 and so x = range(3) results in the counter x

being assigned the range list (0, 1, 2) and values that print on each loop are L[0], L[1], and L[2].

Example 12.1.3 Iterating by index using range()

L = [0.4,2.2,0.1]

for x in range(0,len(L)):

 print(L[x])

>> 0.4

>> 2.2

>> 0.1

An iterable object can be passed as a variable.

After the final loop finishes total is printed again

 PYTHON MANUAL | 12 FOR LOOPS 39

12.2 Nested Loops

Nested loops are very useful since they enable iteration through nested lists (like matrices). The

interior for loop will run through its entire range each time the exterior loop iterates once.

In Example 12.2.1, the exterior loop only iterates twice, once for each list in L. The interior loop

iterates through each element inside those lists (the first list L[0] = [20,75] has two elements and

the second list L[1] = [10,11,12] has three). The interior for loop can handle lists with different

lengths because it measures the length of each list with the len() function.

Example 12.2.1 Iterating Through a Nested List
L = [[20,75], [10,11,12]]

for aa in range(0,len(L)):

for bb in range(0,len(L[aa])):

print('a:',aa, 'b:',bb, 'item:', L[aa][bb])

>> a: 0 b: 0 item: 20

>> a: 0 b: 1 item: 75

>> a: 1 b: 0 item: 10

>> a: 1 b: 1 item: 11

>> a: 1 b: 2 item: 12

When a for loop is being used to calculate and store values in a new list, it is necessary to pre-

allocate a storage location of a known size for that list.

Example 12.2.2 shows one pre-allocation method numpy.zeros where an array or matrix of a

given size is prefilled with zeros if it is known that the for loop will generate numerical values

(float or integer). This is essentially equivalent to [0]*len (). Another option for mixed

datatypes [None]*len().If the size of an array or matrix is not known, append() from

Example 10.1.3 can be used. See Section 15.1 for details on NumPy library functions.

Example 12.2.2 Pre-allocating a List using numpy.zeros()

import numpy as np

matrix = np.zeros((3, 3))

print('Preallocated matrix = \n', matrix)

for row in range(0,len(matrix)):

for col in range(0,len(matrix[row])):

matrix[row][col] = 1.62

print('\n Filled matrix =\n', matrix)

>> Preallocated matrix =

>> [[0. 0. 0.]

>> [0. 0. 0.]

>> [0. 0. 0.]]

>>

>> Filled matrix =

>> [[1.62 1.62 1.62]

>> [1.62 1.62 1.62]

>> [1.62 1.62 1.62]]

 PYTHON MANUAL | 12 FOR LOOPS 40

12.3 Break

A break statement immediately ends and exits the loop. Aside from for loops, break

statements can be useful in terminating a while loop if it does not seem to be converging on an

answer and continuing to iterate indefinitely. More about while loops in Section 13.

In Example 12.3.1 the expectation is that since L = [0,1,2,3,4,5] contains 6 entries that

will be used for counter value num, then the for loop should complete 6 iterations. However,

once the counter value num is found to be equal 3 then the if statement will evaluate to be

True triggering the break statement and terminating the for loop. Then any lines of code

that are un-indented after the for loop will be executed next.

Example 12.3.1
L = [0,1,2,3,4,5]

for num in L:

if num == 3:

break

print(num)

>> 0

>> 1

>> 2

12.4 Continue

A continue statement skips the rest of the current iteration of the loop and starts the next

iteration of the loop.

The structure of Example 12.4.1 is similar to that of Example 12.3.1, but this time when the

counter value num is found to be equal 3 then the if statement will evaluate to be True

triggering the continue statement and skipping to the next iteration such that the only printed

value that is missing is 3.

Example 12.4.1
L = [0,1,2,3,4,5]

for num in L:

if num == 3:

continue

print(num)

>> 0

>> 1

>> 2

>> 4

>> 5

 PYTHON MANUAL | 13 WHILE LOOPS 41

13. While Loops

While loops, like for loops, cycle or loop through the same code multiple times. However,

there are key differences between while and for loops. While loops are unbounded loops

which means they do not have a preset number of iterations, rather a while loop is controlled

by a condition that evaluates to a Boolean (True or False). As long as the condition evaluates

to True the loop continues to run and terminates only when it evaluates to False.

While loops are especially useful for problems that require iterative solutions governed by a

convergence criterion such as in structural dynamics where you are finding the first eigenvalue

(natural frequency) and eigenvector (modeshapes) of a multi-degree-of-freedom system or for

nonlinear structural analysis methods.

13.1 While Loop Structure

To define a while loop, initialize the variable that will be used in the condition. Note that this

variable must produce a True result the first time the condition is evaluated, or the code

contained in the while loop will never be executed. Then start a new line of code that starts

with the word while followed by a condition using Boolean Operators described in Section

5.2. This initial line is terminated by a colon, and the next line(s) inside the while loop are

indented. Inside the while loop there must be at least one statement that updates the value of

the variable used in the condition, or the statement will keep evaluating as True and the while

loop will continue executing indefinitely. The while loop will iterate until the condition

evaluates to False. Then the un-indented code below the while loop block will run.

condition variable = value

while condition:

 code to execute, must include update to condition variable

Suggestion for naming condition variable (if also being used as a counter): use variable

names that are easy to find with Ctrl + F and reserved to use as for or while loop counters in

your code like double letters (ii, jj) or ‘num’.

In Example 13.1.1, ii is the variable used to evaluate the condition and count how many times

the while loop runs. This value is printed on each iteration of the loop. Since it is incremented

by a value of 1 on each loop, in a few iterations ii exceeds the value of 3 producing a False

outcome for the condition which results in termination of the while loop. This is illustrated in

the flowchart below, where the diamond is used to indicate the while condition evaluation.

Example 13.1.1
ii = 0

while ii < 3:

 ii = ii + 1

 print(ii)

>> 1

>> 2

>> 3

 PYTHON MANUAL | 13 WHILE LOOPS 42

While loops provide more control than for loops, and can always be used in place of a for

loop. Yet there are some cases where only while loops will work. In Example 13.1.2, the

function factors_of_two counts the number of times a value can be divided by two. Note

that in this example it is impossible to predetermine the number of iterations in the loop (tracked

by the condition variable divisions). In the example, you can see that an input value of 50

would require one iteration, where an input of 32 requires five.

Example 13.1.2 Write a function to determine how many times a number is divisible by two.
#Function definition using while loop

def factors_of_two(num):

 divisions = 0

 while num % 2 == 0:

 num = num/2

 divisions = divisions + 1

 return divisions

#Function call to run factors_of_two for multiple input values

val = [50, 32]

ans = [None]*(len(val))

for ii in range(0,len(val)):

 ans[ii]=factors_of_two(val[ii])

 print('Value =', val[ii], ', Iterations =', ans[ii])

>> Value = 50 , Iterations = 1

>> Value = 32 , Iterations = 5

 PYTHON MANUAL | 13 WHILE LOOPS 43

In Example 13.1.3, a while loop is used to calculate 𝜋 to a specified accuracy. In this example

it would also be impossible to predetermine the number of iterations and thus a for loop cannot

be used for this application either. In this case, the absolute value of the difference dif between

the previously pi_0 and currently pi_1 computed values is used to check convergence of the

solution to within a value of 0.001. This condition sets an acceptable tolerance of convergence

for an iterative solution process, which is a very common approach to controlling a while loop.

Example 13.1.3 Calculate 𝜋 for a specified accuracy.
n = 0

pi_1 = 0

dif = 1

while abs(dif) > 0.001:

 pi_0 = pi_1

 pi_1 += (-1)**n / (2*n + 1)

 dif = pi_1 - pi_0

 n += 1

print('Final Solution =', pi_1*4)

print('# of Iterations =',n)

>> Final Solution = 3.143588659585789

>> # of Iterations = 501

If you update the tolerance from 0.001 to 0.01, the final solution is 3.161197... in 51 iterations.

13.2 Manually Ending Program

It is possible to make a coding mistake that causes a while loop to iterate endlessly. If this

happens the process can be manually stopped by pressing Ctrl + C or by clicking the red square

above the command window (this indicator is red when your code is actively running and grayed

out when not). If the code is stuck running, it cannot be rerun until manually stopped.

 PYTHON MANUAL | 14 ACCESSING FILES 44

14. Accessing Files

It is often useful to import data from external files. Text files (.txt), data files (.dat), comma-

separated value files (.csv), and Excel spreadsheets (.xlsx) are common files for storing data. To

access a file, the file must be saved in the same folder as the Python file that is calling the data

file, or the file path must be specified. For information specifically on extracting data from an

Excel file see Section 15.4. Also, for information on how to access Excel files and read the data

from within those files, see Example 20.3.2 in Section 20.3.

The following table includes common functions for reading, writing, and manipulating data from

files when imported into Python. Any functions preceded by a period in this list require that the

filename precede the function name. See Example 14.2 for context with .read().

Function Description

numpy.loadtext() Opens .dat file as a list

open() Opens the file for a specified mode

.read() Reads text in file by character count

.write() Writes text into file

.split() Converts string into list of strings based on delimiter

.strip() Removes white space from beginning and end of file text

.join() Converts list to string with delimiter between elements

Example 14.1 Load .dat file
import numpy as np

data = np.loadtxt('ExampleData.dat ')

Example 14.2 Load and read .txt file
file = open('example.txt', 'r')

text1 = file.read(5)

text2 = file.read(3)

print(text1)

print(text2)

>> abcde

>> fgh

Notice that the open function requires two arguments. The first is the file. The second is the

mode of using the file. The most common modes are reading ('r') and writing ('w').

Also, notice that the read function internally keeps track of where it is in the file. The second

read function does not start at a but at f because abcde have already been read.

Example 14.3 Read comma delimited data using split
raw_data = '1.31,2.06,1.86,0.95'
L_data = raw_data.split(',')

print(L_data)

>> ['1.31', '2.06', '1.86', '0.95']

 PYTHON MANUAL | 14 ACCESSING FILES 45

The csv file is just a string of text with numeric values separated by commas like the raw_data

in Example 14.3. The split function assembles a list using the commas as markers to split up

the elements. CSV files use commas as delimiters. If the split function is not given an

argument, it will create a list using a space as the delimiter. The join function does the opposite

of the split function and concatenates strings from a list with a delimiter.

Example 14.4 Read space delimited data using split and concatenate with join
sentence = 'one two red blue'

L_words = sentence.split()

print(L_words)

print(' fish '.join(L_words))

>> ['one', 'two', 'red', 'blue']

>> one fish two fish red fish blue

Motivation Station

Operations like split and join may seem unnecessary, however they are invaluable

when dealing with real files. For example, the data in a CSV file (Comma-Separated Values)

is delimited by commas. File.split(',') can be used to extract data from a CSV file

and list.join(',') can be used to create a CSV file.

One respondent from the Industry Survey said they developed “python scripts that extract data

from ETABS or manipulate ETABS input. Other Python scripts that read data from MS Office

software and other software to then perform calculations and produce graphs and reports.”

Another respondent said a Cal Poly alumni in their office “developed a program that takes our

company-specific AutoCAD plans and builds a RISA model from it.”

 PYTHON MANUAL | 15 LIBRARIES 46

15. Libraries

A library is a place full of books that people can access and use at any point. In programming

this is very similar: libraries store pre-compiled code that have been made available for others to

access and use to save time by not having to write code from scratch to execute certain functions.

The following chart summarizes a selection of the available open-source Python libraries.

 Source: numpy.org

Structural engineering often includes mathematical equations, matrix manipulation, plotting and

reading/writing datafiles. As such, we will take a close look at the NumPy, SciPy, Matplotlib,

and Pandas libraries in this section and the SymPy library in Section 17. Additional resources on

these libraries are provided in Section 24.

To use a library, you must import it at the beginning of your code and can give it an abbreviated

name. That abbreviated name can then be used to call the library functions such as: numpy (np),

scipy (sp), matplotlib.pyplot (plt), and pandas (pd) shown in examples in Section 15.1-15.4.

15.1 NumPy Library

NumPy is used to create array and matrices and perform various functions on them. While

similar in some functionality and naming to the Math library, NumPy is better equipped to use

arrays and has more functions available. Listed in the table below are some commonly used

functions within the NumPy library. Note that most of the functions would need to be written

with the library abbreviation followed by a period and then the function name with the needed

inputs inside parenthesis, such as np.array([x1,x2,x3]). Acceptable Data Types are:

x = integer, float, or for some cases an array; # = integer only; and arr = an array.

 PYTHON MANUAL | 15 LIBRARIES 47

Function Description Reference

array([x1,x2,x3]) Creates an array or matrix 16.1

argmin(arr) Returns the minimum value of arr

argmax(arr) Returns the maximum value of arr

nanargmin(arr) Returns the minimum of arr, ignoring NaNs

nanargmax(arr) Returns the maximum of arr, ignoring NaNs

insert(arr,#,x) Inserts ‘x’ into the ‘#’ spot of an array or matrix

delete(arr,#) Deletes element(s) in spot ‘#’ of an array or matrix 4.2

append(arr1,arr2) Appends an arr2 to the end of arr1 7.3

around(x, #) Rounds to nearest integer or to number of decimals defined

zeros(#) Defines an array or matrix of a given size full of zeros 16.1

ones(#) Defines an array or matrix of a given size full of ones 16.1

identity(#) Created an identity matrix of size # 16.1

real(x) Return the real part of a complex element 16.4

arange(#1,#2,#3) Creates an array from #1 to #2 counting by #3 16.1

size(arr) Returns the total number of values in arr 16.2

shape(arr) Returns (number of rows, number of columns) in arr 16.2

where() Pulls the indices that are true for a given argument 16.2

average(arr) Returns the average value in arr 16.2

concatenate(arr1,

arr2)

Appends arr2 to the end of arr1 by rows 16.2

vstack(arr1, arr2) Appends arr2 to the end of arr1 by rows 16.2

hstack(arr1, arr2) Appends arr2 to the end of arr1 by columns 16.2

reshape(arr, #1,#2) Reshapes arr to have ‘#1’ rows and ‘#2’ columns 16.3

transpose() Calculate the transpose of a matrix 16.3

exp(x) Calculate the exponential elementwise

absolute() Calculate the absolute value elementwise

degrees(x) Convert angles from x radians to degrees

radians(x) Convert angles from x degrees to radians

log(x) Natural logarithm elementwise

divide(x1,x2) Divide arguments elementwise

randomrand(#) Creates an array of defined shape full of random values

randomrandn(#) Creates an array of defined shape full of random values as

per the standard normal distribution

equal(arr1,arr2) Checks arr1 == arr2 elementwise, outputs a boolean array

not_equal(arr1,arr2) Checks arr1 != arr2 elementwise, outputs a boolean array

less(x1,x2) Checks if x1 < x2, outputs a boolean array

less_equal(x1,x2) Checks if x1 =< x2, outputs a boolean array

greater(x1,x2) Checks if x1 > x2, outputs a boolean array

greater_equal(x1,x2) Checks if x1 >= x2, outputs a boolean array

square(x) Returns the element-wise square of the input

sin(x) Trigonometric sine, elementwise.

cos(x) Trigonometric cosine, elementwise.

tan(x) Trigonometric tangent, elementwise.

sinh(x) Hyperbolic sine, elementwise.

cosh(x) Hyperbolic cosine, elementwise.

 PYTHON MANUAL | 15 LIBRARIES 48

tanh(x) Hyperbolic tangent, elementwise.

arcsin(x) Inverse sine, elementwise

arccos(x) Inverse cosine, elementwise

arctan(x) Inverse tangent, elementwise

pi Calls the number 𝜋

Example 15.1.1 Creation of array and matrix using NumPy library

import numpy as np

arr = np.array([1, 2, 3])

print('Array: \n ',arr)

mtrx = np.array([[1, 2, 3],

 [4, 5, 6]])

print('Matrix: \n ', mtrx)

>>Array:

>>[1 2 3]

>>Matrix:

>>[[1 2 3]

>>[4 5 6]]

Several libraries have sub-libraries that contain a subset of functions. An example in numpy

library is the linear algebra linalg sub-library. Functions within sub-libraries are called by the

library abbreviation followed by a period, then the sub-library name followed by another period,

and finally the function name with the needed inputs inside a set of parentheses. As an example,

to compute the inverse of a matrix the code: inverse = np.linalg.inv(mtrx).

15.2 Matplotlib Library

Matplotlib is used to create and format graphs. Listed below are some of the more commonly

used functions within its sub-library pyplot. Note that most of the functions would need to be

written with the library abbreviation followed by a period and then the function name with the

needed inputs inside parenthesis, such as plt.plot(x,y). Acceptable Data Types for

functions are: x , y = array of integers/floats with equal length, # = integer only, and others as

specified below. More on plotting with the pyplot sub-library in Sections 18 and 19.

Function Description Reference

autoscale() Auto scale the axis view to the data

axes() Add an axis to the current figure

axline((x1,y1),(x2,y2)) Add an infinitely long straight line through given points

axhline(y,xmin,xmax) Add a horizontal line across the axis

axvline(x,ymin,ymax) Add a vertical line across the axis

grid() Configure the grid lines 18.1

legend() Place a legend on the axis 18.2

The numpy library can be assigned abbreviation ‘np’.

Here the array function is being called using ‘np’.

 PYTHON MANUAL | 15 LIBRARIES 49

plot(x,y) Plot x vs y as lines or markers 18

polar(x,y) Make a polar plot

savefig() Save the current figure 18.4

scatter(x,y) Make a scatter plot of x vs y 18.1

subplot() Add a single subplot axis to a current figure 18.3

subplot2grid(shape,loc) Create a subplot at a specific location inside rectangular

grid

subplots(#1,#2) Create a figure and set of subplots with x1 rows and x2

columns (more efficient than subplot)

18.3

table() Add a table to the axes

text(x,y,text) Add text to the axes 18.1

xlabel(string) Set the label for the x-axis 18.1

xlim(x1,x2) Set the limits for the x-axis 18.1

xscale(#) Set x-axis scale

xticks(x,string) Set tick locations and labels on x-axis

ylabel(string) Set the label for the y-axis 18.1

ylim(min,max) Set the limits for the y-axis 18.1

yscale(#) Set y-axis scale

yticks(y,string) Set tick locations and labels on y-axis

Example 15.2.1 Creation of plot with Matplotlib.pyplot sub-library

import matplotlib.pyplot as plt

import numpy as np

x = np.array([1,2,3,5])

y = x**2

plt.plot(x,y)

15.3 SciPy Library

SciPy (Scientific Python) is a scientific computation library built off NumPy with functions that

simplify matrix calculations. Below are commonly used functions within the scipy sub-library

linalg. All these functions are written with the library abbreviation followed by a period, the

sub-library name followed by another period, and the function name with the needed inputs

inside parenthesis, such as sp.linalg.inv(mtrx). A matrix is the acceptable Data Type.

Function Description Reference

inv(mtrx) Computes inverse of matrix 16.3

det(mtrx) Computes determinant of matrix 16.3

norm(mtrx) Computes matrix norm

issymmetric(mtrx) Checks if matrix is symmetrical

eig(mtrx) Solves an eigenvalue problem 16.4

eigvals(mtrx) Computes eigenvalues

eigh(mtrx) Like eig(), but ensures eigenvalues are sorted 16.4

Here we are importing the matplotlib.pyplot sub-

library as ‘plt’. We could name a library anything

we want, but the names used here are standard to

what you will find in online documentation.

 PYTHON MANUAL | 15 LIBRARIES 50

cosm(mtrx) Compute the matrix cosine

sinm(mtrx) Compute the matrix sine

Example 15.3.1

import numpy as np

import scipy as sp

from scipy import linalg

mtrx = np.array([[1,2,3],

[4,10,6],

[7,8,9]])

inverse = sp.linalg.inv(mtrx)

15.4 Pandas Library

The Pandas library is also built off the NumPy library and is used for organization of data and

creating tables. It is often used in conjunction with Excel to read, write, and format cells. It holds

two data structures: series (one-dimensional) and data frames (two-dimensional). Below are

some common functions within the library.

Function Description Reference

read_csv() Reads a csv file

read_excel() Reads an Excel spreadsheet 20.3

rename() Renames a column or row

drop() Delete columns or rows

dropna() Delete missing columns or rows

drop_duplicates() Drops duplicate values in row or column

groupby() Groups data based on an applied function

merge() Merges columns to share rows

sort_values() Sorts row or column by given parameter (ie. ascending)

fillna() Fills missing spots with given value

Another way of accessing and editing Excel spreadsheets is through xlxswriter. (Note that

xlxswriter may not automatically be included on Spyder and may require a pip install). Unlike

Pandas, xlxswriter is not a library but rather a module. Modules in Python are like

standalone files, typically with only one specific purpose. Using the analogy of a library, a

module would be like a single book. They are imported and used the same way we use libraries.

Example 15.4.1

import pandas as pd

import xlsxwriter

We will go into more depth on Excel in Section 20.3

Here we are importing the scipy library as ‘sp’ and

then from this library explicitly importing the

‘linalg’ sub-library.

Here we are importing the pandas library and

naming it ‘pd’.

Here we are importing xlxswriter. By not redefining the

name, it will have to be called by its full name.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 51

16. Arrays and Matrices

Arrays and matrices are numpy objects and are some of the most commonly used data types for

analysis. They differ from a list in that they contain homogeneous elements, meaning you cannot

have different data types. This allows for easy storage of numerical values and makes it possible

to solve more complex problems such as those involving modal analysis for structural dynamics

applications. We will go over how to initialize different types of arrays and matrices, and various

methods for manipulating them.

16.1 Initializing an Array or Matrix

Aside from hard coding values for an array or matrix, there are many helpful functions to quickly

define matrices filled with zeros, ones, or an identity matrix which we will cover in this section.

Three approaches to initialize an array are covered in Example 16.1.1, since the goal with coding

is to avoid hardcoding whenever possible. Note that np.linspace is inclusive of the stop

value but np.arange is not. If a certain increment size is desired for the array, it is often

easier to control by using the option np.arange.

Hardcoding:

var = np.array([array values separated by commas])

Using np.linspace: start value ≤ var ≤ stop value

var = np. linspace(start value, stop value, # of values in array)

Using np.arange: start value ≤ var < stop value

var = np. arange(start value, stop value, increment size)

Example 16.1.1 Create an array from 0 to 30 counting by 3 first by hardcoding, then using

linspace and arange.

import numpy as np

a = np.array([0,3,6,9,12,15,18,21,24,27,30])

b = np.arange(0,33,3)

c = np.linspace(0,30,11)

d = np.linspace(0,30,11, dtype = int)

print('a=',a,'\nb=', b ,'\nc=', c,'\nd=', d)

>>a= [0 3 6 9 12 15 18 21 24 27 30]

>>b= [0 3 6 9 12 15 18 21 24 27 30]

>>c= [0. 3. 6. 9. 12. 15. 18. 21. 24. 27. 30.]

>>d= [0 3 6 9 12 15 18 21 24 27 30]

linspace will create an array of

float objects unless you redefine the

data type using dtype.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 52

Approaches for initializing matrices are presented in Example 16.1.2. Some like np.zeros are

useful for pre-allocating storage space to populate during nested for loops (see Section 12.1).

Hardcoding:

mtrx = np.array([[values for 1st row separated by commas],

 [values for 2nd row separated by commas]])

Matrix of Zeros, Ones, Random Numbers:

mtrx = np. zeros([# of rows, # of columns])

mtrx = np. ones([# of rows, # of columns])

mtrx = np. random.rand(# of rows, # of columns)

Identity Matrix: assumes square shape (# rows = # columns)

mtrx = np. identity(size)

Example 16.1.2 Create the following 3x3 matrices: hardcode values from 1-9, full of zeros, full

of ones, full of random numbers, and the identity matrix.

import numpy as np

a = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9]])

b = np.zeros([3,3])

c = np.ones([3,3])

d = np.random.rand(3,3)

e = np.identity(3)

print('a=', a,'\n\nb=', b,'\n\nc=', c,'\n\nd=', d,'\n\ne=', e)

>>a= [[1 2 3]

>> [4 5 6]

>> [7 8 9]]

>>

>>b= [[0. 0. 0.]

>>[0. 0. 0.]

>>[0. 0. 0.]]

>>

>>c= [[1. 1. 1.]

>>[1. 1. 1.]

>>[1. 1. 1.]]

>>

>>d= [[0.15422338 0.46428684 0.24565437]
>>[0.07428929 0.52856389 0.7034907]

>>[0.31062592 0.22110742 0.18784994]]

>>

>>e= [[1. 0. 0.]

>>[0. 1. 0.]

>>[0. 0. 1.]

This will produce a different result each time it

is run. np.random.rand produces values

from 0 to 1. These can be scaled up or you can

use np.random.randint(a, size =

(3,3)) which will produce values from 0 to a.

Filling an array with zeros is preferred to filling

with ‘NaN’ or “Not a number”, as this can lead to

issues later since NaN is not recognized the same

way as a value.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 53

16.2 Indexing and Determining the Length of an Array or Matrix

Indexing is used to extract parts of a matrix in structural analysis, such as in static condensation

or partitioning a matrix. Evaluating the length or size of a matrix is also a very common practice

as this value is used to create a for loop with the appropriate number of iterations. Below is a

visual of how Python assigns indices to a matrix where the convention is [row #, column #].

Indexing begins at zero for the rows and columns.

A colon can be used to call a range:

 [0, :] means Row 0 and all Columns

 [:, 1] means all Rows and Column 1

[0:2, 1:3] means Rows 0-1 and Columns 1-2

since 0 ≤ rows < 2 and 0 ≤ columns <3

(inclusive of start value but not stop value)

Also helpful is the index -1, which calls the last

index of an array or matrix which is useful when

you do not know the final index number.

Example 16.2.1 Given the following 4x4 stiffness matrix, print a) the first and last row,

b) the total number of values in the matrix, c) the number of rows and columns using len and

shape, and d) partition as shown where Ktt, Kto, Kot and Koo are 2x2.

K = np.array([[14.094, -1.5660, -234.90, 78.300],

 [-1.5660, 1.5660, -78.300, -78.300],

 [-234.90, -78.300, 15660, 2610.0],

 [78.300, -78.300, 2610.0, 5220.0]])

import numpy as np

K = np.array([[14.094, -1.5660, -234.90, 78.300],

 [-1.5660, 1.5660, -78.300, -78.300],

 [-234.90, -78.300, 15660, 2610.0],

 [78.300, -78.300, 2610.0, 5220.0]])

#Part a

first = K[0,:]

last = K[-1,:]

print('\nPart a:')

print('First Row =', first, '\nLast Row =', last)

#Part b

num = np.size(K)

print('\nPart b:')

print('\nNumber of Values = ', num)

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 54

#Part c

rows1, cols1 = np.shape(K)

print('\nPart c:')

print('Shape Fxn: # Rows = ', rows1, ', # Cols = ', cols1)

rows2 = len(K)

cols2 = len(K[0,:])

print('Length Fxn: # Rows = ', rows2, ', # Cols = ', cols2)

#Part d

Ktt = K[0:2,0:2]

Kto = K[0:2,2:4]

Kot = K[2:4,0:2]

Koo = K[2:4,2:4]

print('\nPart d:')

print('Ktt = ', Ktt, '\n\nKto = ', Kto, '\n\nKot = ', Kot,

'\n\nKoo = ', Koo)

>>Part a:

>>First Row = [14.094 -1.566 -234.9 78.3]

>>Last Row = [78.3 -78.3 2610. 5220.]

>>

>>Part b:

>>Number of Values = 16

>>

>>Part c:

>>Shape Fxn: # Rows = 4 , # Cols = 4

>>Length Fxn: # Rows = 4 , # Cols = 4

>>

>>Part d:

>>Ktt = [[14.094 -1.566]

>> [-1.566 1.566]]

>>

>>Kto = [[-234.9 78.3]

>> [-78.3 -78.3]]

>>

>>Kot = [[-234.9 -78.3]

>> [78.3 -78.3]]

>>

>>Koo = [[15660. 2610.]

>> [2610. 5220.]]

If you did not know the indices to partition the matrix you could use the where function, which

will evaluate the indices of a matrix that fit a certain condition. Another helpful function is

concatenate, which can combine multiple arrays or matrices. Example 16.2.2 will

demonstrate both of these.

Note that in all instances, the row(s) are referenced

first, followed by the column(s) separated by a comma.

0:2 calls rows/columns 0 and 1.

Avoid hardcoding, if you know the indices store them

in variable(s) and call them, e.j. Koo=K[a:b,c:d].

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 55

Example 16.2.2 For a 4x4 matrix with random numbers between 0-100: (a) use the where

function to find indices containing a value higher than the average value for the matrix. Print

indices and values, (b) create a second 4x4 matrix and concatenate with the first matrix, first as

additional rows then as additional columns. (c) delete the second column of the second matrix.

import numpy as np

part a

matrix1 = np.random.randint(100,size = (4,4))

print('\nPart a:')

print('Matrix 1: \n', matrix1)

avg = np.average(matrix1)

print('\nAverage = \n', avg)

indices = np.where(matrix1 > avg)

print('\nIndices: ', indices)

print('\nValues: ', matrix1[indices])

part b

matrix2 = np.random.randint(100,size = (4,4))

print('\nPart b:')

print('Matrix 2: \n', matrix2)

conc1 = np.concatenate((matrix1, matrix2))

conc2 = np.concatenate((matrix1, matrix2), axis=1)

print('\nConcatenate as rows: \n', conc1, '\n\nConcatenate as

columns: \n', conc2)

part c

matrix3 = np.delete(matrix2,1,1)

print('\nPart c:')

print('Deleting Second Column: \n', matrix3)

An alternate way to achieve the concatenation to add rows or columns, indicated above in red, is

by using the .vstack() and .hstack() functions:

conc1 = np.vstack((matrix1, matrix2)) #adds rows

conc2 = np.hstack((matrix1, matrix2)) #adds columns

The where function only pulls the

indices, to display the values you must

call those values within your matrix.

concatenate defaults to

axis 0 (adding after the rows).

Setting axis = 1 will add

the values after the columns.

np.delete inputs are (array/matrix

name, row/column number, axis

number) Where axis number= 0 for

rows or 1 for columns.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 56

>>Part a:

>>Matrix 1:

>> [[28 14 33 26]

>> [85 31 78 81]

>> [69 5 67 97]

>> [96 96 24 89]]

>>

>>Average =

>> 57.4375

>>

>>Indices: (array([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype=int64),

>>array([0, 2, 3, 0, 2, 3, 0, 1, 3], dtype=int64))

>>

>>Values: [85 78 81 69 67 97 96 96 89]

>>

>>Part b:

>>Matrix 2:

>> [[84 4 42 61]

>> [38 32 3 71]

>> [90 4 96 28]

>> [28 36 17 26]]

>>

>>Concatenate as rows:

>> [[28 14 33 26]

>> [85 31 78 81]

>> [69 5 67 97]

>> [96 96 24 89]

>> [84 4 42 61]

>> [38 32 3 71]

>> [90 4 96 28]

>> [28 36 17 26]]

>>

>>Concatenate as columns:

>> [[28 14 33 26 84 4 42 61]

>> [85 31 78 81 38 32 3 71]

>> [69 5 67 97 90 4 96 28]

>> [96 96 24 89 28 36 17 26]]

>>

>>Part c:

>>Deleting Second Column:

>> [[84 42 61]

>> [38 3 71]

>> [90 96 28]

>> [28 17 26]]

The indices are presented in two arrays since we

have a 2-dimensional matrix. The first array

contains the row number, the second contains the

respective column number.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 57

16.3 Performing Basic Matrix Operations

16.3.1 Adding and Subtracting Matrices

Adding or subtracting a scalar to a matrix will add or subtract each matrix element by that value

and return a matrix of the same size. Adding or subtracting a matrix from another matrix of the

same size will return a matrix of the same size with the sum or difference of the corresponding

matrix values. Finally, adding, or subtracting arrays of the same row or column length as a

matrix will add or subtract the array values in order across the rows (or columns if manipulated

as shown below) of the matrix.

Example 16.3.1

import numpy as np

a = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9]])

b = a+1

c = a-1

d = a+a

e = a-a

arr = np.array([1,2,3])

f = a + arr

g = (a.T + arr).T

print("a+1 = \n", b)

print("\na-1 = \n", c)

print("\na+a = \n", d)

print("\na-a = \n", e)

print("\na+arr = \n", f)

print("\na+arr column = \n", g)

>>a+1 =

>> [[2 3 4]

>> [5 6 7]

>> [8 9 10]]

>>

>>a-1 =

>> [[0 1 2]

>> [3 4 5]

>> [6 7 8]]

>>

>>a+a =

>> [[2 4 6]

>> [8 10 12]

>> [14 16 18]]

>>a-a =

>> [[0 0 0]

>> [0 0 0]

>> [0 0 0]]

>>

>>a+arr =

>> [[2 4 6]

>> [5 7 9]

>> [8 10 12]]

>>

>>a+arr column =

>> [[2 3 4]

>> [6 7 8]

>> [10 11 12]]

Altneratively, arr could be initialized as a vertical array and

you would not have to use the transpose function. Transpose

of a matrix is covered in more depth in Section 16.3.3.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 58

16.3.2 Multiplying Matrices

Multiplying or dividing a matrix by a scalar will simply multiply or divide each matrix element

by that value and return a matrix of the same size as shown in Example 16.3.2.

Example 16.3.2

import numpy as np

a = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9]])

b = a*2

c = a/2

print('a*2= \n',b)

print('\n a/2= \n',c)

>>a*2 =

>> [[2 4 6]

>> [8 10 12]

>> [14 16 18]]

>>

>>a/2 =

>> [[0.5 1. 1.5]

>> [2. 2.5 3.]

>> [3.5 4. 4.5]]

Example 16.3.3 covers three methods for multiplying two matrices: *, @, or np.matmul().

Using @ and np.matmul() and will produce the same result, which is the dot (matrix)

product between two matrices. Using the @ symbol is preferred as it makes for a more concise

code. Using * will simply return the product between the corresponding values in each matrix.

Example 16.3.3 Create identical 3x3 matrices ‘a’ and ‘b’, and 3x1 array ‘x’. Print the result of

multiplying ‘a’ and ‘b’, then ‘a’ and ‘x’ using the three methods mentioned above.

import numpy as np

a = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9]])

b = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9]])

c = a*b

d = a@b

e = np.matmul(a,b)

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 59

print('\na*b =\n',c,'\n\na@b =\n',d,'\n\nnp.matmul(a,b) =\n',e)

x = np.array([1,2,3])

c = a*x

d = a@x

e = np.matmul(a,x)

print('\na*x =\n',c,'\n\na@x =\n',d,'\n\nnp.matmul(a,x) =\n',e)

>>a*b =

>>[[1 4 9]

>> [16 25 36]

>> [49 64 81]]

>>

>>a@b =

>> [[30 36 42]

>> [66 81 96]

>> [102 126 150]]

>>

>>np.matmul(a,b) =

>> [[30 36 42]

>> [66 81 96]

>> [102 126 150]]

>>a*x =

>> [[1 4 9]

>> [4 10 18]

>> [7 16 27]]

>>

>>a@x =

>> [14 32 50]

>>

>>np.matmul(a,x) =

>> [14 32 50]

16.3.3 Transpose of a Matrix

The transpose of a matrix is obtained by changing the rows to columns and column to rows. The

main methods for achieving this are by using .T, np.transpose(), and .reshape().

Using .T and np.transpose works on 2-D matrices; however, they have no effect on 1-D

arrays. That is where it becomes helpful to use .reshape(), which reassigns the number of

rows and columns.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 60

Example 16.3.4 Create a 3x4 matrix ‘a’ and print the result of using .T and np.transpose(). Then

use .reshape() to convert it into a matrix of 2 rows and 6 columns. Create a 3x1 array ‘x’ and

print the result of using .T and np.transpose(), then use reshape to convert it into a 1x3 array.
import numpy as np

a = np.array([[1, 2, 3],

 [4, 5 ,6],

 [7, 8, 9],

 [10,11,12]])

x = np.array([1,2,3])

f = a.T

g = np.transpose(a)

h = a.reshape(2,-1)

print('\na.T =\n',f,'\n\nnp.transpose(a) =\n',g,'\n\na.reshape()

=\n',h)

f = x.T

g = np.transpose(x)

h = x.reshape(-1,1)

print('\nx.T =\n',f,'\n\nnp.transpose(x) =\n',g,'\n\nx.reshape()

=\n',h)

>>a.T =

>> [[1 4 7 10]

>> [2 5 8 11]

>> [3 6 9 12]]

>>

>>np.transpose(a) =

>> [[1 4 7 10]

>> [2 5 8 11]

>> [3 6 9 12]]

>>a.reshape() =

>> [[1 2 3 4 5 6]

>> [7 8 9 10 11 12]]

>>

>>x.T =

>> [1 2 3]

>>

>>np.transpose(x) =

>> [1 2 3]

>>

>>x.reshape() =

>> [[1]

>> [2]

>> [3]]

The input (2,-1) will reshape ‘a’ into a matrix with 2 rows

and the -1 will result in calculating the necessary number

of columns (12 entries in ‘a’ divided by 2 rows results in

6 columns).

Note that .T and np.transpose() have no effect on a 1-D array.

The input (-1,1) will reshape ‘x’ into an array with -1 the

calculated necessary number of rows and 1 column

(3 entries in ‘x’ divided by 1 column results in 3 rows).

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 61

16.3.4 Inverse and Determinant

The functions for the inverse and determinant of a matrix are np.linalg.inv() and

np.linalg.det() respectively.

Example 16.3.5 Determine equivalent stiffness matrix (Kequiv = Ktt – KtoKoo
-1Kto

T) of the

K matrix from Example 16.2.1, then take the determinant of Kequiv.

import numpy as np

K = np.array([[14.094, -1.5660, -234.90, 78.300],

 [-1.5660, 1.5660, -78.300, -78.300],

 [-234.90, -78.300, 15660, 2610.0],

 [78.300, -78.300, 2610.0, 5220.0]])

Ktt = K[0:2,0:2]

Kto = K[0:2,2:4]

Kot = K[2:4,0:2]

Koo = K[2:4,2:4]

K_equiv = Ktt - Kto@np.linalg.inv(Koo)@Kto.T

print('K equivalent = \n', K_equiv)

print('\nDeterminant = ', round(np.linalg.det(K_equiv),4))

>> K equivalent =

>> [[7.68763636 -1.13890909]

>> [-1.13890909 0.28472727]]

>>

>> Determinant = 0.8918

16.4 Solving Eigenvalue Problems

The Python SciPy library contains two functions to help solve eigenvalue problems: eig and

eigh. Both use two matrices as inputs and output their eigenvalues and eigenvectors. However,

eigh automatically sorts values in ascending order while eig does not. This is useful in solving

natural frequencies and mode shapes for structural dynamics problems where order is relevant.

Example 16.4.1 Assume the matrices represent mass and stiffness for a structure. Characterize

its dynamic properties by solving for the eigenvalues (natural frequencies) and eigenvectors

(modeshapes) using eig and eigh. Print the values for each and implement code that will sort

the results from eig. Then compare to the output from eigh that automatically sorts results.

M = np.array([[.300,0,0],[0,.300,0],[0,0,1200]])

K = np.array([[100,0,6000],[0,200,0],[6000,0,3000000]])

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 62

import numpy as np

import scipy as sp

from scipy import linalg

M = np.array([[.300,0,0],[0,.300,0],[0,0,1200]])

K = np.array([[100,0,6000],[0,200,0],[6000,0,3000000]])

eig

[eigval, eigvec] = sp.linalg.eig(K,M)

print('eig result (unsorted): \n\nEigenvalues: ', eigval.real,

'\n\nEigenvectors: \n', eigvec)

Sorting eig

idx = np.argsort(eigval)

eigval = eigval[idx]

eigvec = eigvec[:, idx]

print('\n\n\neig result (sorted): \n\nEigenvalues: ',

eigval.real, '\n\nEigenvectors: \n', eigvec)

eigh

[eigval2, eigvec2] = sp.linalg.eigh(K,M)

print('\n\n\neigh result: \n\nEigenvalues: ', eigval2,

'\n\nEigenvectors: \n', eigvec2)

>> eig result (unsorted):
>>

>> Eigenvalues: [288.12286552 2545.21046782 666.66666667]

>>

>> Eigenvectors:

>> [[-0.99999745 -0.99394003 0.]

>> [-0. -0. 1.]

>> [0.00226052 -0.10992366 0.]]

>>

>>

>> eig result (sorted):

>>

>> Eigenvalues: [288.12286552 666.66666667 2545.21046782]

>>

>> Eigenvectors:

>> [[-0.99999745 0. -0.99394003]

>> [-0. 1. -0.]

>> [0.00226052 0. -0.10992366]]

.real pulls just the real part of a complex value, otherwise

there may be inaccurate results or a math domain type error.

np.argsort sorts values of an array from smallest to

largest and outputs their indices.

 PYTHON MANUAL | 16 ARRAYS AND MATRICES 63

>> eigh result:

>>

>> Eigenvalues: [288.12286552 666.66666667 2545.21046782]

>>

>> Eigenvectors:

>> [[-1.80736415 0. -0.25839533]

>> [0. -1.82574186 0.]

>> [0.00408559 0. -0.02857694]]

Note: while the eigenvector results seem different between eig and eigh, even when sorted, it

should be noted that these are interpreted as relative displaced shapes (mode shapes) when

characterizing a structure’s dynamic response. If the eigenvectors from eigh are normalized by

taking the values of each column of the matrix and dividing by the value in that column’s first

row, the resulting matrix would be identical to that produced by eig after sorting.

 PYTHON MANUAL | 17 SYMPY LIBRARY 64

17. SymPy Library

The SymPy library can be thought of as a cross between symbols and numpy. SymPy allows us

to solve the same types of problems as in NumPy but using symbolic variables rather than

numbers. This is helpful when we are more interested in the generic solution rather than the

specific, numerical one. Once you have a symbolic equation, SymPy can also be used to

substitute in values by using the function subs. It is also possible to differentiate or integrate

symbolic expressions.

In Example 17.1(a), we develop the symbolic expression for the equation for a line: y = mx + b.

To create this symbolic expression, the symbols function is used to create the desired

variables. For the line of code with the symbols function, the order of names on the left-hand

side of the equals sign must match the inputs in the parentheses, that name itself does not have to

match in terms of spelling or capitalization but is recommended. Following these guidelines

ensures that symbolic expressions and substitution are executed correctly in the rest of the code.

Example 17.1(a) Create symbolic variables and use for a symbolic math expression

import sympy as sy

m, x, b = sy.symbols('m x b')

y = m*x + b

print('y =',y)

>>y = b + m*x

In Example 17.1(b), we can then use the subs function to insert a numerical value (or another

SymPy symbol) into a symbolic math expression for a given symbolic variable. This does not

alter the original symbolic expression, so it is necessary to save the result of the substitution

under a new variable name. The first argument of subs function is the symbolic variable name

and the second argument is the numerical value to plug in for that symbolic variable. Two

examples are shown to demonstrate the difference in the syntax for substituting a single variable

versus multiple variables.

Example 17.1(b) Substitute in values for symbols in a symbolic expression

y2 = y.subs(m,5)

y3 = y.subs([(m, 5), (b, 10)])

print('y2 =',y2)

print('y3 =',y3)

>>y2 = b + 5*x

>>y3 = 5*x + 10

Note the differences in how input is specified for

single versus multiple variable substitution.

 PYTHON MANUAL | 17 SYMPY LIBRARY 65

Example 17.2(a) Create a script that solves for the shear and moment equations (using

integration) of the following simply supported beam in terms of x, w and L. Print the symbolic

equations then substitute the numerical values and solve for when x = 10 ft, and x = 15 ft.

import numpy as np

import sympy as sy

import matplotlib.pyplot as plt

x, w, L = sy.symbols('x w L')
Reactions

RA = (-w*L)/2

RB = RA

Shear

V0 = RA

V = sy.integrate(w,x) + V0

print('V(x) =', V)

Bending Moment

M0 = 0

M = sy.integrate(V, x) + M0

print('M(x) =', M)

Vcheck = sy.diff(M, x)

print('Check V(x) =', Vcheck)

Beam 1 solution

w1 = -12

L1 = 20

V1 = V.subs([(x,10),(w,w1),(L,L1)])
M1 = M.subs([(x,10),(w,w1),(L,L1)])

print('\nShear at x=10 (kips): ', V1)

print('Moment at x=10 (k-ft): ', M1)

V2 = V.subs([(x,15),(w,w1),(L,L1)])

M2 = M.subs([(x,15),(w,w1),(L,L1)])

print('Shear at x=15 (kips): ', V2)

print('Moment at x=15 (k-ft): ', M2)

Symbolic names do not have to match the variable

names, though it is recommended to avoid

confusion. The symbolic names are what will be

displayed in the command window, while the

variable name is what is used throughout the code.

The order matters in this assignment.

sy.integrate will take the integral of the first

input (w) with respect to the second input (x).

sy.diff will take the derivative of the first input

(M) with respect to the second (x).

 PYTHON MANUAL | 17 SYMPY LIBRARY 66

>>V(x) = -L*w/2 + w*x

>>M(x) = -L*w*x/2 + w*x**2/2

>>Check V(x) = -L*w/2 + w*x

>>

>>Shear at x=10 (kips): 0

>>Moment at x=10 (k-ft): 600

>>Shear at x=15 (kips): -60

>>Moment at x=15 (k-ft): 450

Example 17.2(b) demonstrates how to substitute an array of values into a symbolic variable by

using a SymPy function called lambdify. This essentially turns the symbolic equation into a

NumPy function, allowing you to plug in and solve for an array of values. This is often used as

an intermediate step to be able to plot information like deformations or forces in structural

members. Plotting is covered in Sections 18-19.

Example 17.2(b) Plot shear and moment diagrams from Example 17.2(a)

V3 = V.subs([(w,w1),(L,L1)])

M3 = M.subs([(w,w1),(L,L1)])

V_np = sy.lambdify(x, V3, 'numpy')

M_np = sy.lambdify(x, M3, 'numpy')

delta_x = .5

x_plot = np.arange(0, L1+delta_x, delta_x)

V_plot = V_np(x_plot)

M_plot = M_np(x_plot)

plt.figure()

plt.plot(x_plot,V_plot)

plt.title('Shear')

plt.xlabel('Distance x (ft)')

plt.ylabel('V(x) (kips)')

plt.grid()

plt.savefig('ShearPlot.png')

plt.figure()

plt.plot(x_plot,M_plot)

plt.title('Moment')

plt.xlabel('Distance x (ft)')

plt.ylabel('M(x) (k-ft)')

plt.grid()

plt.savefig('MomentPlot.png')

It is possible to use lambdify with multiple variables,

but graphing V and M the equations should have values

plugged in for all variables except x (substitute in w, L).

In lambdify the first input is the variable(s) to

define numerically, the second input is the

equation/function to be evaluated, and the third

input calls the numeric library to replace sympy

with (e.j., numpy,math,scipy).

Now that the symbolic expression V3 has been

lambdify-ed and saved as V_np, it possible to

plug an array x_plot in using V_np(x_plot) and

saving the result in an array V_plot.

Since x_plot and V_plot are now arrays

containing numeric values with the same length,

they can be plotted against each other.

 PYTHON MANUAL | 17 SYMPY LIBRARY 67

Output:

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 68

18. Plotting Line and Scatter Plots

Python has a wide range of plotting capabilities; in this section we will cover the most commonly

used plots useful for structural analysis: lines and scatter plots. There are many different libraries

that can be used to plot, but we will only be covering the matplotlib.pyplot sub-library

which is referred to with the abbreviation plt.

18.1 Plotting Basics

In this section we will go over how to use plt functions for line and scatter plots, and how to

edit the general appearance of a graph.

Example 18.1.1 Graph y = sin(x) where x = np.linspace(0,20,50). (See section 16.1

for more on using np.linspace).

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,20,50)

y = np.sin(x)

plt.plot(x, y)

Output:

When no formatting parameters are given in the code, Python will automatically generate a plot

with a scale that fits all your data.

Plots x vs y. Both are arrays of equal lengths

containing numerical values.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 69

Example 18.1.2 Add a plot title, axis labels and a grid to the graph from Example 18.1.1.

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,20,50)

y = np.sin(x)

plt.figure()

plt.plot(x, y)

plt.title('Sine(x) - Line Graph')

plt.xlabel('x')

plt.ylabel('sin(x)')

plt.grid()

Output:

This is used to create a new figure; all plots will

show up on this figure until plt.figure() is

used to create a new one. Additional parameters

can adjust figure size, colors, etc.

Creates the graph title. Additional parameters can

be used to change the color, size, font, and location.

Creates axes labels. Additional parameters can

change the color, size, font, and location.

Creates a grid aligning with tick marks.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylabel.html

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 70

Example 18.1.3 Edit the graph from Example 18.1.2 by changing the line color, style, and width.

Also add markers for each point and change their color, size, and shape. Add an arrow and text

box on the graph and change the x and y limits.

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,20,50)

y = np.sin(x)

plt.figure()

plt.plot(x, y,

 color='blue',

 linestyle='dashed',

 linewidth = 3,

 marker='o',

 markerfacecolor='red',

 markersize = 6)

plt.title('Sine(x) - Line Graph')
plt.xlabel('x')

plt.ylabel('sin(x)')

plt.xlim(0, 15)

plt.ylim(-0.5, 1)

plt.arrow(11, .4, -1.5, -.2,

 head_width = 0.1,

 width = 0.01,

 color ='purple')

plt.text(10.5,.45,'A graph!')

plt.grid()

Output:

These are just some of the parameters to

change the plot line and marker styles.

There are many options for color,

linestyle, and marker.

Changes the x and y axis limits. Will

override whatever the range is for your x

and y plot inputs.

Adds an arrow. The first four values

indicate the arrow’s x-y coordinates: that

the tail is at (11, 0.4) and arrow head is

1.5 units to the left and 0.2 units down.

This can be used to create vectors.

Adds text ‘A graph!’ at x-y coordinates

(10.5, .45). Typically, it will be best not to

hardcode x-y coordinate values but set

them with respect to your data.

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/marker_reference.html

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 71

Example 18.1.4 Given the following x and y values, create a scatterplot. Edit the marker color,

shape, and size.

x = [3, 5, 6, 10, 12, 13, 17, 17, 19, 20]

y = [7, 9, 18, 20, 27, 25, 36, 27, 37, 42]

import numpy as np

import matplotlib.pyplot as plt

x = [3, 5, 6, 10, 12, 13, 17, 17, 19, 20]

y = [7, 9, 18, 20, 27, 25, 36, 27, 37, 42]

plt.figure()

plt.scatter(x, y,

 color ='black',

 linewidths = 2,

 marker ='^',

 edgecolor ='red',

 s = 200)
plt.title('Scatter Plot')

plt.xlabel('x')

plt.ylabel('y')

plt.grid()

Output:

Changes the marker size.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 72

18.2 Multiple Curves on a Single Plot

Using consecutive plot functions without defining a new figure (using plt.figure) will result

in all data being plotted on one set of axes. Plots need not be of the same type to appear on the

same figure.

Example 18.2.1 Given the following sets of x and y values, create a line plot and a scatter plot

on the same axes. Provide a legend.

Graph 1: x1 = [5, 7, 6, 9, 13, 13, 15, 19, 20, 22, 24]

 y1 = [8, 9, 16, 17, 22, 27, 24, 37, 26, 37, 40]
Graph 2: x2 = [3, 5, 6, 10, 12, 13, 17, 17, 19, 20]
 y2 = [7, 9, 18, 20, 27, 25, 36, 27, 37, 42]

import numpy as np

import matplotlib.pyplot as plt

x1 = [5, 7, 6, 9, 13, 13, 15, 19, 20, 22, 24]

y1 = [8, 9, 16, 17, 22, 27, 24, 37, 26, 37, 40]

x2 = [3, 5, 6, 10, 12, 13, 17, 17, 19, 20]

y2 = [7, 9, 18, 20, 27, 25, 36, 27, 37, 42]

plt.figure()

plt.scatter(x1, y1, color='red', marker = '*', label='Graph 1')

plt.scatter(x2, y2, color='blue', marker = 'x', label='Graph 2')

plt.title('Two Plots in One!')

plt.xlabel('x')

plt.ylabel('y')

plt.grid()

plt.legend(loc = 'lower right')

Output

There are several built in locations for the

legend, or you can enter the precise

coordinates.

The name assigned to

label will display in the

legend. Otherwise, series

names can be provided in

the plt.legend

function itself.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 73

18.3 Subplots

Subplots allow us to create several different plots on separate axes in the same figure. Subplots

work similar to a matrix layout in that for a (3,2) subplot there will be 3 rows and 2 columns of

axes for a total of 6 graphs.

The use of the for loop in Example 18.3.1 allows four plots to be made in an efficient manner,

on each loop the ‘ii’ counter is updated and used to select a different:

• Array from ‘y’ (list containing numpy arrays of length 100) to plot against the ‘x’ array

• Title from the ‘title’ list

• Y-axis label from the ‘ylabel’ list

Example 18.3.1 Plot the shear and moment diagrams for (a) a cantilever beam and (b) a simply

supported beam. Put all four plots on a single figure in one column. (w = 0.05 klf and L = 20 ft)

import numpy as np

import matplotlib.pyplot as plt

w = 0.05 #klf

L = 20 #ft

x = np.linspace(0,L,100)

V_cant = w*L - w*x #cantilever shear

M_cant = -w*L**2/2 + w*L*x - w*x**2/2 #cantilever moment

V_ss = w*L/2 - w*x #simply supported shear

M_ss = w*L*x/2 - w*x**2/2 #simply supported moment

y = [V_cant, M_cant, V_ss, M_ss]

title =['Cantilever Shear Diagram', 'Cantilever Moment Diagram',

'Simply Supported Shear Diagram', 'Simply Supported Moment

Diagram']

ylabel=['V(x) (kips)', 'M(x) (kip-ft)','V(x) (kips)', 'M(x)

(kip-ft)']

[fig1, axs] = plt.subplots(4, 1, constrained_layout=True)

fig1.suptitle('Subplots', fontsize=25)

fig1.set_figheight(10)

for ii in range(0, len(axs)):

 axs[ii].plot(x, y[ii])

 axs[ii].set_title(title[ii], fontsize=15)

 axs[ii].set_xlabel('Distance x (ft)')

 axs[ii].set_ylabel(ylabel[ii])

 axs[ii].set_xlim(min(x),max(x))

 axs[ii].grid()

This sets the subplot arrangement as

4 rows and 1 column.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 74

Output:

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 75

There are three major changes in Example 18.3.2 to accommodate the fact that the plots will be

arranged in a 2x2 instead of 4x1 layout:

• A nested for loop is needed to create the plots in each row ‘ii’ and column ‘jj’.

Consequently, each function in the nested for loop now is preceded by axs[ii,jj].

Information on nested for loops can be found in Section 12.2.

• The order of items in lists ‘y’, ‘title’, and ‘ylabel’ have been updated to fill in the 2x2

plots correctly with the desired information.

• The variable ‘plotnum’ was developed as a counter to track which of the 4 plots is being

developed and to use the correct information from the lists ‘y’, ‘title’, and ‘ylabel’.

Example 18.3.2 Repeat Example 18.3.1, this time arranging the plots in a 2x2 with the cantilever

graphs on the left and simply supported graphs on the right.

import numpy as np

import matplotlib.pyplot as plt

w = 0.05 #klf

L = 20 #ft

x = np.linspace(0,L,100)

V_cant = w*L - w*x #cantilever shear

M_cant = -w*L**2/2 + w*L*x - w*x**2/2 #cantilever moment

V_ss = w*L/2 - w*x #simply supported shear

M_ss = w*L*x/2 - w*x**2/2 #simply supported moment

y = [V_cant, V_ss, M_cant, M_ss]

title =['Cantilever Shear', 'Simply Supported Shear','Cantilever

Moment','Simply Supported Moment']

ylabel=['V(x) (kips)','V(x) (kips)', 'M(x) (kip-ft)', 'M(x)

(kip-ft)']

[fig2, axs] = plt.subplots(2, 2, constrained_layout=True)

fig2.suptitle('Subplots', fontsize=20)

plotnum=0

for ii in range(0, axs.shape[0]):

 for jj in range(0, axs.shape[1]):

 axs[ii,jj].plot(x, y[plotnum])

 axs[ii,jj].set_title(title[plotnum], fontsize=12)

 axs[1,jj].set_xlabel('Distance x (ft)')

 axs[ii,jj].set_ylabel(ylabel[plotnum])

 axs[ii,jj].set_xlim(min(x),max(x))

 axs[ii,jj].set_ylim(1.05*min(y[plotnum]),

 1.05*max(y[plotnum]))

 axs[ii,jj].grid()

 plotnum += 1

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 76

Output:

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 77

18.4 Displaying and Saving a Plot

Displaying a Plot

Refer to instructions for plot display preferences in Section 3.2.

Saving a Plot

When creating a figure in Python, it will automatically display in the inline Plot window section

of the Spyder interface (or a separate window if the instructions in Section 3.2 were followed).

However, the figure will not be available anywhere else unless it is saved. From either the inline

plot or separate window it is possible to select the save icon to store a copy of the figure, but this

manual procedure would have to be executed every time a new figure is generated. The most

efficient approach to automatically name and save files is to include the plt.savefig()

function after the portion of your code that generates the plot(s).

The below line would save a previously created figure as a png file in the folder that your Python

script is located. Other file types that you can save as include jpg, pdf and svg.

plt.savefig('FigureName.png ')

An alternative is shown in Example 18.4.1 which demonstrates how to automatically save your

plots to a word document in the folder that your Python script is located using the docx library.

Example 18.4.1 Use a for loop to plot y = xii for ii = 0 to ii = 3. Have each plot display

automatically in a word document.

import numpy as np

import matplotlib.pyplot as plt

from docx import Document

from docx.shared import Inches

document = Document()

document.add_heading('Exporting Plots to Word')

x = np.linspace(0,10,100)

for ii in range(0,3):

 plt.figure()

 plt.plot(x, x**ii)

 plt.savefig('plot.png')

 document.add_picture('plot.png', width=Inches(4))

document.save('Example_18-4-1.docx')

Output: The following page is what is saved as ‘Example_18-4-1.docx’

This example is simplified, but you can -

and should - edit the display font, size,

etc. and each individual plot.

Opens a new word document.

Sets the width of each image to 4 inches.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 78

Exporting Plots to Word

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 79

18.5 Using Polyfit

The polyfit function within the NumPy library is used to create a line of best fit for a set of

data. It takes three required parameters: x array, y array and the desired degree of polynomial to

fit to the data. It creates an array of the coefficients for the best fit equations.

For coefficients = np.polyfit(x,y,2)then the resulting coefficients would

be an array with three values : [a, b, c], relating to the equation ax2 + bx + c.

Example 18.5.1 Plot a scatter plot of y = -x4 + 6x3 + 2x2 + 3 for -3 ≤ x ≤ 6 with 20 points. Use

polyfit to create and plot 3 different lines of best fit: 1st, 2nd, and 4th degree polynomial.

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-3.0, 6.0, 20)

y = -x**4 + 6*x**3 + 2*x**2 + 3

plt.figure()

plt.scatter(x, y, color='black', label='Scatter Plot')

#1st Degree polynomial

a, b = np.polyfit(x, y, 1)

y1 = a*x + b

plt.plot(x, y1, color='r', linestyle='--', label='1st Degree')

print('y1 =', a.round(2), 'x +', b.round(2))

#2nd Degree polynomial

a, b, c = np.polyfit(x, y, 2)

y2 = a*x**2 + b*x + c

plt.plot(x, y2, color='b', linestyle='--', label='2nd Degree')

print('y2 =', a.round(2), 'x^2 +', b.round(2), 'x +', c.round())

#4th Degree polynomial

a, b, c, d, e = np.polyfit(x, y, 4)

y4 = a*x**4 + b*x**3 + c*x**2 + d*x + e

plt.plot(x, y4, color='g', linestyle='--', label='4th Degree')

print('y4 =', a.round(2), 'x^4 +', b.round(2), 'x^3 +',

c.round(2), 'x^2 +', d.round(2), 'x +', e.round(2))

plt.title('Polyfit')

plt.legend()

plt.grid()

plt.savefig('polyfit1.png')

Plotting the scatter plot

The output of polyfit is stored in

individual coefficients (a, b). You can

instead, store these values in an array.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 80

>>y1 = 33.0 x + -11.03

>>y2 = -3.52 x^2 + 43.57 x + 7.0

>>y4 = -1.0 x^4 + 6.0 x^3 + 2.0 x^2 + 0.0 x + 3.0

Note that the 4th degree polyfit

line matches our initial input.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 81

18.6 Finding Roots

Two of the possible methods for finding the roots of a function or data set include the built-in

np.roots function and coding a routine with the np.where function. The np.roots

function is used for finding the roots of polynomials by taking the equation coefficients and

returning the x-values. For example, the code to find the roots of y = x2 – 4 would be as follows:

import numpy as np

roots = np.roots([1, 0, -4])

print(roots)

>> [2. -2.]

The disadvantages of using this method are that it only works for polynomials, you cannot set a

limit on the range of data to check (it will always check for all possible roots), and the roots are

not displayed in any particular order. For these reasons it may make more sense to create your

own method for finding roots. This can be done in many different ways, but the following

example will use the np.where function to find the x-values where the data changes signs.

Example 18.6.1 Given the equation y = -3x3 + x2 + 50x - 10 (where -5 < x < 5), determine the

roots using the np.roots and using np.where. Plot the results with root locations labeled.

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5, 5, 500)

y = -3*x**3 + x**2 + 50*x - 10

Using np.roots

roots1 = np.real(np.roots([-3, 1, 50, -10])).round(3)

print('Roots from np.roots: ', roots1)

Using np.where

index2 = np.where(np.sign(y[:-1]) != np.sign(y[1:]))[0]

roots2 = x[index2+1].round(3)
print('Roots from np.where: ', roots2)

#Plotting Roots

plt.figure()

plt.plot(x, y)

plt.ylim(y.min(), y.max())

for ii in range(0, len(roots1)):

 plt.vlines(x = roots1[ii],ymin = y.min(),ymax=0,color='red')

 plt.text(roots1[ii]+.1,0,roots1[ii])

plt.savefig('Roots.png')

np.where will return the values and the

datatype, so calling the first index will pull only

the values. Unlike np.roots, these values will

be indices, not the actual x-values. This is why

we are taking x[index] in the following line.

np.where is finding the index where

the sign of y changes by comparing the

sign of each index to the subsequent one

until they are not equal.

 PYTHON MANUAL | 18 PLOTTING LINE AND SCATTER PLOTS 82

>>Roots from np.roots: [-4.019 4.153 0.2]

>>Roots from np.where: [-4.018 0.21 4.158]

Motivation Station

This plotting section just scratched the

surface of what you can do with the

Matplotlib.pyplot sub-library. Shown left is a

graph that encapsulates a few more tools that

exist within the library: 3D figures,

colormaps, contour maps, and projections.

The code for this is provided in the

supplementary files in case you wanted to

play around with the parameters!

There are also ways to animate plots, add

images, sliders, and more that you can

explore.

 PYTHON MANUAL | 20 PRINTING 83

19. Bar Charts, Histograms and Pie Charts

In this section we will look at some of the other graph types that live within the

matplotlib.pyplot sub-library, namely the bar, hist, and pie functions.

19.1 Bar Charts

Like line and scatter plots, the bar function takes two required parameters, the first being the x

“values” (or labels) and the second being the corresponding magnitude to set the bar height.

Additional parameters can change bar labels, colors, sizes, and fonts.

Example 19.1.1 Given the following data, create a bar chart showing the number of students

enrolled in each course.

Course Name Number of Students

Reinforced Concrete Design 20

Timber Design 30

Steel Design 27

Foundation Design 22

Masonry Design 28

import numpy as np

import matplotlib.pyplot as plt

x = ['Reinforced Concrete Design', 'Timber Design', 'Steel

Design', 'Foundation Design', 'Masonry Design']

y = [20, 30, 27, 22, 28]

plt.figure()

plt.bar(x,y, width=0.8)

plt.title('Students Enrolled in Design Courses')

plt.xlabel('Course')

plt.ylabel('Number of Students')

plt.savefig('BarChart1.png')

Rather than create separate lists for your data like

in this example, consider using a dictionary. See

next example.

The default spacing between the center of each

bar is 1, so setting the width of the bars to 0.8 will

leave space between them.

 PYTHON MANUAL | 20 PRINTING 84

Output:

Notice how the course names overlap in the x-axis labels. One approach to resolving this is

rotating the labels: plt.xticks(rotation=45, ha="right")where ha stands for

horizontal alignment and indicates what part of the text will align with the tick mark. Adding this

and plt.tight_layout() prior to the plt.savefig('BarChart1.png') results in

the output shown below while avoiding the x-axis labels from getting cut off.

 PYTHON MANUAL | 20 PRINTING 85

Another possible solution is to make the bar chart horizontal using the barh function as shown

in Example 19.1.2.

Example 19.1.2 Change the bar graph from example 19.1.1 to be horizontal with labeled values.

import numpy as np

import matplotlib.pyplot as plt

coursedata = {'Reinforced Concrete Design':20, 'Timber

Design':30, 'Steel Design':27, 'Foundation Design':22, 'Masonry

Design':28}

x = list(coursedata.keys())

y = list(coursedata.values())

plt.figure()

plt.barh(x, y, color = ['green', 'blue'])

plt.title('Students Enrolled in Design Courses')

plt.xlabel('Number of Students', weight = 'bold')

plt.ylabel('Course', weight = 'bold')

for ii in range(0,len(x)):
 plt.text(y[ii], ii, y[ii])

plt.tight_layout()

plt.savefig('BarChart2.png')

Output:

Data is now stored in a dictionary rather than

creating individual lists. For more on dictionaries

see Section 8.

This will add the value label for each bar onto the

plot. Note that if you have a vertical bar graph the

coordinates of the text would be switched.

If parts of your plot or labels are being cut off,

using this function will compress it in a way that

will fit.

 PYTHON MANUAL | 20 PRINTING 86

Stacked Bar Charts

It is also possible to create stacked bar charts by adding a parameter bottom to the bar

function. This allows us to place data atop previous values. The following example shows two

subsets of data, but there can be an unlimited number of “stacks”.

Example 19.1.3 Create a stacked bar chart with students in each course (juniors vs. seniors).

Course Name Juniors Seniors

Reinforced Concrete Design 13 7

Timber Design 14 16

Steel Design 13 14

Foundation Design 8 14

Masonry Design 17 11

import numpy as np

import matplotlib.pyplot as plt

x = ['Concrete', 'Timber', 'Steel', 'Foundation', 'Masonry']

y1 = [13, 14, 13, 8, 17] #juniors

y2 = [7, 16, 14, 14, 11] #seniors

plt.figure()

plt.bar(x, y1, color='green')

plt.bar(x, y2, bottom=y1, color='blue')

plt.title('Students Enrolled in Design Courses')

plt.ylabel('Number of Students')

plt.legend(['Juniors', 'Seniors'])

plt.savefig('BarChart3.png')

If converting lists into a dictionary, insert the following after defining ‘x’, ‘y1’, and ‘y2’:

Organize List Data into Dictionary

coursedata={}

for ii in range(0,len(x)):

 coursedata[x[ii]]={}

 coursedata[x[ii]]['juniors']=y1[ii]

 coursedata[x[ii]]['seniors']=y2[ii]

Read from Dictionary to List

x_read = list(coursedata.keys())

y1 = [0]*len(x)

y2 = [0]*len(x)

for ii in range(len(x_read)):

 y1[ii] = coursedata[x_read[ii]]['juniors']

 y2[ii] = coursedata[x_read[ii]]['seniors']

 PYTHON MANUAL | 20 PRINTING 87

Output:

Multiple Bar Charts

By modifying bar widths and spacing we can plot multiple “sets” of bar charts. In the Example

19.1.4 students enrolled in courses (“categories”) will now be separated by quarter (“sets”).

Example 19.1.4 Create multiple bar charts on one plot, showing the number of students in each

course for different quarters. Use a legend to indicate the courses.

Course Name Fall Winter Spring

Reinforced Concrete Design 36 19 20

Timber Design 18 21 30

Steel Design 24 32 27

Foundation Design 18 25 22

Masonry Design 20 18 28

import numpy as np

import matplotlib.pyplot as plt

Data in List Format

x = ['Concrete', 'Timber', 'Steel', 'Foundation', 'Masonry']

x2 =['Fall', 'Winter', 'Spring']

y1 = [36, 18, 24, 18, 20] #Fall

y2 = [19, 21, 32, 25, 18] #Winter

y3 = [20, 30, 27, 22, 28] #Spring

 PYTHON MANUAL | 20 PRINTING 88

Organize into Dictionary

coursedata={}

for ii in range(0,len(x)):

 coursedata[x[ii]]={}

 coursedata[x[ii]][x2[0]]=y1[ii]

 coursedata[x[ii]][x2[1]]=y2[ii]

 coursedata[x[ii]][x2[2]]=y3[ii]

Read from Dictionary

courses = len(coursedata.keys())

quarters = len(coursedata[x[0]])

x_plot=np.arange(0,quarters)

y_plot=np.zeros([courses,quarters])

for ii in range(0,courses):

 for jj in range(0,quarters):

 y_plot[ii,jj] = coursedata[x[ii]][x2[jj]]

Generate Plot

plt.figure()

barwidth = 0.15

colorlist=['c','m','g','b','r']

for ii in range(0,courses):

 x_plot= x_plot + barwidth

 if ii == np.floor(courses/2):

 xloc = x_plot

 plt.bar(x_plot, y_plot[ii,:],

 color = colorlist[ii],

 width = barwidth,

 label = x[ii])

plt.title('Students Enrolled in Design Courses')

plt.ylabel('Number of Students', weight = 'bold')

plt.xlabel('Quarter', weight = 'bold')

plt.xticks(xloc, x2)

plt.legend(bbox_to_anchor=(1, 1))

plt.tight_layout()

plt.savefig('BarChart4.png')

A good rule of thumb for choosing a bar

width is to divide 1 by the number of

categories (1/5 = 0.2) and subtract a small

amount to create space between sets

(hence 0.15).

For the location of the x-axis labels, the

x-coordinates closest to the center of each

set (xloc array in this example) is calculated

in the if statement above and used here.

 PYTHON MANUAL | 20 PRINTING 89

Output:

It is also good practice to check for color-blindness on any graphs that have multiple colors to

ensure that everyone can properly interpret your data. This link provides a free color-blindness

test on any image. If you are using a lot of different data sets, be sure that any adjacent data is

distinguishable or use different symbols/patterns.

19.2 Histograms

A histogram provides an approximate representation of the distribution of a data set. The hist

function in the matplotlib.pyplot sub-library has one required parameter of an ‘x’ array.

Additional parameters can change the number of bins and the general appearance of the plot.

Example 19.2.1 Create a histogram of a set of data with 200 values with a mean of 100 and

standard deviation of 10. (Use np.random.normal)

import numpy as np

import matplotlib.pyplot as plt

x = np.random.normal(100, 10, 200)

plt.figure()

plt.hist(x)

plt.ylim([0,50])

plt.title('Histogram with Default Bins')

plt.savefig('Histogram1.png')

https://www.color-blindness.com/coblis-color-blindness-simulator/

 PYTHON MANUAL | 20 PRINTING 90

plt.figure()

plt.hist(x, 15, color='green')

plt.ylim([0,50])

plt.title('Histogram with 15 Bins')

plt.savefig('Histogram2.png')

Output:

 PYTHON MANUAL | 20 PRINTING 91

19.3 Pie Charts

Pie charts are used to show part-to-whole relationships for datasets. The pie function of the

matplotlib.pyplot sub-library only has one required parameter and that is the relative size

of each pie slice. Additional parameters can be used to add labels, change colors, designs etc.

Example 19.3.1 Given the following data, create a pie chart showing the percentage of students

who use each mode of transportation, labeling each slice.

Primary Mode of Transportation Number of Students

Personal Automobile 119

Walking 49

Bicycling 35

Public Transportation 24

Other 23

import matplotlib.pyplot as plt

labels = ['Automobile', 'Walking', 'Bicycling', 'Public

Transportation', 'Other']

sizes = [119, 49, 35, 24, 23]

plt.figure()

plt.pie(sizes, labels=labels)

plt.savefig('PieChart1.png')

Output:

The “sizes” of each slice do not need to be percents,

Python will automatically portion the pie chart

accordingly.

 PYTHON MANUAL | 20 PRINTING 92

Example 19.3.2 Edit the pie chart from the previous example to include the percentage values,

custom colors, and an exploded slice.

import matplotlib.pyplot as plt

labels = ['Automobile', 'Walking', 'Bicycling',

 'Public Transportation', 'Other']

sizes = [119, 49, 35, 24, 23]

colors = ['steelblue', 'dodgerblue', 'deepskyblue',

 'lightskyblue', 'aliceblue']

explode = (0, .2, 0, 0, 0)

plt.figure()

plt.pie(sizes, labels=labels, colors=colors, explode=explode,

 autopct='%1.1f%%', radius=1.2, shadow=True)

plt.savefig('PieChart2.png')

Output:

The array contains values indicating how far each

slices will be moved (exploded) from pie’s center.

Adds the percent values to each

slice. 1.1 indicates one decimal.

 PYTHON MANUAL | 20 PRINTING 93

20. Printing

Once a segment of code is completed and runs properly, it is helpful to print the result for

inclusion in a calculation package or other report type document. There are many ways to format

code output: from a simple line of text to a tabulated output printed to the Spyder command

window to even creating an Excel spreadsheet with multiple tabs.

20.1 Printing Basics

The easiest way to print something out to the command window is to use the print function.

This function can be used for many different data types, but it is necessary to convert them to

strings before printing.

Example 20.1.1 Printing a variable, an array, and a matrix.

import numpy as np

x = 7**2

arr = np.arange(0,10,2)

mtrx = np.array([[1,2,3],

 [4,5,6]])

print('x = ', x, '\nArray = ', arr, '\nMatrix = ', mtrx)

print('Matrix = \n', mtrx)

>> x = 49

>> Array = [0, 2, 4, 6, 8]

>> Matrix = [[1 2 3]

>> [4 5 6]]

>> Matrix =

>> [[1 2 3]

>> [4 5 6]]

‘\n’ enters a new line as does starting a new print function.

It may be necessary adjust the print command to get the

result formatted as desired. In the second instance, notice

how the first row of the matrix has been moved to a new

line so it is easier to read.

Single or double quotation marks are used to enclose string

elements.

Note that using a comma to separate elements allows you to

mix different data types. If you wanted to use ‘+’ instead, it

would be necessary to convert all data types to strings.

 PYTHON MANUAL | 20 PRINTING 94

Often with the print function the format function is used. This creates a place holder within

a string to display variables to avoid breaking up the string like in Example 20.1.1.

Example 20.1.2 Printing a variable, an array and matrix using format function

import numpy as np

x = 7**2

arr = np.arange(0,10,2)

mtrx = np.array([[1,2,3],

 [4,5,6]])

print('x = {}\nArray = {}\nMatrix = {}\n'.format(x, arr, mtrx))

print('x = {2}\nArray = {1}\nMatrix = {0}'.format(x, arr, mtrx))

print('\n%s = %.2f' % ('Variable', x))

>> x = 49

>> Array = [0, 2, 4, 6, 8]

>> Matrix =

>> [[1 2 3]

>> [4 5 6]]

>>

>> x =

>> [[1 2 3]

>> [4 5 6]]

>> Array = [0, 2, 4, 6, 8]

>> Matrix = 49

>>

>> Variable = 49.00

You can also call the variable you want to print by its index.

This results in a printing order of mtrx, arr, x. See below.

The % operator is another placeholder for variables. Here %s

is for a string ‘Variable’ and %.2f is for a float with 2

decimals ‘x’. This shows the % operator can adjust decimals,

convert data types, etc. See here for more on % and {}.

Calling index {2} in the first bracket of the string prints

mtrx instead of x as it is in the 2nd index of .format().

Leave an open bracket {} at each location where you want to

print a variable in the string. End the string with .format()

and list the variables you want to fill the brackets in order.

https://www.geeksforgeeks.org/python-string/

 PYTHON MANUAL | 20 PRINTING 95

20.2 Tabular Output

When outputting large amounts of data, it may be advantageous to present it in a table. There are

several ways to achieve this, namely: print and format functions, Pandas library, and

tabulate module. These are covered in Examples 20.2.1-20.2.3.

Example 20.2.1 Create a table complete with headers listing the Area, Moment of Inertia, and

the Elastic and Plastic Section Modulus for all steel W6x beams using print and format.

import numpy as np

headers = ('Shape', 'Area (in\u00B2)', 'I (in\u2074)', 'S

(in\u00B3)', 'Z (in\u00B3)')

shapes=('W6x25','W6x20','W6x15','W6x16','W6x12','W6x9','W6x8.5')

A = np.array([7.34, 5.87, 4.43, 4.74, 3.55, 2.68, 2.52])

I = np.array([53.4, 41.4, 29.1, 32.1, 22.1, 16.4, 14.9])
S = np.array([16.7, 13.4, 9.72, 10.2, 7.31, 5.56, 5.10])

Z = np.array([18.9, 14.9, 10.8, 11.7, 8.30, 6.23, 5.73])

print('---')

print('{:<8} {:<12} {:<12} {:<12} {}'.format(headers[0],

headers[1],headers[2],headers[3], headers[4]))

print('---')

for ii in range(0, len(shapes)):

print('{:<8} {:<12} {:<12} {:<12} {}'.format(shapes[ii],

A[ii],I[ii], S[ii], Z[ii]))

>>---

>>Shape Area (in²) I (in4) S (in³) Z (in³)

>>---

>>W6x25 7.34 53.4 16.7 18.9

>>W6x20 5.87 41.4 13.4 14.9

>>W6x15 4.43 29.1 9.72 10.8

>>W6x16 4.74 32.1 10.2 11.7

>>W6x12 3.55 22.1 7.31 8.3

>>W6x9 2.68 16.4 5.56 6.23

>>W6x8.5 2.52 14.9 5.1 5.73

>>---

Another resource to learn more about formatting strings refer to: https://mkaz.blog/working-

with-python/string-formatting/ .

Using the same padding as the headers will line up the elements of

the table. Here we are printing each row at a time using a for loop.

This pads the string with 12 spaces to the right (see this marked below in

red). Using > instead would pad it to the left and ^ would pad both sides.

See Section 20.5 for details on Unicode used here for superscripts.

https://mkaz.blog/working-with-python/string-formatting/
https://mkaz.blog/working-with-python/string-formatting/

 PYTHON MANUAL | 20 PRINTING 96

Example 20.2.2 Repeat the same example using pandas to format the table.

import numpy as np

import pandas as pd

shapes =('W6x25','W6x20','W6x15','W6x16','W6x12','W6x9','W6x8.5')

A = np.array([7.34, 5.87, 4.43, 4.74, 3.55, 2.68, 2.52])

I = np.array([53.4, 41.4, 29.1, 32.1, 22.1, 16.4, 14.9])

S = np.array([16.7, 13.4, 9.72, 10.2, 7.31, 5.56, 5.10])

Z = np.array([18.9, 14.9, 10.8, 11.7, 8.30, 6.23, 5.73])

data = {'Area (in\u00B2)': A.tolist(),'I (in\u2074)':

I.tolist(), 'S (in\u00B3)': S.tolist(),'Z (in\u00B3)':

Z.tolist()}

table = pd.DataFrame(data, shapes)

print(table)

query = 'W6x9'

print('\nShape:',query)

print(table.loc[query])

>> Area (in²) I (in⁴) S (in³) Z (in³)
>>W6x25 7.34 53.4 16.70 18.90

>>W6x20 5.87 41.4 13.40 14.90

>>W6x15 4.43 29.1 9.72 10.80

>>W6x16 4.74 32.1 10.20 11.70

>>W6x12 3.55 22.1 7.31 8.30

>>W6x9 2.68 16.4 5.56 6.23

>>W6x8.5 2.52 14.9 5.10 5.73

>>

>>Shape: W6x9

>>Area (in²) 2.68

>>I (in⁴) 16.40
>>S (in³) 5.56

>>Z (in³) 6.23

>> Name: W6x9, dtype: float64

Panda’s DataFrame function will take a dictionary ‘data’

and the row (index) names from ‘shapes’ and format it in a

table called a ‘dataframe’.

This data type is referred to as a ‘dictionary’. It begins with the header in

quotes, referred to as ‘keys’, followed by the column data. See Section 8.

An advantage of using this method is that a dataframe is its own

structure, meaning you can easily call on a row using .loc[]

and display just that row’s information.

To display elements of an array in separate columns, it must

be converted to a list.

 PYTHON MANUAL | 20 PRINTING 97

Example 20.2.3 Repeat the same example now using tabulate to format the table.

import tabulate as tab

data = {'Shape': shapes, 'Area (in\u00B2)': A.tolist(),

'I (in\u2074)': I.tolist(),'S (in\u00B3)': S.tolist(),

'Z (in\u00B3)': Z.tolist()}

tbl1 = tab.tabulate(data, headers= 'keys')

tbl2 = tab.tabulate(data, headers= 'keys',tablefmt='fancy_grid')

print(tbl1,"\n\n", tbl2)

>>Shape Area (in²) I (in⁴) S (in³) Z (in³)
>>------- ---------- ------- ------- -------

>>W6x25 7.34 53.4 16.7 18.9

>>W6x20 5.87 41.4 13.4 14.9

>>W6x15 4.43 29.1 9.72 10.8

>>W6x16 4.74 32.1 10.2 11.7

>>W6x12 3.55 22.1 7.31 8.3

>>W6x9 2.68 16.4 5.56 6.23

>>W6x8.5 2.52 14.9 5.1 5.73
>>
>>╒═════════╤══════════════╤═══════════╤═══════════╤═══════════╕
>>│ Shape │ Area (in²) │ I (in⁴) │ S (in³) │ Z (in³) │
>>╞═════════╪══════════════╪═══════════╪═══════════╪═══════════╡
>>│ W6x25 │ 7.34 │ 53.4 │ 16.7 │ 18.9 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x20 │ 5.87 │ 41.4 │ 13.4 │ 14.9 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x15 │ 4.43 │ 29.1 │ 9.72 │ 10.8 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x16 │ 4.74 │ 32.1 │ 10.2 │ 11.7 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x12 │ 3.55 │ 22.1 │ 7.31 │ 8.3 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x9 │ 2.68 │ 16.4 │ 5.56 │ 6.23 │
>>├─────────┼──────────────┼───────────┼───────────┼───────────┤
>>│ W6x8.5 │ 2.52 │ 14.9 │ 5.1 │ 5.73 │
>>╘═════════╧══════════════╧═══════════╧═══════════╧═══════════╛

Need to update ‘data’ from Example 20.2.2 to include

‘shapes’ information. Note that in addition to dictionaries,

tabulate also accepts lists, list of lists, arrays and matrcices.

Defining the headers

creates a separate row

at the top of the table.

The tablefmt

parameter allows you to

change the appearance

of the table.

 PYTHON MANUAL | 20 PRINTING 98

20.3 Printing to Excel

There are two main ways of printing to Excel: using xlsxwriter or pandas. xlsxwriter

is preferred for creating Excel files with Python, as it has more functions available. However,

one of its drawbacks is that it cannot be used to read or modify existing files. That is where

pandas is much more helpful. To demonstrate how to use these tools, we will continue the

previous example using W6x beams. For additional tips, see the following links for xlswriter and

pandas.

Example 20.3.1 Repeat Example 20.2.1, now printing to an Excel sheet using xlsxwriter.

Also export the information as a matrix.

import numpy as np

import xlsxwriter

headers = ('Shape', 'Area', 'I', 'S', 'Z')

shapes=('W6x25','W6x20','W6x15','W6x16', 'W6x12','W6x9','W6x8.5')
A = np.array([7.34, 5.87, 4.43, 4.74, 3.55, 2.68, 2.52])

I = np.array([53.4, 41.4, 29.1, 32.1, 22.1, 16.4, 14.9])

S = np.array([16.7, 13.4, 9.72, 10.2, 7.31, 5.56, 5.10])

Z = np.array([18.9, 14.9, 10.8, 11.7, 8.30, 6.23, 5.73])

mtrx = np.array([A,I,S,Z])

workbook = xlsxwriter.Workbook('WideFlanges.xlsx')

worksheet1 = workbook.add_worksheet('Properties')

row = 0

col = 0

bold = workbook.add_format({'bold': 'true'})

num_format = workbook.add_format({'num_format': '#,##0.00'})

worksheet1.write_row(row, col, headers, bold)

worksheet1.write_column(row+1, col, shapes)

for ii in range(0,len(mtrx)):

 worksheet1.write_column(row+1, col+(ii+1), mtrx[ii,:],

 num_format)

Create a new Excel file called ‘WideFlanges’ with a sheet within that file

called ‘Properties’. These are the names that will appear in Excel. In

Python, they are defined as variables ‘workbook’ and ‘worksheet1’.

Several formatting options exist that can change text font, size, color etc;

as well as number formatting. See Fig. 20.3.1 below.

The write function is used to fill either a row or column. It takes the

start row number, start column number, and the data. This can be followed

by any formatting parameters.

https://www.geeksforgeeks.org/working-with-xlsxwriter-module-python/
https://www.geeksforgeeks.org/working-with-excel-files-using-pandas/

 PYTHON MANUAL | 20 PRINTING 99

worksheet2 = workbook.add_worksheet('Matrix')

row = 0

col = 0

worksheet2.write_row(row, col, headers, bold)

worksheet2.write_column(row+1, col, shapes)

for ii in range(0, len(A)):

 worksheet2.write_row(ii+1, col+1, mtrx[:,ii])

workbook.close()

Output:

This workbook ‘WideFlanges.xlsx’ will be saved in the same folder as the Python script. If you

wanted to specify a filepath enter it when defining the workbook name:
workbook = xlsxwriter.Workbook('C:\Users\Folder\FileName.xlsx')

Add a new sheet called ‘Matrix’ and use a for loop to print the

data in th matrix to Excel row by row. This is a more concise way

to achieve the same result.

As shown in the two spreadsheets to the left,

printing the data using arrays in each

column and printing row by row using a

matrix produced identically formatted Excel

outputs.

Note: numbers in the second tab ‘Matrix’

are not formatted like in ‘Properties’ as we

did not use our num_format parameter to

enforce 2 decimals for all values.

 PYTHON MANUAL | 20 PRINTING 100

Fig 20.3.1 Num_Format

The num_format parameter

follows the same naming conventions

as Excel. To see a list of these

options, go to the format cells option

in Excel and click ‘custom’.

Example 20.3.2 Use pandas to extract data from the Excel file created in the previous

example. Print one column and one row.

import pandas as pd

data = pd.read_Excel('WideFlanges.xlsx','Matrix')

print(data['Area'])

data.set_index('Shape', inplace = True)

print('\n', data.loc['W6x25'])

>> 0 7.34

>> 1 5.87

>> 2 4.43

>> 3 4.74

>> 4 3.55

>> 5 2.68

>> 6 2.52

>> Name: Area, dtype: float64

>>

>> Area 7.34

>> I 53.40

>> S 16.70

>> Z 18.90

>> Name: W6x25, dtype: float64

This extracts the data in the “Matrix” tab

of the Excel file as a pandas dataframe.

This line allows us to call a row by its

‘Shape’ name rather than its index.

 PYTHON MANUAL | 20 PRINTING 101

20.4 Printing Tables in Figures

There are other alternatives to produce tabular output, including placing tables below a graph in a

figure or to have a standalone table as a figure, both can be executed via the

Matplotlib.pyplot sub-library using the table function as shown in

https://www.geeksforgeeks.org/matplotlib-pyplot-table-function-in-python/ and

https://www.pythonpool.com/matplotlib-table/#Implementation_of_Matplotlib_table.

20.5 Printing/Displaying Special Characters

Oftentimes it is useful to print special characters, symbols, or mathematical equations in Python,

either in the command window or on a plot. There are a few different methods including:

Unicode and LaTeX to print symbols and special characters. Unicode is helpful when printing

regular strings and LaTeX is easiest to use in the matplotlib.pyplot sub-library.

There are also some useful functions in Python for aiding in printing special characters, namely

the ‘r’ function. This is used to print the ‘raw’ string, meaning it will cause Python to ignore

escape characters.

For a full list of characters see the following links: Unicode LaTeX

Example 20.4.1 Print an array of Greek letters using Unicode, then again as a raw string.
Unicode

print('\u03B1, \u03B2, \u03C0, \u00B0')

print(r'\u03B1, \u03B2, \u03C0, \u00B0')

>> α, β, π, °

>> \u03B1, \u03B2, \u03C0, \u00B0

Example 20.4.2 Create a plot with special characters in the axis labels and legend.

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0,5,100)

y1 = x

y2 = x**2

y3 = x**3

y=[y1,y2,y3]

linecolor = ['red', 'blue', 'green']

labels = ['λ', 'ω','δ']

for ii in range(0,len(y)):

 plt.plot(x,y[ii],label = labels[ii])

The approach to indicate when text in a string should be

interpreted as LaTeX is surrounding it with $ symbols.

Printing this outside of the matplotlib.pyplot will

not result in the same formatting.

https://www.geeksforgeeks.org/matplotlib-pyplot-table-function-in-python/
https://www.pythonpool.com/matplotlib-table/#Implementation_of_Matplotlib_table
https://pythonforundergradengineers.com/unicode-characters-in-python.html#:~:text=To%20print%20any%20character%20in%20the%20Python%20interpreter%2C,one%20in%20engineering%20is%20the%20hat%20%5E%20symbol.
https://www.cmor-faculty.rice.edu/~heinken/latex/symbols.pdf

 PYTHON MANUAL | 20 PRINTING 102

plt.title('Graphing Symbols')

plt.xlabel(r'β')
plt.ylabel(r'α')

plt.legend(prop={"size":10})

plt.grid()

plt.draw()

plt.savefig('Symbols.png')

print(labels)

Output:

>> ['$\\lambda$', '$\\omega$', '$\\delta$']

If the LaTeX text itself is being printed

instead of the special character, make the

string ‘raw’ by inserting the letter ‘r’ prior to

the first $ symbol. This is necessary for

\alpha and \beta as an example.

Result of printing LaTeX

outside of matplotlib.

 PYTHON MANUAL | 21 USER INPUT 103

21. User Input

It is optimal to create code that requires very little editing should initial values change, hence

why we aim to not hard code anything beyond the initial ‘user input’ or ‘givens’ section. To take

this one step further, the code can be set up to ask the user to input necessary values in the

command window each time it runs, so they never have to touch the baseline code. This can be

helpful when sharing your program with someone who may not know how to code or if you

simply do not want anyone to directly edit it.

This is done using the input function, which can display a prompt and take a string input.

Example 21.1 shows how to input a string, Example 21.2 will demonstrate how to use inputs as

integer values and Example 21.3 will show some more advanced uses of the input function.

Example 21.1 Have the user input a password of at least 7 characters. If it is less, output “invalid

password” and have them reenter a password.

password = input('Enter a password (must be at least 7

characters): ')

while len(password) < 7:

 print('Invalid Password')

 password=input('Enter a password of at least 7 characters:')

Command Window Prompts:

Once the user inputs a valid 7 character password in the command window and presses ‘Enter’, a

new string variable will be generated and populated with this user input and become visible in

the Variable Explorer window.

 PYTHON MANUAL | 21 USER INPUT 104

Example 21.2 The following code calculates the deflection of a two-story structure. Edit this

code such that E, I, La, Lb, Fa and Fb are inputted by the user and take integer values.

Original:

import numpy as np

E = 29000 #ksi

I = 450 #in^4

La = 100 #in

Lb = 150 #in

Fa = -3 #kips

Fb = -6 #kips

K = np.array([[12*E*I/La**3+12*E*I/Lb**3, -12*E*I/Lb**3],

 [-12*E*I/Lb**3, 12*E*I/Lb**3]])

F = np.array([[Fa],[Fb]])

u = np.linalg.inv(K)@F

print('u = ', u)

>> u = [[-0.05747126]
>> [-0.18678161]]

Solution:
import numpy as np

E = int(input('E (ksi) = '))

I = int(input('I (in\u2074) = '))

La = int(input('La (in) = '))

Lb = int(input('Lb (in) = '))

Fa = int(input('Fa (kips) = '))

Fb = int(input('Fb (kips) = '))

K = np.array([[12*E*I/La**3+12*E*I/Lb**3, -12*E*I/Lb**3],

 [-12*E*I/Lb**3, 12*E*I/Lb**3]])

F = np.array([[Fa],[Fb]])

u = np.linalg.inv(K)@F

print('u = ', u)

Command Window Prompts: Output:
>> u = [[-0.05747126]

>> [-0.18678161]]

The input function automatically converts the

input into a string. To use the input as another

datatype, convert it (here all inputs have been

converted to integers). Otherwise, it is likely to get

an error when the code is executing calculations like:

can't multiply sequence by non-int

of type 'str'.

 PYTHON MANUAL | 21 USER INPUT 105

Example 21.3 Create a script that allows your user to create a plot. Let them define the axis

names, import data for y, set the increment value for x, and create the plot and file name.

(You can find the data file used in the example in the supplementary files called

ExampleData.dat.)

import numpy as np

import matplotlib.pyplot as plt

data = input('Enter the file name for your data: ')

increment=float(input('Input the increment for the x-values: '))

xaxis = input('Enter x-axis label: ')

yaxis = input('Enter y-axis label: ')

plotName = input('Enter the title of your plot: ')

fileName = input('Enter the file name for your plot (include

.png): ')

data = np.loadtxt(data)

timeEnd = len(data)*increment

x = np.arange(0, timeEnd, increment)

plt.figure()

plt.plot(x,data)

plt.title(plotName)

plt.xlabel(xaxis)

plt.ylabel(yaxis)

plt.grid()

plt.draw()

plt.savefig(fileName)

Command Window Prompts:

Note that the data file must be in the same

folder as the Python file for this to work.

 PYTHON MANUAL | 21 USER INPUT 106

Output:

 PYTHON MANUAL | 22 SCRIPT & RESULTS PRESENTATION IN REPORTS 107

22. Script & Results Presentation in Reports

For your assignments or for professional reports in the future, you may need to transfer your

script, output, and/or plots from Python onto a document. Simply copying and pasting will lose

the formatting of the script, so here are the recommended ways to transfer your script and results

to a document.

22.1 Transferring Script to a Word Processing Document

There is a Google extension called Code Blocks that allows you to format your script as it

appears in Python in a Google Doc. Follow these steps to use Code Blocks:

1. Download the extension from Google Workspace Marketplace here:

https://workspace.google.com/marketplace/app/code_blocks/100740430168

2. Copy and paste your script and/or output code from Python into Google Docs

3. In Google Docs go to Extensions > Code Blocks > Start

4. Select your pasted script, choose Python in the language dropdown, choose a theme, and

click “Format”

https://workspace.google.com/marketplace/app/code_blocks/100740430168

 PYTHON MANUAL | 22 SCRIPT & RESULTS PRESENTATION IN REPORTS 108

22.2 Exporting Plots with High Image Quality

When inserting a plot into a word document, you may find that it looks blurry, especially when

you make it larger on the page. To make it look sharper, utilize plt.savefig with a

parameter for DPI (dots per inch). A larger value of DPI will make increase the resolution.

plt.savefig ('name of plot', dpi = 100)

Fig. 22.2.1 Plot with dpi not specified

Fig 22.2.2 Plot with dpi=100

 PYTHON MANUAL | 22 SCRIPT & RESULTS PRESENTATION IN REPORTS 109

Fig 22.2.3 Plot with dpi=200

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 110

23. Errors & Troubleshooting

In this section we will break down error messages, explain common error types, and walk

through troubleshooting methods for addressing different error types.

23.1 Deciphering Error Messages

When you receive an error message in the output window, it will most likely follow the structure

shown in the picture below. Note: some Spyder color themes do not follow the same coloring

convention as below, but we will be using the default color theme (“Spyder Dark”) to explain

error messages in this section.

① Each output run begins with “In [#]:” in bright green. This is followed by the line(s) you just

ran as they appear in your script, or if a cell or the file was run it will say “runcell” or

“runfile,” along with the file path, in white and sage coloring.

② In bright blue and green it will say the file and line number on which the error occurs. Note

that if individual lines or a cell was run, the line number will be relative to the selected lines

that were run. Also note that the error might be fixed with a previous line of code (see

Example 23.2.1.1). A red circle with an “x” will probably appear by the line number in your

script, but not always.

③ In yellow it will show the code that is causing Python to signal an error. Again, the error

might be fixed by changing other code.

④ In red is the type of error, followed by a short description in white text. The description can be

confusing in some cases, so we will be focusing on how to troubleshoot based on the error

type.

23.2 Common Error Message Types

In the following sub-sections, we will explain and discuss methods for fixing the following

common error types:

SyntaxError

NameError

TypeError

①

②

③

④

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 111

AttributeError

IndexError

ValueError

ImportError & ModuleNotFoundError

For information on more error types, check out: https://www.tutorialsteacher.com/python/error-

types-in-python

23.2.1 SyntaxError

What it is: A SyntaxError can be from anything regarding syntax in your code.

Common causes:

• Not having closing brackets or parentheses

• Not having a closing quotation mark

• Not using commas to separate elements in a list

How to troubleshoot: Check your syntax carefully line by line. Whenever the cursor is just to

the right of a bracket or parenthesis, Python will highlight the matching parentheses or brackets

in green; if it is missing an opening or closing one, it will be highlighted in red. These errors can

be difficult to catch when you have been working on your code for a while, so another set of eyes

from someone else may be helpful. Additionally, check the proper syntax that is needed for what

you are trying to perform.

Example 23.2.1.1:

1 import numpy as np

2 K = np.array([[14.094, -1.5660, -234.90],

3 [-1.5660, 1.5660, -78.300],

4 [-234.90, -78.300, 15660],

5 [78.300, -78.300, 2610.0]])

6

7 M = np.array([[5.0941, -7.7660],

8 [-1.0960, 3.8860],

9 [-93.400, -71.340]]

10KM = K@M

>> runcell(1, 'C:/Users\Exmples.py')

File "C:\Users\ Exmples.py", line 10

 KM = K@M

 ^

SyntaxError: invalid syntax

https://www.tutorialsteacher.com/python/error-types-in-python
https://www.tutorialsteacher.com/python/error-types-in-python

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 112

In this example, a closing parenthesis was left out of the M array on line 9, which resulted in a

SyntaxError. Notice how Python is calling out line 10, even though this error would need to

be corrected on line 9.

23.2.2 NameError

What it is: A NameError will appear when you try to reference a variable that has not been

defined above that line of code. This can also appear if you have not imported a library that you

are using.

Common causes:

• Forgetting to define a variable that is being used

• Not running a line of code that defines a variable before running other lines that use that

variable

• Not importing a library that is being used

• Not renaming the library when it is being called out by a different name (see Example

23.2.2.1)

How to troubleshoot: Make sure you define the variable in a line of code above where it is

being referenced and that that line has been run. You can also use the variable explorer to see

what variables exist (i.e., that have been defined AND run) in your code.

Example 23.2.2.1

import numpy

n = np.array([1,2,3])

>> runfile('C:/Users/meile/untitled1.py')

Traceback (most recent call last):

 File "C:\Users\meile\Documents\ARCE 354\Lab 4\untitled1.py",

line 2, in <module>

 n = np.array([1,2,3])

NameError: name 'np' is not defined

23.2.3 TypeError

What it is: TypeErrors occur when a function or operation you are using is being applied to an

object of the wrong data type (see Section 6 for more information on data types).

Common causes:

• Putting in an object (e.g., string, array) of the wrong data type when using a library

function

• Putting a counter on an uniterable object in a for loop

• Using the print command

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 113

• Calling out a function with a different number of arguments than the function was set

with

How to troubleshoot: The variable explorer will be a useful tool because it shows the data type

of your variables. Check the data type that should be used with what you are performing (see

Section 15 for information on libraries), and make sure your variable is the correct data type (see

Section 6 for information on data types).

Example 23.2.3.1:

1 Import numpy as np

2 s = [10,20,30] #steps

3 t = 10 #in/step

4 d = np.zeros(3)

5 for ii in range(0,len(s)):

6 d[ii] = t[ii]*s[ii]

7 print(d)

>> runcell(3, 'C:/Users/Exmples.py')

Traceback (most recent call last):

 File "C:\Users\Exmples.py", line 42, in <module>

 d[ii] = t[ii]*s[ii]

TypeError: 'int' object is not subscriptable

This TypeError tells us that we are likely using a variable incorrectly in line 6, in regard to its

data type. To troubleshoot this, we should look at our variable explorer.

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 114

In line 6 we are putting an index counter i to use with variables d, t, and s, so those variables

should each be a list with multiple elements (specifically 3 elements, since the length of s was

used to define the index counter i). As we can see in the variable explorer, however, t is an

integer with one element, which is why it is not “subscriptable,” or countable.

To fix our code, we can either remove the counter on line 6, or make t a list of size 3 on line 3.

23.2.4 AttributeError

What it is: An AttributeError occurs when you “attempt to call an attribute of an object whose

type does not support that method.” This type of error is similar to TypeError in that the correct

parameter and data types must be used for what is trying to be performed.

Common causes:

• Using .append() on an integer or string instead of a list

How to troubleshoot: Check the parameters for the function you are trying to perform. (See

Section 15 for information on libraries and Section 6. for information on data types.)

Example 23.2.4.1

1 organs = “heart”

2 organs.append(“kidney”)

>> organs = "heart"

organs.append("kidney")

Traceback (most recent call last):

 File "<ipython-input-40-5709782cbd3c>", line 2, in <module>

 organs.append("kidney")

AttributeError: 'str' object has no attribute

'append'AttributeError: 'str' object has no attribute 'append'

This error is saying that append cannot be performed on a string, so to fix this error, you need to

check the parameters of using append and adjust accordingly. organs can easily be changed to

a list by adding brackets as shown below so the error does not occur.

1 organs = [“heart”]

2 organs.append(“kidney”)

23.2.5 IndexError

What it is: An IndexError occurs when you call an index that does not exist.

How to troubleshoot: Use the variable explorer or np.shape() in the command window to

check the size of the object (i.e., list, array, matrix) of whose index you are referring to, and

make sure you are calling an index that exists in the object. Note that in Python an object’s first

index is 0, not 1, so the index of the nth element in a list is n-1.

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 115

Example 23.2.5.1

L1=[1,2,3]

L1[3]

>> IndexError: list index out of range

The index L1[3] does not exist because the 3rd element in L1 has the index L1[2].

23.2.6 ValueError

What it is: A ValueError occurs when a function or operation has a resultant value that does not

exist or when a mathematical operation cannot be performed.

Common causes:

• Performing an operation that gives a result that does not exist in the mathematical domain

(e.g., taking the square root of a negative number)

• Multiplying matrices of the wrong dimensions

• Plotting arrays that are not of the same size

How to troubleshoot: Variable explorer can be used to keep track of what numbers are being

used in operations and what size your arrays and matrices are. You may also need to brush up on

math concepts if you are not sure why an operation cannot be performed.

23.2.7 ImportError and ModuleNotFoundError

What it is: An ImportError can occur when dealing with functions called from other files. Recall

that you must use the format “from [file name] import [function name] as

[new function name]”. This error typically comes up when you put the [function

name] as a different name.

A similar error to this is ModuleNotFoundError, which occurs when the [file name] is put

as a different name, or when the files are saved in different folders. (See Section 10 for more

information on functions.)

How to troubleshoot: Simply check that you are referring to the file name and function name

correctly when calling a function from another file, and check that the files are saved in the same

folder.

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 116

23.3 General Troubleshooting Tips

Here are some other general tips to help you troubleshoot:

Use the command window to hardcode. By hardcode, we mean break down your code and

directly put in the value that is meant to be used. For example, replace a counter in a for loop

directly with the value or variable that will pass through the loop, and repeat this for each value

or variable.

Sketch out your logic. It can be helpful to literally draw out with a pencil and paper what your

code is performing. This can be a flow chart, table, or anything else that helps you through your

logic. This is especially helpful when programming for loops. An example of how to

implement a pen and paper process to develop code is shown in Example 23.3.1.

Example 23.3.1 Develop a for loop with nested if-elif-else statements to plot the

response spectrum (Sa vs. Tn) for any given range of Tn. Site specific seismic parameters Sds,

Sd1=0.286, and Tl are provided from the ATC Hazards Tool. Use the ASCE 7-16 parameters

outlined in code section 11.4.6. (Note: T in ASCE was replaced with Tn in this example.)

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 117

Step 1) Sketch out the four scenarios of Tn and Sa values, and then type them in Python.

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 118

Tn < To:

 Sa = Sds*(0.4 + 0.6*Tn/To)

Tn >= To and Tn <= Ts:

 Sa = Sds

Tn > Ts and Tn <= Tl:

 Sa = Sd1/Tn

Tn > Tl:

 Sa = Sd1*Tl/Tn**2

Step 2) Determine what variables are not constant (Tn, Sa), and add counters to those variables.

The constant variables (Sds, Sd1, Tl, To, Ts) would be defined at the start of your code as inputs.

Tn[ii] < To:

 Sa[ii] = Sds*(0.4 + 0.6*Tn[ii]/To)

Tn[ii] >= To and Tn[ii] <= Ts:

 Sa[ii] = Sds

Tn[ii] > Ts and Tn[ii] <= Tl:

 Sa[ii] = Sd1/Tn[ii]

Tn[ii] > Tl:

 Sa[ii] = Sd1*Tl/Tn[ii]**2

 PYTHON MANUAL | 23 ERRORS AND TROUBLESHOOTING 119

Step 3) Determine what kind of loop you will be using, determine the range of your counter, and

place your statements in that loop.

Sa = np.zeros(len(Tn))

for ii in range(0,len(Tn)):

 if Tn[ii] < To:

 Sa[ii] = Sds*(0.4 + 0.6*Tn[ii]/To)

 elif Tn[ii] >= To and Tn[ii] <= Ts:

 Sa[ii] = Sds

 elif Tn[ii] > Ts and Tn[ii] <= Tl:

 Sa[ii] = Sd1/Tn[ii]

 else:

 Sa[ii] = Sd1*Tl/Tn[ii]**2

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 120

24. Where to Get Help & Additional Resources

If you are seeking information beyond the scope of this help manual, there are many resources

on the internet, including a few that we recommend and have outlined below. For general

information refer to the Python general documentation at https://docs.python.org/3/ and tutorial

at https://docs.python.org/3/tutorial/index.html.

24.1 W3schools

Access W3schools’ by going to their website at: https://www.w3schools.com/python/default.asp

W3schools is a beginner-friendly website that teaches you how to use different coding

languages. Under the Python tab, there is lots of information and modules, so we chose a few

sections to highlight that will probably be the most relevant and helpful to you. However, if you

want to extend your Python or coding knowledge, there is much more to explore on W3schools.

You can even take a quiz to become certified in a language!

Python Tutorials

In the side bar, there are many topics under “Python Tutorial” that the website leads you through.

They give a basic overview and have multiple “Try It Yourself” features for each topic.

https://docs.python.org/3/
https://www.w3schools.com/python/default.asp

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 121

Python Library Modules

In the side bar under “Python Modules,” you will see some Python library modules that will

bring you to a page like the one shown below for NumPy. In these modules you can find tutorials

and exercises specifically for utilizing the library.

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 122

Python Built-in Functions

In the side bar there is a tab called “Python Built-in Functions.” Here, you can see a list of

Python’s built-in functions.

24.2 GeeksforGeeks

Access GeeksforGeeks by going to their website at: https://www.geeksforgeeks.org/.

Like W3schools, GeeksforGeeks is a great resource that teaches users how to code in Python,

broken down by topic, using examples and written explanation. The main difference is their

presentation of information—GeeksforGeeks has more written explanation and does not allow

you to run example code without signing into an account (which is free). GeeksforGeeks also has

many courses and tutorials on not just different programming languages, but other programming-

related topics and professional skills, like algorithms and interview help. It is a great resource to

expand your programming knowledge for a future career in computer science.

After going to the main Python page under Tutorials > Languages > Python, there is a sidebar

with general topics to navigate, but you can better see all the topics by scrolling to the bottom of

the main page.

https://www.geeksforgeeks.org/

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 123

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 124

24.3 Library Websites

The different libraries you use in Python have their own websites with information on how to use

their library functions and perform certain tasks.

NumPy: https://numpy.org/doc/stable/user/index.html#user

SciPy: https://docs.scipy.org/doc/scipy/tutorial/index.html#user-guide

SymPy: https://docs.sympy.org/latest/index.html

Pandas: https://pandas.pydata.org/docs/user_guide/index.html

Matplotlib: https://matplotlib.org/stable/index.html

Math: https://docs.python.org/3/library/math.html

24.4 Quick Sheets

There have been quick sheets to help with learning and using common Python libraries. A

selection of these pertaining to the libraries covered in this manual are listed below.

NumPy:

https://cdn.intellipaat.com/mediaFiles/2018/12/Python-NumPy-Cheat-Sheet-.pdf

https://images.datacamp.com/image/upload/v1676302459/Marketing/Blog/Numpy_Cheat_Sheet.pdf

http://datasciencefree.com/numpy.pdf

https://mathesaurus.sourceforge.net/matlab-numpy.html

SciPy:

https://images.datacamp.com/image/upload/v1676303474/Marketing/Blog/SciPy_Cheat_Sheet.pdf

Pandas:

https://intellipaat.com/mediaFiles/2018/12/Python-Pandas-Cheat-Sheet.png

https://images.datacamp.com/image/upload/v1676302827/Marketing/Blog/Data_Wrangling_Cheat_Sheet.pdf

http://datasciencefree.com/pandas.pdf

Matplotlib:

https://images.datacamp.com/image/upload/v1676360378/Marketing/Blog/Matplotlib_Cheat_Sheet.pdf

24.5 YouTube Video Tutorials

A few suggested video tutorials on Python are provided below, other video links can be found

with the associated topic earlier in specific sections of the manual.

General coding: https://www.youtube.com/watch?v=N4mEzFDjqtA

Numpy: https://www.youtube.com/watch?v=GB9ByFAIAH4

Matplotlib: https://www.youtube.com/watch?v=qErBw-R2Ybk

https://numpy.org/doc/stable/user/index.html%23user
https://docs.scipy.org/doc/scipy/tutorial/index.html#user-guide
https://docs.sympy.org/latest/index.html
https://pandas.pydata.org/docs/user_guide/index.html
https://matplotlib.org/stable/index.html
https://docs.python.org/3/library/math.html
https://cdn.intellipaat.com/mediaFiles/2018/12/Python-NumPy-Cheat-Sheet-.pdf
https://images.datacamp.com/image/upload/v1676302459/Marketing/Blog/Numpy_Cheat_Sheet.pdf
http://datasciencefree.com/numpy.pdf
https://mathesaurus.sourceforge.net/matlab-numpy.html
https://images.datacamp.com/image/upload/v1676303474/Marketing/Blog/SciPy_Cheat_Sheet.pdf
https://intellipaat.com/mediaFiles/2018/12/Python-Pandas-Cheat-Sheet.png
https://images.datacamp.com/image/upload/v1676302827/Marketing/Blog/Data_Wrangling_Cheat_Sheet.pdf
http://datasciencefree.com/pandas.pdf
https://images.datacamp.com/image/upload/v1676360378/Marketing/Blog/Matplotlib_Cheat_Sheet.pdf
https://www.youtube.com/watch?v=N4mEzFDjqtA
https://www.youtube.com/watch?v=GB9ByFAIAH4
https://www.youtube.com/watch?v=qErBw-R2Ybk

 PYTHON MANUAL | 24 WHERE TO GET HELP AND ADDITIONAL RESOURCES 125

24.6 Cloud-Based Programming Tool: Replit

Replit is a website that allows you to code if you are having issues with or do not have access to

a Python reader application (i.e., Spyder) on a local device.

Access Replit by going to their website: https://replit.com/~

https://replit.com/~

	Python Manual
	About the Authors
	Acknowledgments
	Abstract
	Table of Contents
	1 . Introduction
	1.1 Using this Manual

	2 . Downloading Anaconda
	3 . Spyder Interface
	3.1 Spyder Interface Layout
	3.2 Setting Preferences
	3.3 Managing Files
	3.4 Setting Up Your Code

	4 . Variables
	4.1 Naming Variables
	4.2 Clearing

	5 . Operators and Expressions
	5.1 Numeric Operators
	5.2 Boolean Operators
	5.3 Boolean Truth Tables
	5.4 Order of Evaluation

	6 . Data Types
	6.1 Strings
	6.2 Integers
	6.3 Floats
	6.4 Booleans
	6.5 Identifying Data Types
	6.6 Converting Between Data Types

	7 . Lists
	7.1 Indexing
	7.2 Slicing
	7.3 List Operations

	8 . Dictionaries
	9 . Built-In Functions
	9.1 Range

	10 . Functions
	10.1 Function Structure
	10.2 Importing Functions
	10.3 Scope

	11 . If, Elif, and Else Statements
	11.1 If
	11.2 Elif
	11.3 Else
	11.4 Nesting

	12 . For Loops
	12.1 For Loop Structure
	12.2 Nested Loops
	12.3 Break
	12.4 Continue

	13 . While Loops
	13.1 While Loop Structure
	13.2 Manually Ending Program

	14 . Accessing Files
	15 . Libraries
	15.1 NumPy Library
	15.2 Matplotlib Library
	15.3 SciPy Library
	15.4 Pandas Library

	16 . Arrays and Matrices
	16.1 Initializing an Array or Matrix
	16.2 Indexing and Determining the Length of an Array or Matrix
	16.3 Performing Basic Matrix Operations
	16.3.1 Adding and Subtracting Matrices
	16.3.2 Multiplying Matrices
	16.3.3 Transpose of a Matrix
	16.3.4 Inverse and Determinant

	16.4 Solving Eigenvalue Problems

	17 . SymPy Library
	18 . Plotting Line and Scatter Plots
	18.1 Plotting Basics
	18.2 Multiple Curves on a Single Plot
	18.3 Subplots
	18.4 Displaying and Saving a Plot
	18.5 Using Polyfit
	18.6 Finding Roots

	19 . Bar Charts, Histograms and Pie Charts
	19.1 Bar Charts
	19.2 Histograms
	19.3 Pie Charts

	20 . Printing
	20.1 Printing Basics
	20.2 Tabular Output
	20.3 Printing to Excel
	20.4 Printing Tables in Figures
	20.5 Printing/Displaying Special Characters

	21 . User Input
	22 . Script & Results Presentation in Reports
	22.1 Transferring Script to a Word Processing Document
	22.2 Exporting Plots with High Image Quality

	23 . Errors & Troubleshooting
	23.1 Deciphering Error Messages
	23.2 Common Error Message Types
	23.2.1 SyntaxError
	23.2.2 NameError
	23.2.3 TypeError
	23.2.4 AttributeError
	23.2.5 IndexError
	23.2.6 ValueError
	23.2.7 ImportError and ModuleNotFoundError

	23.3 General Troubleshooting Tips

	24 . Where to Get Help & Additional Resources
	24.1 W3schools
	24.2 GeeksforGeeks
	24.3 Library Websites
	24.4 Quick Sheets
	24.5 YouTube Video Tutorials
	24.6 Cloud-Based Programming Tool: Replit

