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Introduction: Purpose of Project 
This senior project is an investigation of the Modern Müller-Breslau Method. The purpose of this 
senior project was to see how quickly and easily a graduating senior in a structural engineering 
program could acquaint themselves to the method, as well as create new problems that 
demonstrate its power in equilibrium without the use of any statics. The focus of this project and 
paper is determinate structures including beams, axial members, frames, three-hinged arches, and 
finally three-dimensional trusses. Examples of each type of problem will be shown with 
explanations along with a reflection on the experience from a student’s perspective on learning 
and applying this method. 

Precedent: Classic Müller-Breslau Method 
The classic Müller-Breslau method was invented in the 19th century. Commonly known as the 
influence line, this method of equilibrium without statics is taught in many civil engineering 
programs today. It is a simple method that can be used to find external reactions or internal 
forces in a structure subject to gravity loads. This is accomplished by imposing a unit 
displacement or rotation at the location of the unknown and in the direction of the unknown, 
while all other boundary conditions must be respected in terms of displacement and/or rotation. 
The straight line created by the unit displacement and connection to other boundary conditions is 
the influence line.  

Figure 1 displays a simple statics problem, a 
simply supported slanted beam with one gravity 
load, being solved using the classic method. The 
vertical reaction at the right roller is being sought.  

In order to construct the influence line, the right 
side of the beam is shifted a unit displacement of 
one upwards, in the direction of the sought 
reaction. In the classic method it is important to 
note that the beam does not stay the same length, 
but rather stretches in order to keep the boundary 
condition along the same vertical axis. Therefore, 
the influence line created is longer than the 
original beam. 

  

Figure 1 
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Modern Müller-Breslau Method 
The Modern Müller-Breslau method was created in the 21st century by Edmond P. Saliklis, PhD, 
professor in the Architectural Engineering Department of California Polytechnic State 
University, San Luis Obispo, and appeared briefly in his book, Structures: A Studio Approach, 
published in 2020. This method, though still utilizing the idea of internal and external work for 
equilibrium, differs from the classic method in significant ways. The most notable difference is 
that the unit displacement in the classic method becomes a variable displacement in the modern 
method. 

Figure 2 shows the same kind of 
problem as Figure 1, a simply 
supported slanted beam with a single 
gravity load. However, the influence 
line seen in Figure 1 now becomes the 
perturbed shape. When the right 
reaction at the roller is being sought, a 
displacement is still imposed at the 
support in the direction of the reaction. 
However, instead of the beam 
stretching to create the influence line in 
the classic method, the actual shape and 

length of the beam rotates according to the variable imposed displacement. As shown in the 
figure, everything now moves along a circle including the applied gravity load, which maintains 
the original shape of the beam rather than just moving all points of interest vertically. 
Throughout this document, the loads are assumed to be in their original orientation regardless of 
the perturbation, instead of remaining at the same angle with the beam throughout. This is shown 
in Figure 2 where the original load is directly vertical and remains vertical throughout the 
perturbation. 

The capabilities of this new method are powerful because it can be used for the application of 
both lateral and gravity loads whereas the classic method can only be used for structures with 
gravity loads only. Whereas the classic method yielded exact answers for a unit displacement or 
rotation, the new method approaches theoretical values for smaller and smaller perturbations. 

This fundamental work equation is the one used for all investigations using the method. 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ∙ ∆ +  ∑𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖  ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝑖𝑖 = 0       ………   (eqn. 1) 

In equation 1, the Unknown is the external reaction, or internal shear or moment of interest. The 
varying imposed perturbation or rotation ∆ is the one applied at the location and in the direction 
of the Unknown. This delta could be a displacement if looking for an external reaction or internal 
shear, or it could be a rotation if looking for an external moment reaction or internal bending 
moment. The Forces are the loads applied to the structure and the Loft is the distance travelled 
by each load in the direction that load is applied, caused by the imposed perturbation ∆. If 
multiple forces are applied to the structure or their location varies or changes, a new perturbation 

Figure 2 
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does not have to be created. A perturbation can be used for any loading pattern because it is 
independent of applied loads. As more forces are applied, they can simply be added into the 
equation without changing the other terms. 

The procedure to apply the Modern Müller-Breslau method is relatively similar for all types of 
problems. First, remove the capability of the structure to carry the Unknown, which could be a 
reaction or internal shear or moment. At the location of the Unknown, apply a perturbation ∆ in 
the direction of the unknown. This could be a displacement if seeking a reaction or internal 
shear, or a rotation if seeking a moment reaction or internal bending moment. This perturbation 
can start out large and then reduce to nearly zero as the answer asymptotically approaches the 
theoretical value. All other boundary conditions must be enforced. The imposed perturbation will 
create lofts under the original loads that must be measured. These lofts can be closely 
approximated if using a sketching method on graph paper or can be found exactly if using sines 
and cosines. Though these are the basic steps, there are some key points to be aware of. If the 
imposed perturbation causes a kink in the structure, the load has to be broken up into portions on 
either side of the kink. In a statically determinate structure, which is the focus of this project, all 
lines will remain straight after the perturbation. 

 

Figure 3 

As seen in the sketch above, this method can easily be recreated by hand or on a napkin. For this 
simply supported beam with an overhang, the lofts can be calculated using simple trigonometry 
of sines and cosines and can then be put into the fundamental equation. This sketch also 
illustrates how the beam stays the same length throughout the perturbation and how the loads 
move inwards. Although not necessary, it is recommended to practice drawing these problems by 
hand first to get comfortable with the method before drawing in a computer program. 
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Determinate Beams 
Determinate beams are the simplest structure to be investigated and serve as a great starting point 
to learning the method. The power of the method shows that as problems get more complicated 
either by varying geometry or loading patterns, the method remains at the same difficulty level 
whereas the statics would get increasingly more difficult.  

 

 

Figure 4 

Figure 4 above is a common problem given in statics courses. It tests a student’s understanding 
of the way the forces applied to the handles extended off the beams affect the internal moments 
and reactions of the main portion of the beam. To solve using statics, one would have to resolve 
the handle force into a force applied directly to the main beam with an added external moment to 
account for the eccentricity of the force. With the Modern Müller-Breslau method, no extra steps 
must be taken in order to solve for the reaction at the right support. 

 

Figure 5 

Following the steps of the modern method, if we are seeking the reaction at the right support, 
perturb the beam at the location of the support in the direction of the reaction. In Figure 5 that 
can clearly be seen as an upwards displacement of ∆. All other boundary conditions must be 
enforced, and in this case, this means that the end of the beam supported by the pinned support 
does not displace. In this figure the perturbation is exaggerated for visibility, but as it is 
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decreased to nearly zero, the answer will be approached asymptotically. Once again notice that 
the loads are assumed to be in their original orientation despite the perturbation. 

 

Figure 6 

The next step is to measure the lofts of the applied loads, which are shown in Figure 6. For the 
downward force, the loft should be measured vertically. This is because in order to create work, 
the force and the displacement must be going in the same directions. The signs of the work 
matter as well. For this problem, as the perturbation ∆ increases, the downward force is being 
applied in the opposite direction as the loft. The force points down, but that point on the beam is 
being moved up when the perturbation is applied. This means that the work being applied by that 
force is negative. Similarly, for the force pointing to the right, the loft should be measured 
horizontally. The work done by this force is also negative, because the force is acting to the right 
while that point on the beam is moving to the left. After these lofts are measured, equation 1 can 
be assembled and solved for the Unknown.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈 ∙ ∆ − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹ℎ𝐿𝐿 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝑅𝑅𝐹𝐹𝐹𝐹ℎ𝐿𝐿 − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈 = 0  

 

Figure 7 

Figure 7 depicts a propped cantilever problem with a hinge. A distributed load is applied in the 
location shown on either side of the hinge. In order to solve this with statics, the beam must be 
“broken up” at the hinge and forces at the hinge would be solved one at a time, requiring 
multiple steps to find the reaction at the roller support. With the Modern Müller-Breslau method, 
that reaction can be found very quickly and simply using the steps outlined previously. 
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Figure 8 

In this problem, the reaction at the roller support is being sought, so a perturbation ∆ is applied in 
its place and in the same direction as the reaction. In this problem ∆ is an upwards displacement 
at the location of the roller support. Remember that all other boundary conditions must be 
enforced. This means that there is no rotation of the beam when extending out of the fixed 
support on the left, but it is free to rotate about the hinge. These conditions give us the perturbed 
shape shown in Figure 8, and a kink in the shape can be clearly seen. Before anything can be 
done, the applied distributed load must be broken up on either side of the kink. In this example, 
the force per length amount is split up into Force1 on the left side of the hinge and Force2 on the 
right side of the hinge. Next, the lofts under the loads can be measured. This problem is 
especially interesting because it can be clearly seen that only the force on the right side of the 
hinge experiences a loft, which means that only the force on the right side of the hinge does 
work. The force on the left stays in the same position and does no work, and so does not 
contribute to this problem. Finally, equation 1 can be assembled, and the Unknown can be solved 
for. 

𝑅𝑅𝑅𝑅𝑈𝑈 ∙ ∆ − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹1 ∙ 0 − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹2 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿 = 0  

For those in engineering programs, internal forces such as internal shear and bending moment 
are required to complete beam design. Finding these forces can also be completed with the 
Modern Müller-Breslau method.  

 

 

Figure 9 
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A simply supported beam with two gravity loads is shown in Figure 9, in which the shear at x = 
4 along the beam, between the two loads is sought. This figure also shows the construction lines 
that are needed to set up the problem. The first step of the method is to take away the capability 
of the structure to carry the internal shear of interest. At that location, this would mean that the 
beam breaks or cracks at that location, so one side goes up and the other side goes down. The 
perturbation ∆ is still variable and occurs at the location of the crack, but it is total perturbation 
added from both sides of the beam, one side up and the other side down. This is created by the 
two lines shown in Figure 9 that are along the length of the perturbed beam shapes. In order to 
perturb the loads, a circle is created at each side of the beam with their centers placed at the 
supports and intersecting the location of the load. For Force1, the load shifts to the left based on 
this perturbation and for Force2 shifts to the right. This movement is very subtle but is required 
in order to maintain all the dimensions of the beam for the method. 

There is also an equation to find the height on each side of 
the crack based on geometry. In the classic method, the 
displacement ∆ was always equal to 1, so this geometry was 
very simple. For the modern method since the perturbation ∆ 
is variable and approaches nearly 0, the equation is slightly 
different. 

As can be seen in Figure 10, the height for the side 
displacing downwards is that side’s length divided by the 
total length of the beam and multiplied by the total desired 
perturbation ∆. As can be easily observed, the two sides add 
up to the total perturbation ∆. For this problem, a = 4 and b 
= 6, and the geometry is shown in the figure. After these 

heights are found, the lofts below the applied loads can be measured, and equation 1 can be set 
up as shown below. Note that Force1 is creating positive work because it is acting in the same 
direction as the perturbed shape is moving, and Force2 is creating negative work because it is 
acting in the opposite direction as the perturbed shape is moving. This time, the Unknown is the 
internal shear instead of a reaction. The work created is still added together and set equal to zero 
as before, and the shear can be solved for. 

𝑆𝑆ℎ𝐹𝐹𝑒𝑒𝐹𝐹 ∙ ∆ + 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹1 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐿𝐿𝐿𝐿 − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹2 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝑅𝑅𝐹𝐹𝐹𝐹ℎ𝐿𝐿 = 0 

Internal bending moment has a similar approach as internal shear but is unique in construction in 
terms of the method.  

Figure 10 
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Figure 11 

Figure 11 shows a problem depicting a simply supported beam with a single downward load. The 
moment at midspan is being sought. To find the internal moment, first take away the capability 
of the beam to carry moment at that location, creating a crack in the beam. This is synonymous 
with creating a hinge in the beam. The imposed perturbation ∆ is a rotation this time, and it must 
be measured in radians for equation 1 to work. Note the location of the rotation of interest is the 
one between the two sides of the beam on either side of the crack. Using the correct angle is 
crucial and can be difficult for a student to understand why it is that angle and not the angle 
directly between the two pieces. The next step is to measure the vertical loft below the applied 
load. If using a hand sketching method, the height below the crack will have to be found first. 

 In the classic method, the ∆ was a unit rotation of one, so the 
height below the crack was just the length of the side on the 
right side of the crack times the length on the left side of the 
crack divided by the total length of the beam. For the modern 
method, since the perturbation ∆ is variable, this equation 
must be slightly modified by multiplying by ∆. The height 
below the crack in the example can be seen in Figure 12. In 
this example, a = b = 5 and L = 10. After this is found, the loft 
below the load can be measured and equation 1 can be 
assembled as shown below. This can of course be done on a 
quick sketch using similar triangles or just estimating the loft 
using relative scale. The force applied is creating negative 
work because it is being applied in the opposite direction as 
the loft due to the perturbation of the beam. For equation 1, 
the Unknown is internal bending moment and the perturbation 

∆ is an angle in radians. Once put into the equation, the Unknown can be solved for. 

𝑀𝑀𝑈𝑈𝑀𝑀𝐹𝐹𝑈𝑈𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ ∆ − 𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿 = 0 

 

  

Figure 12 
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Determinate Axial Problems 
The modern method can also solve axial problems.  

 

Figure 13 

For an axially determinate problem, the steps remain simple. If the internal axial force is sought, 
then a perturbation ∆ must be applied in the opposite direction of that internal force. For this 
axial problem, tension will be assumed, so a perturbation will be applied along the length of the 
beam “stretching” it out, as shown in Figure 13.  

Next, the lofts must be measured. In this 
problem they are still defined as the vertical or 
horizontal distance the loads travel when 
perturbing the member a distance ∆. Note that 
the work the internal force does is always 
negative because the perturbation will always 
be applied in the opposite direction as the 
internal force. The horizontal force does 
positive work because it stretches the beam 
and the vertical force is doing negative work 
because it compresses the beam. Something to 
be noted about the perturbation ∆ in this 
problem is that as it decreases the answer stays 
the same exact as the theoretical answer, 
instead of approaching it. By observation this 
can be explained by the fact that the variation 

of ∆ is along a fixed axis whereas usually the variations of delta are along a circular path, 
therefore the rise and the run are directly related. Therefore, for any ∆, the answer will be exact. 
Equation 1 can then be assembled as shown. 

−𝑇𝑇 ∙ ∆ + 𝐹𝐹𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 ∗ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 = 0 

Figure 14 
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These steps of applying a variable perturbation along the length of a member to find the axial 
force can be applied to beam or frame structures that have cables, or trusses. Although those 
types of problems were not analyzed for the purposes of this project, there will be more on 
finding internal axial forces in the three-dimensional truss section. 

Determinate Frames 
The next investigation using this method will be determinate frames. All the steps for finding 
external reactions and internal forces are the same as for beams, however extra care must be 
taken in terms of boundary conditions, which requires a good understanding of the method, 
making it a good next step after beams are mastered. 

The first example shown in Figure 15 
is a two-member frame with a 
horizontal and vertical load applied. In 
order to find the upward reaction at 
the right support, the frame is treated 
similar to a beam. In the location of 
the Unknown, the reaction, a variable 
perturbation ∆ is applied, in this case a 
displacement upwards. As can be seen 
from the perturbed shape in Figure 15, 
the entire frame is rotated about the 
left pin, respecting that boundary 
condition. The angle between the two 
members that make up the frame, in 
this case 30 degrees, does not change 
as it is a rigid connection.  

Something that becomes important 
when examining slanted members is 
measuring the correct lofts below the 
loads. The loft is defined as the 
change in position from the old load 
to the new load in the direction that 

the load is applied. For a vertical load, the loft is measured vertically, meaning the change in 
vertical position from the original load to the new load on the perturbed shape. A common 
mistake made by students may be to measure Fvert in this example as being the distance directly 
below the applied load to the old shape when really it is the change in elevation of the applied 
load. The correct loft to be measured is clearly illustrated in this figure. The perturbation ∆ is 
also measured in this way. The horizontal loft is more straightforward and doesn’t require taking 
extra care. At this time being familiar with the method for beams, it should be clear to the user 
that both the vertical and horizontal applied force create negative work. Once the lofts are 
measured equation 1 can be used once again to solve for the Unknown. 

𝑅𝑅𝑅𝑅𝑈𝑈 ∙ ∆ − 𝐹𝐹𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 ∗ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 = 0 

Figure 15 

NOT LoftVert 
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This is when it begins becoming clear how powerful the method can be. Even though this is now 
a frame instead of a beam, the process and the fundamental equation does not increase in 
complexity. 

In this same problem, suppose that the thrust at 
the pin support was the reaction of interest. 
The first step would be to apply a perturbation 
∆ in the direction of the thrust. This 
perturbation moves the entire frame to the left 
as shown in Figure 16. Even though the entire 
frame moves from its place, note that the 
boundary conditions are still respected. The 
roller support on the right is still enforced 
because it is restrained vertically but can move 
horizontally.  

If this problem were to be solved using statics, 
the thrust reaction could be solved by 
inspection. By just looking at the forces in the 
horizontal direction the horizontal thrust must 
equal the applied horizontal force because they 
are the only forces acting in that direction. 

Something similar is shown by the method. In Figure 16 it is clear that the horizontal loft is equal 
to the perturbation ∆, and that the vertical loft is equal to 0. Since the frame only moves 
horizontally, the vertical applied force does not experience vertical movement. Since force and 
distance have to be applied in the same direction to create work, the vertical force does not 
contribute to the thrust at the pin. The equation for this problem is shown below. Clearly it can 
be seen that since ∆ is equal to LoftHoriz, the thrust reaction at the support will be equal to the 
horizontal applied force. 

𝑅𝑅𝑅𝑅𝑈𝑈 ∙ ∆ − 𝐹𝐹𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 ∙ 0 = 0 

Finding the internal moment in this frame has a few more steps as it requires two points of 
movement instead of just one. 

Figure 16 
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The moment of interest in this problem is at 
some point in the vertical member of the frame, 
above the horizontal applied load. Create a 
crack in the location of interest, and apply a 
perturbation ∆, a rotation between the two sides 
of the member measured in radians, as seen in 
Figure 17. This is the same process as finding 
the internal moment in a beam, however there 
is one extra step to solve this problem. When 
creating the perturbed shape, there are two 
points of movement. One is to adjust the size of 
the perturbation angle, and the other is to adjust 
the location of the right side of the slanted 
member. This becomes crucial to finding the 
answer. If the roller boundary condition isn’t 
respected and the frame isn’t adjusted so that 
the top moves along the horizontal path, the 

answer will be very far from theoretical answers. Note that the original angle between the two 
members of the frame remains the same, because that rigid connection is a boundary condition as 
well. When these boundary conditions and small perturbations are achieved, it can be seen from 
Figure 17 that the vertical loft is nearly zero which means it does no work and does not 
contribute to the internal moment at that location. For some students that might be intuitive, but 
for others the result may be surprising.  

𝑀𝑀𝑈𝑈𝑀𝑀𝐹𝐹𝑈𝑈𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ ∆ − 𝐹𝐹𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝐹𝐹𝑈𝑈𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿 ∙ 0 = 0 

Note that the ∆ in this problem is a rotation and must be input in radians for the equation to 
work, and the location of this rotation is crucial. Figure 12 for beams can be referenced for any 
imposed angle ∆ for the correct location. 

The most difficult part of moving from beams to frames is the increase of moving parts. As a 
student, it was easy to forget that the loft is measured from the original load to the load on the 
perturbed shape, and not from the original frame to the perturbed shape. More care had to be 
taken in respecting boundary conditions. When the boundary condition had to be manually 
adjusted as in finding the internal bending moment on the frame, this provided the most 
difficulty in approaching the theoretical answer. Adjusting both the perturbation and the 
boundary condition at the same time added some checking and re-checking that was not 
necessary when analyzing beams. Although this was a slightly more time-consuming aspect, the 
method is still less time consuming than performing statics to determine the internal bending 
moment at a specific location, especially if the loading patterns are subject to change. The 
perturbed shapes are independent of the loading pattern, so changing the loads means no 
redrawing of the perturbed shapes. This is where the method becomes the most powerful because 
it can be used to analyze multiple loading scenarios quickly and effectively in an extremely 
simple way.  

Figure 17 
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Three-Hinged Arches 
Three-hinged arches are a commonly investigated structure in many engineering courses. These 
structures usually consist of an arch with two pin supports, with a hinge in between so that it is 
still statically determinate. In statics, three-hinged arches need to be split up at the hinge, given 
equal and opposite forces on either side of the hinge, and require evaluating a system of 
equations in order to solve for reactions. This can be difficult for a lot of students because 
opening up statics to more complicated algebra can not only be time consuming, but also 
increase the likelihood of errors. The difficulty of these problems can easily be increased by 
putting the pin supports at different elevations and making the arch itself asymmetrical. Using 
the Modern Müller-Breslau method to solve for reactions at the supports of 3-hinged arches 
drastically cuts down this complexity.  

When examining a three-hinged arch, 
often the reactions at the supports, 
especially the thrust at the supports, is 
of interest. This is because as loads are 
applied to an arch-shaped structure, 
the sides want to “push out.” It is the 
thrust at the pinned supports that resist 
this tendency. A three-hinged arch 
problem with a combination of 
horizontal and vertical loads is 
depicted in Figure 18. This problem 
implements many of the qualities that 
would make this difficult to solve 
using statics. The arch is asymmetrical 
having the two sides being different 
lengths, and the supports are at 

different elevations. The first reaction of interest is the upwards reaction at the pin on the right 
side of the arch. The perturbation to be applied to three-hinged arches now has two steps instead 
of the usual one. Since the sides of the arch are free to rotate about the hinge in the middle, the 
perturbation has two points of movement that must be adjusted separately. First, the left side of 
the arch needs to be perturbed. Since we are seeking the upwards reaction on the other side of the 
arch, perturb the left side upwards about a circular path which is shown in Figure 18. After that, 
the right side of the arch rotates about the hinge in between and must be adjusted so that the pin 
boundary condition is respected. In this case, that means that the right side of the arch cannot 
move horizontally through the perturbation. This can be clearly seen in the figure as the right 
support moving up and down but not left to right. This is only possible because of the hinge. 
Similar to finding the internal bending moment at some location on a frame, making the extra 
adjustment to respect the boundary condition is crucial to finding the right answer. After the lofts 
are measured equation 1 can be used to solve for the vertical reaction. Note that F1 and F2 are 
doing negative work while F3 is doing positive work. 

𝑅𝑅𝑅𝑅𝑈𝑈 ∙ ∆ − 𝐹𝐹1 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿1 − 𝐹𝐹2 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿2 + 𝐹𝐹3 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿3 = 0 

Figure 18 
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The three-hinged arch problem requires two points of movement for the modern method, just as 
how it requires two equations to be solved using statics. This is an interesting correlation that 
was noticed during this project. Similarly, if the internal bending moment at some point in a 
frame was to be solved using statics, it would also have to be split into two portions with equal 
and opposite reactions. Solving the problem with the modern method requires two points of 
movement as well. 

To find the thrust at the same support, 
a different construction is required, as 
shown in Figure 19. The first step of 
the perturbation starts the same as the 
previous problem, which is that the 
left side of the arch must be perturbed 
upwards along a circular path. It may 
seem counterintuitive to perturb the 
arch vertically when seeking a 
horizontal reaction, however, moving 
the left side of the arch vertically is 
the only way to move the right side of 
the arch horizontally since the two 
sides can rotate about the hinge. The 
only difference between finding the 
thrust and the upwards reaction is that 

the second step now requires the respect of a different boundary. Since we are seeking the thrust, 
a horizontal force, we take away the capability of that reaction to resist thrust, however it still 
retains the capability to resist vertical force. Therefore, the right support can only move 
horizontally as shown in Figure 19.  

Lastly, if reactions on the left side of 
the arch are sought, the same 
perturbation occurs for a vertical 
reaction but mirrored from the 
previous example. The perturbed 
shape for a vertical reaction at the left 
support can be seen in in Figure 20.  

The three-hinged arches discussed so 
far require accurate adjusting in order 
to reach exact theoretical answers, and 
with two points of movement this may 
be a little tedious because it requires 
moving back and forth between both 
points of movement decreasing the 
perturbation ∆. However, these 

Figure 19 

Figure 20 
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examples have been of a small scale, and the accuracy of the method in three-hinged problems 
increases as the scale does. This is because the perturbation ∆ and the measured lofts get smaller 
and smaller in comparison to the span of the arch so there is less room for error in the equation. 
From the next example in Figure 21 below, it can be observed that the perturbation gets less 
obvious as the span increases. 

 

 

 

 

Figure 21 

These three-hinged arches with large spans of 150, 250, and 350 in Figure 21 illustrate the speed 
at which investigations can be made graphically and eloquently, without repetitive statics. By 
just looking at the figure the observation can be made that as the span of the arch increases, the 
thrust also increases. Coming to this conclusion using statics for each arch would be very time 
consuming and this is one of the benefits of the method for students who need a more conceptual 
understanding of engineering. Furthermore, using this method on such a large scale shows the 
possibilities for its real-world applications. 
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Three-Dimensional Problems 
All structures in real life are three-dimensional, yet two-dimensional models are appropriate 
most of the time. Sometimes a two-dimensional model isn’t enough, like in the following 
examples. The statics that go into a three-dimensional problem becomes increasingly 
complicated because as dimensions increase, the number of equations increase. However, using 
the modern method for three-dimensional structures remains at the same difficulty level as 
beams and frames.  

The first three-dimensional problem is a simple tripod, as seen in Figure 22. Stick1 and Stick 2 
are the same length while Stick3 is longer. The tension in Stick3 is sought in this example. For 
these problems, the z-axis is drawn in blue, the x-axis is drawn in red, and the y-axis is drawn in 
green. 

 

Figure 22 

As discussed previously in the axial determinate problem, when an axial force is being sought, 
the variable perturbation ∆ is applied along the length of the member. When applying an axial 
perturbation to a member that is part of a truss, the perturbation is only applied to that member, 
while all other members stay the same length. Figure 23 shows the variable perturbation ∆ 
applied along the length of Stick3. This increases the length of Stick3 while Stick1 and Stick2 
stay the same length. NewStick3 is the original Stick3 plus ∆. 
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Figure 23 

The new perturbed truss can be seen in Figure 23, depicted with thick blue lines. The only point 
that moves is the original crown, while all the supports stay pinned to the ground. Something to 
notice is that the new crown created by the perturbation is not in line with Stick3 or the 
perturbation of Stick3, ∆. This is because since Stick1 and Stick2 must stay the same length, they 
rotate about their supports to accommodate the stretching of Stick3. Although this makes sense 
based on the boundary conditions, this result is not intuitive. The force applied is going straight 
down, so even though the new crown changes position in multiple directions, the only loft to be 
measured is purely vertical, in the direction of the applied force. The vertical distance from the 
NewCrown to the original Crown will be the loft for solving the problem. Even though this 
problem is three-dimensional, the same fundamental equation can be used for this problem. As 
previously discussed, when seeking an axial force, the work done by the internal force is always 
negative because it always goes in the opposite direction as the perturbation ∆.  

−𝑇𝑇𝑆𝑆𝑆𝑆𝑖𝑖𝑐𝑐𝑐𝑐3 ∙ ∆ + 𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿 = 0 

The next three-dimensional example shown in Figure 24 is slightly more complex and has six 
sticks with two applied loads. The axial force in Stick4 is being sought. 
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Figure 24 

To find the force in Stick4, a variable perturbation ∆ must be applied along the length of Stick4. 
By observation, an intuitive student can see that the point at which FDown is applied is stable. 
This is because it occurs at a point that is supported in every direction, by the tripod at that 
location. Therefore, when investigating Stick4, that point does not move. This means the 
perturbation ∆ will be applied along the member starting at the point of Fx, keeping the point of 
FDown in the same location. This also means that FDown does no work in terms of the internal 
axial force experienced by Stick4, and that force is only being affected by Fx, which is being 
applied in the x-direction. 

 

Figure 25 
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The new perturbed shape of the structure can be seen in Figure 25, in thick blue lines. All 
supports stay pinned to the ground and the only sticks that move are those at the location of Fx. 
Stick1, Stick2, and Stick3 do not move because they are connected to a stable point. Stick4 gets 
stretched through the perturbation while Stick5 and Stick6 stay the same length and rotate about 
their supports to accommodate the perturbation of Stick4. The only point that moves is the 
original crown, which becomes the new crown on the perturbed shape. Once again, the new 
crown is not in line with the original stick or the perturbation ∆. Since the applied load is in the 
x-direction, the loft to be measured is the change in x dimension from the original crown to the 
new crown. Then all can be plugged into equation 1 and the tension in Stick4 can be solved for.  

−𝑇𝑇𝑆𝑆𝑆𝑆𝑖𝑖𝑐𝑐𝑐𝑐4 ∙ ∆ + 𝐹𝐹𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈 ∙ 0 + 𝐹𝐹𝑅𝑅 ∙ 𝐿𝐿𝑈𝑈𝐿𝐿𝐿𝐿𝑅𝑅 = 0 

These three-dimensional examples are the most impressive and a great ending to analyzing 
determinate structures using the Modern Müller-Breslau method. These examples show how 
powerful the method can be, and how easily difficult problems can be solved. At this level of 
difficulty, most engineers would be creating a digital model in some sort of software. The idea 
that this method is simpler and more straightforward than creating a digital model is incredible.  
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Conclusion 
As a senior student about to graduate from the ARCE program, I could appreciate the Modern 
Müller-Breslau method as a complement to my statics courses. I didn’t find learning the method 
to be difficult, but it wasn’t trivial either. Most of the things I struggled with were very specific. 
Although it’s still shocking to me that the method works, the process itself is very easy to 
understand. What I struggled the most with was knowing the correct lofts to be measured, and if 
the distances were to be measured from the old shape to the new shape, or from the old load to 
the new load. This confusion is cleared up by always emphasizing that it is the load that performs 
work, therefore all the lofts measured will be from load to load not beam to beam.  

During the discussion of this method, a question came up about the coefficient of ½ that is 
usually applied to work. This comes from the graph of Force vs. Displacement, in which the area 
under the curve, the work, is equal to ½F∆, as opposed to the modern method being F∆. This ½ 
is applied for a gradually increasing load whereas for the modern method the total force is being 
applied for the entire movement. The load is never changing; therefore, we don’t apply the ½ to 
the fundamental equation. 

Learning this method would be beneficial for those in engineering programs. The influence line 
is widely taught and since this method can cover wider applications it serves as a great 
replacement. However, I don’t think it should replace statics fully because the skills gained from 
that are still very beneficial to engineers. But I do see it as a replacement for very tedious 
problems that only cause frustration due to errors with algebra and not errors in conceptual 
understanding. I could also see this being implemented in practice possibly as a preliminary step 
to computer modeling when investigating a more geometrically interesting structure. 

Introduction to GeoGebra 
All the problems in this paper were created in GeoGebra Classic 5, a free program available for 
download on the internet. As a student who is accustomed to numerous software and coding 
programs, the learning curve wasn’t very steep, however there are some adjustments to the user 
interface that can make using the method through this program much faster and simpler. 
Although the method can be completed by hand on a piece of paper, GeoGebra provides 
solutions faster and easier with almost no math required, as the geometry is performed by the 
program and answers can just be measured instead of performing geometric calculations like 
those for similar triangles. 

For the examples in this paper, looking online for troubleshooting tips is often futile. The 
GeoGebra guide provided in this paper will be aimed towards those using it to solve problems 
using the method described. 
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To begin, here is an overview of the layout of GeoGebra once it is opened. Highlighted in green 
below, is the graphics window. This is where all the constructions will be shown and drawn. 
Click the triangle next to “Graphics” at the top of this window to see toggling options for grid 
visibility. Press the button with the house to return to a view in which (0,0) is centered on the 
page. Click the magnet to see a dropdown menu of snapping to grid options, which can aid in 
drafting if the grid is being used as a guide. 

Highlighted in blue is the algebra window, where everything drawn will show up in formulas or 
numbers. All objects drawn and all numbers defined will be in this window. Click the triangle 
next to “Algebra” to see options of how the objects in this window can be organized. There are a 
few ways to organize the information in this window, the easiest of which is arranging the 
objects by object type. Click the button with a downwards facing arrow to see the options for 
object arrangement. The default is construction order, but as problems get more complex and 
there are more and more objects to keep track of, it’s easiest to arrange them by “object type.” 
The other buttons underneath “Algebra” do not need to be toggled. 

At the very bottom of the screen there is an “Input” bar. This is where objects and numbers can 
be defined. An alternative to typing into the input bar is to instead use the buttons at the top of 
the screen. 
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This is what a problem looks like within the GeoGebra program. The picture itself is in the 
graphics window, while all the shapes defined to make that picture is in the algebra window. The 
objects in the algebra window are arranged by object type, which are organized as conic, line, 
number, etc., as shown. 

A beam problem in GeoGebra is constructed from points, lines, segments, and circles. First, 
points need to be made. There are multiple ways to make a point. The first way is to define it in 
the input window. For the input window, defining points starts with capital letters. For example, 
A = (0, 0). It can also be a word starting with a capital, such as Right = (0, 0). 

  

After typing out the point and pressing enter, the point “A” should populate in the graphics 
window. Right clicking on the object will create a drop-down menu. In this menu the visibility of 
the object can be adjusted, or it can be deleted. Clicking “Show Label” will remove the label “A” 
from the point. Clicking into “Object Properties” will open a new window on the side of the 
screen that looks like this: 
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In the “Basic” tab of the Object Properties window, the name and the definition of the object can 
be changed. There is also a toggle for showing the object. Note that choosing not to show an 
object will not delete it, and it can still always be found in the algebra window. Another way to 
toggle the visibility of an object is by clicking on the circle next to the object name and definition 
in the algebra window. Clicking the box to “Fix Object” can be very useful, since the point may 
be moved by accident if touched later, which could interfere with solving the problem. 

Another way to create a point is by clicking the point tool at the top of the screen. Once the tool 
is clicked, a point can be created by clicking anywhere inside the graphics window. Snapping to 
the grid can be useful when using this tool so that coordinates remain integers. 

 

In GeoGebra, all objects are labeled in the graphics 
window automatically. To turn this off, go to Options, 
and click on labeling, then set it to “No New 
Objects.” This will turn off automatic labeling when 
creating new objects. The names of objects can still 
be viewed in the algebra window. 

Next the second point on the beam must be created, however, part of the power of the method is 
being able to create variable problems, so the next point will not be defined in the same manner 
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as the point “A.” Utilizing the slider tool, a variable can be created. For any tool, hovering over 
the tool will give a short description of how to use it.  

 

Click on the slider tool and click anywhere in the graphics window. This window will populate: 

 

In this window the slider can be named and defined. In this case the slider name will be 
“Length,” set to a number, and the interval will be defined as Min: 0 to Max: 10, but it can be 
defined as 0 to whatever the maximum length of the beam. The increment is usually set to 1 to 
keep them as integers but can be any number if a smaller or larger increment is desired. 

 

Once the slider “Length” is defined, it populates in the graphics window, and shows up in the 
algebra window as “Length = (Slider Value).” The dot on the slider can be moved back and forth 
in order to change the length of the beam.  

Now the second point on the beam can be defined. In the input 
window, type B = (Length, 0). Note that the variable is case sensitive, 
so if Length is capitalized on the slider, it must also be capitalized 
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when calling on the variable to define point B. Also notice that when a defined variable is typed 
into the input bar, it turns a blue color. After pressing enter, two points should now appear in the 
graphics window. Toggle the “Length” slider and see how point B moves back and forth along 
the screen. All components of the slider can be edited in the Object Properties window, under the 
“Slider” tab. 

 

 

 

Now, a segment can be created between the two points to draw the 
beam. In the input window, type “Segment(A,B)” and press enter. This 
will draw a line between points A and B, and this segment will change 
lengths according to the “Length” slider value. This is how the length 
of the beam is adjusted to create variable problems. A segment can 
also be created using the top buttons, then clicking on point A and 
point B. The segment will be defined in the exact same way in the 
algebra window as typing it in the input bar. 
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Clicking on the segment that is the “beam” and going into the object properties window will 
allow options for changing graphics. For the problems in this paper, members drawn have a 
standard of a thick blue line. In the color tab, the color of the beam can be changed. In the style 
tab, the thickness and opacity of the line can be changed.  

The “supports” for the beams, which could be pins, rollers, or fixed supports can also be drawn 
in GeoGebra. Pins and rollers can be created graphically by points. The simplest way to do this is 
to click the point button at the top of the page and then click a location that is under or to the side 
of the beam where the support should be. Adding supports are for graphical purposes only and 
won’t be used in measurements so their exact location isn’t critical. Points can be moved after 
they are placed by simply clicking and dragging. Once the location is set, go to the object 
properties, and click “Fix Object” to avoid moving it again later.  

For a roller support, the 
graphic standard is a solid 
round point. The graphic 
standards shown in this paper 
are shown in the images to 
the left. For the problems in 
this paper, they will be the 
biggest point possible, which 

can be adjusted in the style tab and they will be colored green which can be defined in the color 
tab.  
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For a pin support, the graphic 
standard is a solid triangle 
pointing up. The graphic 
standards shown in this paper 
are shown in the images to 
the left. For the problems in 
this paper, they will be the 
biggest point possible, which 

can be adjusted in the style tab. Also in the style tab, change the point style to a solid upwards 
pointing triangle. Adjust the color in the color tab. 

Fixed supports require a few more steps. First click on the polygon 
button and click “Polygon.” Then, draw a rectangle by clicking on four 
locations around the end of the beam. In this example the points are 
placed at 0.5 all around point A. To “close” the rectangle, click the first 
point placed a second time. The points making up the rectangle can be 
hidden by right clicking and selecting “show object.” To change the 
style of the rectangle go to the object properties window, and under the 

style tab, the filling can be changed to the style “Bricks” and the angle can be changed to 0 
degrees. There are many graphics that can be adjusted if desired. This gives the fixed support a 
“wall” look. 

 

 

 

 

 

 

 

 

For this example, the beam will be simply supported with a pin support on one side and a roller 
support on the other side. At this point, the beam should look like this: 

 

Now that the initial beam shape is drawn, some forces can be defined. This can be done by 
creating sliders, or by just defining it in the input bar. For example, a slider called “Force” can be 
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created with limits from 0 to 1000, or a force can be defined by typing “Force = 750” into the 
input bar. Most of these problems utilize sliders because they allow to demonstrate the power of 
the method’s variability. A slider is also created to define the point at which the force is acting 
on the beam, called “ForceX” in this example.  

 

When creating sliders, limits can be set as defined variables. For instance, for the slider named 
“ForceX,” the minimum can be set to “0” but the maximum can be set to “Length.” This will 
ensure that a force is not applied beyond the length of the beam.  

To graphically show the force, begin by creating a vertical line passing 
through the point the force is to be applied. This can be achieved by typing 

“x = ForceX” into the input bar. 
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Next a point must be created at the intersection of the vertical line and the beam. Expand the 
options under the point button at the top of the page and click “Intersect” then select the beam 
and the vertical line. This will create a point at their intersection. Next create a circle by 
expanding the options under the circle button and selecting “Circle: Center & Radius.” Then 
click the point just created by the intersection of the beam and vertical line, which will be the 
center of the circle. A dialogue will pop up to input the radius. The radius will be the variable 
defined as force, and then divided by some large number in order to “scale” it. This can be 
adjusted in the object properties window, but here 1000 will be used to scale the size of the force. 
This gives all the problems a proportional look. 

 

Next, this circle must be intersected with the vertical line. Using the intersecting tool, as before, 
click the two objects to intersect, the circle and the vertical lines. Two points should appear. 

 

Next, a vector can be created to graphically show the force. Under the line 
button, expand the options and click on “Vector.” Then, click on the top 
point of the circle and the point on the beam. The graphics of the vector 
created can be changed in the object properties window. For these 
problems, the graphical standard is the thickest red line. 

 

 

 

 

After all these shapes are created, the extra distractions can be removed. The circle, the points, 
and the lines can all be hidden from view as they will not be used to solve the problem. It is very 



Equilibrium Without Statics Claudia Zapata-Kraft Spring 2021 
 

31 
 

important to note that dependent objects cannot be deleted. For example, if the vertical line gets 
deleted, the points, the circle, and the vector all will be deleted. To avoid this, always hide 
objects, do not delete them. Even deleting the bottom point on the circle will delete the top point 
on the circle, and the vector will disappear because it was dependent on those points. To hide an 
object, right click and select “Show Object.” In order to make it visible again, find the object in 
the algebra window and either click on the circle beside the name or go to the object properties 
basic tab and make sure “Show Object” is checked. This can be used to hide objects as well. 
After hiding the objects, the beam should look like this: 

 

After reaching this step move around the sliders created to make sure everything is working 
properly. Make sure that the force arrow gets larger as the force increases and that it can move 
along the length of the beam. If troubleshooting is required, investigate using the object 
properties window to make sure the correct objects were intersected with each other and that the 
correct variables were defined.  

Finally, the “perturbed shape” can be created. Since all elements remain the same length in the 
modern method, the perturbed shapes will be mainly constructed from circles. For this example, 
the reaction of interest will be the upwards reaction at the roller support on the right. In order to 
keep the beam the same length, draw a circle with the radius “Length.” Once again this can be 
completed with the “Circle: Center & Radius” tool. It can also be done by clicking the “Circle 
with Center through Point” tool. Use this by clicking on point A for the center and then point B 
for the point. Then create a point on the circle. Use the point tool and hover over the circle and 
click. The point should automatically snap to the circle. To make sure the point is attached to the 
circle, drag it along the circle’s path. 

 

To create the final perturbed shape, draw a segment to connect point A and the point on the 
circle. 
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Creating a point that can be dragged along this circle gives us a very simple way of manually 
changing the perturbation. As these perturbations get smaller and smaller, which is also closer 
and closer to the original shape, the answer is approached asymptotically. 

For the modern method, the loads have to follow the perturbed shape as well. To do this, create 
another circle that has a radius of “ForceX” or create a circle that passes through the point on the 
beam at the location of the load. To create a point on the beam for the new perturbed load, 
intersect the circle passing through the load and the new beam. 

 

Use the same process to create a 
load at the new point on the 
perturbed shape. The vertical line 
can be created by using the 
“Perpendicular Line” tool, and 
clicking the beam as the 
perpendicular line, and then clicking 
the new point. Then follow the same 
circle intersection and vector 
creation process to create the new 
force. After this is all drawn, the 

original shape and loads can be changed to a lighter opacity in the object properties window to 
achieve better visibility and show that shape as “original.” After all the extra distractions are 
hidden this is what it should look like. 

 

Note how some points like the points associated with the loads and the points on the end of the 
new and original beam have not been hidden because they will be used in finding measurements. 
They have also been edited to show their label so that they can be used in definitions in the input 
bar. The easiest way to find these measurements is to subtract the point values from each other. 
The perturbation ∆ is the distance between the new beam and the old beam at the location of the 
support while the loft is the distance traveled by the load. To get these measurements, simply 
define them in the input bar.  
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GeoGebra is a very powerful program that can also be used as a 
calculator. To access the delta symbol, click the little box on the far right 
of the input bar containing an alpha symbol. This should expand many 
choices for Greek symbols. The operators are the same as any calculator, 

(+ addition, - subtraction, * multiplication, / division.) Type “∆ = y(L)-y(B)” into the input bar 
and press enter. The vertical distance between these two points should populate in the algebra 
window. Calling out y(Point) or x(Point) will pull the x or y value of that point, and they can be 
easily used in mathematical operations. Perform the same operation to find the Loft. Next the 
fundamental equation can be defined in the input bar. Before typing the equation, it will have to 
be rearranged in terms of the reaction. Type “Rxn = Force*Loft/∆” and press enter. The answer 
to the problem will populate in the algebra window. Since the equation is defined in terms of 
variables, changing the variables will automatically update the answer. Move around the sliders 
and make sure everything is working properly, troubleshoot if necessary. 

 

 

 

 

Although this example is a very simple start to drawing problems in GeoGebra, these are the 
basic tools used in every problem. Most importantly, there are multiple ways to accomplish the 
same task, so always search for the simplest and easiest way possible. GeoGebra is a very 
powerful program that can also be used as a calculator. The easiest way to get through the 
learning curve is to experiment and play with the many tools available, which all have 
descriptions on how to use them.  
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