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1 Introduction

In this paper we will be studying a jammed, amorphous solid. It’s important to first distinguish this

from crystalline solids which have also been studied in great depth. In crystalline structures, it is clear

that the solid deforms based on its structure or geometry [11]. However, amorphous solids are more

disordered and the rules that govern how the solid deforms are still being investigated [11]. Although we

will not be looking at the underpinnings of how the solid deforms, we will be investigating the statistics

behind how the solid deforms under strain.

We will be looking at a jammed solid at strain amplitudes that are below the irreversibility transition.

After many cycles of cyclic shearing, a particle’s trajectory will start and stop in the same spot over

one period of shearing. This creates a limit cycle or closed orbit. In contrast, above the irreversibility

transition, a particle’s trajectory will generally not start and stop in the same place but will wander; the

solid can no longer form limit cycles. Although behavior above this transition is interesting, we will

focus on strains below the irreversibility transition.

As our amorphous solid deforms, particles within the solid will rearrange, or slide past each other,

so the solid reaches a lower-energy and lower-stress state. There are two types of these rearrangements

which are reversible and irreversible rearrangements. Reversible rearrangements can be undone, or re-

turned to their original state, by applying the reverse strain to the system [11]. This implies the system

is hysteric, not to be confused with time reversible where we simply need to reverse the strain over time.

Irreversible rearrangements are much more interesting in that these rearrangements cannot be undone by

applying the reverse strain to the system [11]. These rearrangements cause the system to permanently

drop to a lower energy level than before [11]. Above the irreversibility transition, there is an increase in

the number of irreversible rearrangements [3].

These rearrangements are an example of crackling noise. Crackling noise is defined by a system

relaxing through discrete events [12]. This crackling noise can be seen in numerous natural systems

ranging from earthquakes to the polarization of a group of magnetic spins [12]. In our solid, the rear-

rangements described earlier are composed of a localized group of particles sliding past each other which

cause the system to decrease in energy or relax. Therefore, our solid displays crackling noise through

these rearrangements.
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We specifically investigate the probability distribution of the sizes of events. Previous research has

shown that rearrangements within the solid should follow a power law distribution; however, this work

was done mainly computationally [2][11]. A power law distribution gives the distribution a number of

unique properties most importantly its scale free property. Here, we take an experimental approach to

confirm this power law with our data. We also discuss the effects that different driving frequencies and

amplitudes have on the distribution. Lastly, since this material is known to reach limit cycles, we explore

the effects that many cycles of shearing have on the distribution.

2 Experimental Setup

Our experiment involves a needle shearing a jammed solid, Figure 2, adsorbed at an oil-water inter-

face . A wall mount holds two glass slides to confine the solid while Helmholtz coils move the needle as

seen in Figure 1.

Water-Oil Interface

Moving needle

Oil

Water

Figure 1: The oil-water interface where the solid is confined along with the needle and glass slides

Our solid consists of 3.4µm and 5.8µm plastic beads adsorbed at an oil-water interface as seen from

a top view in Figure 2. The particles are held apart due to an electric dipole forming between each

particle and the water [6]. Unfortunately, contaminants introduced surfactant causing the surface tension

to lower [9]. This caused the particles to sit lower in the water and since the electrostatic repulsion

happens via the oil, the repulsion is weakened [9]. With less repulsion, the particles tend to aggregate.
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To get rid of any contaminants, we needed to make sure the particles were cleaned first. To clean the

particles we centrifuged and sonicated them repeatedly; however, we later learned that centrifuging them

may cause them to bunch together and form more aggregates than if we didn’t centrifuge them. Further

testing of this may be able to illuminate if centrifuging is beneficial or detrimental. Additionally, we

found mixed results with sonicating the particles. Originally, we had sonicated particles multiple times

in a ultrasonic bath. This produced varying solids that were somewhat aggregate free to solids with a lot

of contamination. We then tested using a sonicating probe and found we could produce solids that were

equal to or even better than levels of contamination in an ultrasonic bath. Again, further testing into the

effects of using a sonicating probe versus a sonicating bath will be needed. We also found that there may

have been freeze damage of the particles. This may have also caused the particles to aggregate more than

expected.

Figure 2: A top view of our substance of 3.4µm and 5.8µm plastic beads adsorbed at an oil-water
interface

In order to confine the solid, we use an apparatus that holds two glass slides in the oil water interface

seen in Figure 1. These slides act like walls for the solid and confine it to a finite area. We use a needle

placed in the middle of these walls to shear the solid. The needle can be seen at the top of Figure 2 as
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a black bar. We use Helmholtz coils to hold the needle in place with a strong magnetic field. Two extra

wires are wrapped around one of the coils to perturb the magnetic field slightly. Using a DAC wired to

an amplifier we can send a current through these extra coils to perturb the magnetic field and shear the

material sinusoidally.

3 Analysis

To begin analyzing our data we tracked each movie using Trackpy [8]. This allowed us to find the

coordinates for each particle throughout a movie and identify rearrangements. We then used this data

to identify different rearrangements within the movie by grouping particles together that had rearranged

close to each other in both space and time. We did this for each cycle, or period of the driving force,

starting from the first cycle and continuing to the last cycle of each movie. Using these rearrangements,

we constructed a histogram of the rearrangement sizes. Relying on the procedures outlined in Clauset

2009, we fit a power law to this histogram to obtain an accurate fit for the relationship between frequency

of rearrangements and rearrangement size [1].

3.1 Identifying Rearrangments

In order to identify rearrangements we first needed to classify which particles rearranged and which

particles had not. We usedD2
min as a measure of how non-affine a particle’s movement was [4]. Particles

can be classified as rearranged if D2
min ≥ 0.015 for a particle. We chose this number because it was

above noise levels in the solid but low enough to tag particles that had actually rearranged.

Unfortunately, we found there were some spurtious particles being tagged as rearranged. These were

particles that were not tracked correctly by Trackpy. Particles that are stuck together or in a glob are

hard for Trackpy to track; therefore, the phenomenon is more common in dirty or contaminated solids.

When Trackpy doesn’t track a particle correctly its motion may look like it jerks from frame to frame

in contrast to moving smoothly. For example, if two particles are stuck together Trackpy may track one

particle in a frame and then switch to the other particle in the next frame. It then looks like the particle

has moved signifigantly between frames. This causes the particle’s D2
min value to become elevated.

Since D2
min takes into acccount the position of particles around it, all the particles around the problem

particle have elevated D2
min values. This phenomenon is shown in Figure 3 where the center particle
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was incorrectly tracked and the surrounding particles have elevated D2
min values. Therefore, we had an

increased number of rearrangements with size on the order of 10 to 20 particles. We were able to resolve

this issue by removing any particle that could not be tracked over the entire movie. Filtering out these

particles was able to greatly reduce the amount of noise seen in the affine field calculations.

Figure 3: Our substance plotted by D2
min values with a spurious event highlighted.

Now that we were able to classify rearranged particles, we needed to group them spatially and tem-

porally. We began by identifying the time and position when a particle had rearranged. Using a kdtree

algorithm, or a nearest neighbor search, we identified pairs of particles that had rearranged within 1.5

times the mean particle spacing and 1.2 s of each other. We chose 1.2 s because we had watched rear-

rangements occurring within the solid and found it to be roughly this time span. In other words, if r is the

distance between two particles and ∆t is the time between two particles rearranging, then two particles

are grouped together if r ≤ 1.5 × (mean particle spacing) and ∆t ≤ 1.2 s. Using the Networkx library

in Python we then created a graph of every particle in the solid. Using the particles as nodes, we created

edges between particles using the output pairs of the kdtree algorithm. This then created clusters of

particles that were connected within the graph. These connected particles became rearrangements within

the solid as shown in Figure 4. It appears that in Figure 4 some of the rearrangements overlap. This is

because we plotted the particles at the location they rearranged so you could have rearrangements in the

same place but at different times. It is important to note that we filtered out any particles that had already
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rearranged when creating these clusters. We did this because we expected a particle to only rearrange

once every cycle; therefore, we analyzed each data set cycle by cycle, starting at cycle 1, thereby resetting

the particles that were filtered out. We were then able to identify the number and size of rearrangements

throughout the movie.

200 𝝁𝒎

Figure 4: A plot of rearrangements for f = 0.1 Hz and γ0 = 0.06. The needle sits at the bottom of
this plot and shears horizontally. The particles are plotted at their locations when they rearrange which
causes some rearrangements to appear to overlap.

3.2 Power Law Statistics

Power law statistics can be seen in a plethora of systems in nature spanning from earthquakes to

word frequency [7]. Power-law statistics have the unique attribute that they are scale-free. Scale-free

distributions imply a number of unique properties. One property is that it will look the same on any

scale. Therefore, looking at a small part of the distribution will have the exact same shape as the overall

distribution. Another is that scaling one variable by a factor will scale the other variable by the same

factor to some power. We will be discussing a power law governed by

f(x) = Cx−α (1)

where f is the probability density function (PDF), C and α are constants and x is the independent variable

or event size in our case. As we can see there must be a minimum value xmin where the PDF follows
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a power-law above xmin. This is justified because when x = 0, the PDF can no longer be normalized.

Additionally, the PDF cannot be normalized when α ≤ 1. We can now normalize the function for

x ≥ xmin and α > 1 [1]. For the continuous case, this leads to

f(x) =
α− 1

xmin

( x

xmin

)−α
(2)

For the discrete case, this leads to

f(x) =
x−α

ζ(α, xmin)
(3)

where

ζ(α, xmin) =
∞∑
n=0

(n+ xmin)−α (4)

is the Hurwitz zeta function [1]. Note that we will be using the discrete case to fit our function; however,

the continuous case is included for completeness. We assume a discrete case since rearrangement sizes

can only be integers. Additionally, we found that for our data, both the discrete and continuous PDF fit

our data well after after finding α and xmin through a discrete fit.

With a theoretical PDF, we now need to find the best values of α and xmin to fit the given data. For

a continuous PDF, for any given value of xmin we can find α using

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]−1
(5)

where α̂ is an approximate value for α and n is the total number of data points [1]. For the discrete case

we can approximate

α̂ = 1 + n

[
n∑
i=1

ln
xi

xmin − 0.5

]−1
(6)

Additionally, we can calculate the error in α̂ using

σ =
α̂− 1√
n

+O(1/n) (7)

when we take theO term to be positive [1]. Although this is σ for the continuous case, σ for the discrete

case is similar for large n and xmin [1].

In order to determine the accuracy of the fit, we need to define a function called the complementary

cumulative distribution function (CDF). In contrast to the cumulative distribution function, F (x) which is
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the probability of a data point taking on a value below some x, the CDF, denoted F̄ (x), is the probability

of a data point taking on a value above some x. Therefore, the CDF is the integral of the PDF from x to

∞. This allows us to find the CDF for the continuous case to be [1]

F̄ (x) =

∫ ∞
x

f(x′)dx′ =

(
x

xmin

)−α+1

(8)

For the discrete case, we find

F̄ (x) =
ζ(α, x)

ζ(α, xmin
(9)

Using our definition of the CDF, we can easily calculate empirically what the CDF will be for any given

x.

To determine the best fit for our distribution, we need to find the best value of xmin to use. We

will do this by using a Kolmogorov-Smirnov (KS) test [13]. This test essentially tries to minimize the

residual between the empirical and theoretical CDF. Using Equation 9, we can define a residual between

the empirical CDF, P̄ (x), and the theoretical CDF, F̄ (x). Note that for different values of xmin we will

have a different set of remainders. We will denote the residual as

D(x) =| F̄ (x)− P̄ (x) | (10)

where D is the magnitude of our residual [1]. For each value of xmin we will take the maximum of the

function D(x), to be as conservative as possible. From this list of values for D, we will find the smallest

value, which we call the KS statistic, and its corresponding xmin will be our best estimation for xmin

[1]. From this value of xmin we can then calculate the best α that fits the data.

With a best fit distribution for the power law we now need to determine how well the distribution

fits our data. We will utilize a technique commonly used in non-parametric statistics of generating a

large number of synthetic data sets and seeing if they fit a power-law distribution better or worse than

our data set [1]. If we have N total data points we will generate the same number of data points in each

synthetic data set. The data set can be broken up into two distinct regions: values that lie below xmin,

the head, which follow an unknown distribution and values that lie above xmin, the tail, which follow

our best fit distribution [1]. We can define the number of points in the head as nhead and the number of

data points in the tail as ntail. We will generate random data points in the head with probability nhead/N

12



and random data points in the tail with probability ntail/N [1]. To generate random data in the head we

will randomly choose a value from the actual data set that lies in the head. To generate random points

in the tail we will invert the PDF so we have x(f) for our best fit distribution. Then, we will randomly

generate data points from this inverted distribution.

We will generate 2500 synthetic data sets using the procedures outlined and fit a new power-law

distribution to each data set. We will calculate a KS statistic for each different data set. We can now

define p to be the proportion of synthetic data sets with a KS statistic that is larger than the KS statistic

from the original data set. When p is close to 1, the fitted power law is a good fit for the data since it is

a better fit than most of the synthetic data sets, but when p is small, the power law does not fit the data

well. Generally, if a p value is below 0.1 a power law distribution can be ruled out [1]. Even with a large

p value, this merely indicates a power law fits the data well; however, there may be alternate distributions

such as an exponential that also fit the data. It’s important to note that ntail ≥ 100 to generate an accurate

value for p or else there are simply not enough points to distinguish between random data and data fitting

a power law [1].

4 Results

We began by fitting several sets of data with different parameters such as driving frequency, driving

amplitude and periods of shearing, or cycle number, to see if a power-law distribution fits our data well.

We didn’t average over multiple cycles of the same dataset because the transient seemed to die off quickly

meaning the first cycles were too important to be averaged, and in the steady state the rearrangements

were very similar from cycle to cycle meaning averaging wouldn’t change the distributions that much.

If a majority of our p values with sufficient data were below the threshold of 0.1, then it would be clear

a power law distribution does not accurately describe the system. Using the methods as outlined above

in the “Power Law Statistics” section, we were able to fit a power law to various probability densities

obtained from our experiment. We were able to do so for different driving frequencies, driving amplitudes

and cycle numbers indicating a power law distribution was a good fit to our system. A typical example

of a fit for a probability density can be seen in Figure 5.

Instead of discussing the probability density, sometimes discussing a histogram of rearrangement
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Figure 5: The probability density for cycle three of the data set of f = 0.1Hz and γ0 = 0.06. The
exponent value was α = 1.90 ± 0.04 along with xmin = 3. The best fit follows the data well with a
value of p = 0.5

sizes is more tangible. To transform our fit from a probability density to a histogram of frequency of

events, we multiplied the probability density by a normalization factor. This normalization factor was

calculated by taking the median of the ratio of the heights of the histogram and the probability density.

The normalization factor was arbitrary in that it had little mathematical foundation, but the factor seemed

to produce results consistent with the data. We also needed to account for the histogram being dependent

on the bin width since the probability density is not. To account for this, we multiplied the probability

density by the bin width. The bin width is essentially x or the size of the rearrangement. Recalling

that the probability density is defined by f(x) ∝ x−α, we can multiply by x to obtain f(x) ∝ x−α+1.

Therefore, changing α to α−1 will produce the best fit for the histogram. Note that for some distributions

this technique left us with a value of α < 1. This poses a problem since ζ(α, x) only converges for

α > 1. To work around this we reverted back to the continuous equations since they were a very good

approximation for the discrete equations. A typical example of a best fit to a histogram can be seen below

in Figure 6.

Now that we are confident that a power law distribution accurately describes our data, we can further

explore the properties of amorphous solids. We will answer three key questions:
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Figure 6: A histogram of rearrangement sizes for cycle one of the data set of γ0 = 0.06 and f = 0.01Hz.
The xmin = 4 value is shown as a dotted line. The exponent parameter was α = 2.26 ± 0.05 and we
determined that p = 0.7512.

• How the histogram of rearrangements changes based on cycle number.

• How the histogram of rearrangements changes based on driving amplitude.

• How the power law distribution changes based on driving frequency.

We know the solid eventually reaches a limit cycle after many cycles, or periods of driving. There-

fore, there must be a distinction between the transient and steady state. We should be able to see this in

the histogram of rearrangements. As we go to a larger number of cycles, we should observe a smaller

number of both larger and smaller rearrangements. We have seen in previous experiments that higher

driving amplitudes will lead to more rearrangements, and we would like to confirm these results with

multiple driving amplitudes [5]. Additionally, it is unknown what effect, if any, the driving frequency

has on the system.

4.1 Cycle Number and Driving Amplitude

We began by simply plotting the histogram of rearrangements for the first and last cycle of different

data sets. An example of these histograms can be seen in Figure 7. Comparing rearrangements in the
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first and last cycle, it appears they follow the same overall distribution, but the later cycle has fewer

rearrangements. This implies that there are irreversible rearrangements in the transient of each data set

which do not appear in the steady state; however, even with this increase in events, the transient and

steady state appear be drawn from similar distribution.

(a) A histogram of rearrangements for the first and last cycle
of a data set with f = 0.01Hz and γ0 = 0.06.

(b) A histogram of rearrangements for the first and last cycle
of a data set with f = 0.1Hz and γ0 = 0.06.

Figure 7: A comparison of the histogram of rearrangements for different cycle numbers.

An easy way to classify this would be to look at the number of rearrangements larger than ten par-

ticles for each cycles. We chose the threshold of ten particles because anything over ten particles is

very unlikely to be contaminated by noise and is generally more interesting due to its size. Below ten

particles, we find that the number of rearrangements may vary slightly based on the method of identi-

fying rearrangements. Using our analysis techniques, the number rearrangements may vary based on

the spacial and temporal thresholds set especially in smaller rearrangements. However, above ten parti-

cles we expect these to be nearly the same regardless of analysis techniques used. We then plotted the

rearrangements greater than ten particles for various cycles as seen in Figure 8.

From Figure 8, we can make a number of different observations. First, we can see there is a clear

relationship between number of events and the cycle number. As we go out to larger cycles we see fewer

rearrangements compared to earlier cycles as expected. This is evidence of a transient in both plots which

eventually levels out to become a steady state. These results are consistent with previous observations of

the system as they rely on the system reaching a limit cycle, or steady state [5].

We can also discuss the effect of driving amplitude on the number of rearrangements. As seen in

Figure 8, it appears that higher driving amplitudes produce a greater number of rearrangements. Across
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(a) Number of events larger than ten particles versus cycle
number for different driving amplitudes at f = 0.1Hz

(b) Number of events larger than ten particles versus cycle
number for different driving amplitudes at f = 0.01Hz.

Figure 8: A comparison of the number of rearrangements greater than ten particles versus cycle number

every single cycle for both frequencies, a higher strain creates a larger number of rearrangements com-

pared to smaller strains. Again, this is consistent with prior results that larger driving amplitudes should

produce more rearrangements [5].

4.2 Driving Frequency

To begin analysis of the the effects of the driving frequency on the distribution of rearrangements, we

found the exponent value, α, for a variety of different strain amplitudes at f = 0.1Hz and f = 0.01Hz

for various cycles within each data set. In order to ensure that α was representative of the data, we

excluded any distributions where p < 0.1 and the number of rearrangements, n, above xmin was less

than 100. As stated in the statistics section, distributions with p < 0.1 and n < 100 did not fit a power

law well. We then plotted α versus strain which gave us the graph seen in Figure 9. Each point represents

a value of α taken from cycles with strains of γ0 = 0.2, 0.4, and 0.6. We chose not to distinguish between

steady state versus transient values of α because they varied very little and there was no clear trend.

Additionally, there are very few points at γ0 = 0.2 and 0.4 because there were few rearrangements in the

system which left most cycles with n < 100. There could be future research seeing if there is difference

between α in the steady state or transient.

Looking at Figure 9, it appears that for each frequency, α stays in roughly the same range for γ0 =

0.02, 0.04, and 0.06. Therefore, systems with the same driving frequency will have similar probability

densities for driving amplitudes below the irreversibility transition. The most interesting feature is that
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Figure 9: The exponent parameter α plotted as a function of strain amplitude.

for these different frequencies, α seems to be different. This suggestsα depends on the driving frequency:

as frequency decreases the value of α increases meaning the probability distribution will not extend as

far into larger rearrangements.

In order to verify that Figure 9 describes our data, we plotted the rearrangement distribution for

γ0 = 0.06 with f = 0.1Hz and f = 0.01Hz. This can be seen below in Figure 10.

Both distributions seen in Figure 10 look very similar because the difference in α between frequen-

cies was small; however, it is important to remember that the values for α were distinctly different. It

seems that for moderately sized rearrangements, roughly size 10 to 60 particles, the distributions are gen-

erally the same. The only differences occur at the upper and lower ends of the distributions. The lower

end of each distribution are different but this is contaminated by noise so it may not be very significant.

The distributions also seem to deviate slightly at the upper end of the distribution at rearrangements of

roughly 100 particles. It looks like the distribution for f = 0.1Hz extends further out into larger rear-

rangements than the distribution for f = 0.01Hz. This means that the higher frequency of f = 0.1Hz

may have a better chance of seeing larger rearrangements. This trend may hold for even higher or lower

frequencies, but more investigation would be needed. Additionally, we plotted the probability density for

each data set which can be seen in Figure 11. The probability density is very similar to the histogram,
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Figure 10: The histogram of rearrangements for γ0 = 0.06 at f = 0.1Hz and f = 0.01Hz.

but it is more evident that f = 0.1Hz has a larger probability of seeing bigger rearrangements.

Figure 11: The probability density for γ0 = 0.06 at f = 0.1Hz and f = 0.01Hz.

5 Conclusion

By studying our jammed, amorphous solid, we were able to confirm the findings of previous studies

that a power law distribution is a good fit for rearrangements within the solid. We also found that the
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measured exponent value, α, of the power law is dependent on the driving frequency. As the frequency

decreases, α appears to increase meaning there will be fewer large rearrangements. We also found the

number of rearrangements within the solid depends on both the number of cycles of shearing and the

shearing amplitude. As the number of cycles increases there will be fewer rearrangements. Although

the transient has a larger number of rearrangements, the rearrangements in the transient and steady state

appear to be drawn from the same distribution. It would be a project for future research to see if there is

a difference in α in the transient and steady state. We also concluded that higher amplitudes yield more

rearrangements.
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