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Abstract

Many of the various properties of neutrinos are still a mystery. One unknown is whether neutrinos
are Majorana fermions or Dirac fermions. Cuoricino and CUORE are experiments that aim to solve
this mystery. Noise reduction in these experiments hinges on the ability to discern among alpha,
beta and gamma particle detections using the thermal pulses they create. In this paper, we look at
Cuoricino data and attempt to classify pulses, not as alpha, beta or gamma particles, but rather as
signal, noise or calibration data. We will use this preliminary testing ground to examine various
machine learning algorithms’ abilities in this dataset. We will consider and discuss the details of the
Support Vector Classifier, Random Forest Classifier, Deep Neural Network, Convolutional Neural
Network, and Mini Batch K-Means learning algorithms. Then, we will test the non-neural network
algorithms on the data and discuss the results. Finally, we will propose future analysis and work that
could be done to improve current results and to begin with particle classification.
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1 CUORE and Motivation

Neutrinos are still very mysterious in the particle physics world. For decades they have been thought to

have no mass, but observations regarding neutrino oscillations now suggest that they do. There is another

curiosity, however. One of the rules when playing with fundamental particles is that lepton number has

to be conserved. That is, the number of electrons and electron neutrinos (e−, νe) combined minus the

number of their anti-counterparts (e+, νe) at the beginning of an interaction must be the same as their

combined number at the end [1], or in equation terms:

ne−,i + nνe,i − ne+,i − nνe,i = ne−,f + nνe,f − ne+,f − nνe,f (1)

The same is true for the µ and τ particle counterparts, independently from each other. This applies

well experimentally and in theory, but there is a caveat. It is yet unknown if neutrinos are Dirac fermions

or Majorana fermions. If neutrinos are in fact Dirac fermions, then the neutrino is distinct from its anti-

counterpart, and a new neutrino created from some reaction will not be in a superposition of a neutrino

and anti-neutrino. However, if neutrinos are Majorana fermions, then neutrinos are the same as their

anti-counterparts and a new neutrino made from a reaction may be a superposition of the two. This gives

rise to neutrino oscillations from antiparticle to particle and back and forth. This clearly violates the

lepton number conservation rule.

If neutrinos are in fact Majorana particles, then a theorized neutrinoless double beta decay may

occur. Typical beta decays (emission of an electron) require the emission of an anti-electron neutrino to

conserve lepton number. If two electrons are emitted, then this is called a double beta decay (Equation

2).

2p→ 2n+ 2e− + 2νe (2)

The lepton number conservation rule dictates that, in this case, two anti-electron neutrinos must be

emitted. However, if neutrinos are Majorana particles, then a different reaction is possible such that

there only exists one neutrino that acts as a virtual particle to aid the process, and in the end there are no

neutrinos emitted (Equation 3).
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2p→ 2n+ 2e− (3)

This is the neutrinoless double beta decay, and if it is detected then neutrinos must be Majorana

particles as it could not happen otherwise. The CUORE experiment aims to find evidence of this decay

occurring.

With a neutrinoless double beta decay, the electrons emitted are of precisely, theoretically known en-

ergies. The CUORE experiment [2] possesses a large array of cubes, which are both acting as detectors

and the source of these reactions. Each cube is made of tellurium dioxide (TeO2). 130Te is one material

which could theoretically undergo this radioactive decay, as it already goes through the (neutrinofull)

double beta decay [3]. The cubes are cooled down to 6 mK and their temperatures are measured con-

stantly. If a particle of any kind interacts with the cube and deposits all of its energy, the experiment is to

measure the change in temperature of the cube. However, as is expected, there are many noise particles

including gamma rays, beta particles, and alpha particles. It is ideal to remove as much noise as possible,

especially gamma ray and alpha particles since they are not products of the neutrinoless double beta

decay. Since the data observed is simply a temperature spike, it is difficult to tell these particles apart,

aside from their energies. Currently, noise removal is done using the energy of the particle. It would be

more ideal to be able to decipher what particle was detected just by the shape of the temperature spike.

By eye there seems to be no difference, but perhaps a computer could do the job.

We will preliminarily test the classification abilities of certain machine learning algorithms on Cuori-

cino data. Cuoricino is a predecessor to CUORE, with similar data [4, 5]. Cuoricino had the same goal as

CUORE, the differences only going as far as noisier data and slightly different data structures, at least as

far as this investigation is concerned. As the goal of discerning alpha, beta, or gamma particles would be

a long-term project, this data will be used to attempt to discern among capture types. In the experiment

there are three types of pulse data. For each pulse shown, integrated (T (t)) and differential (dTdt (t)) data

is overlaid. Differential data will be in green and will seem noisier than the integrated data. For a pulse,

it will first go up (positive) and then drop down (negative), and approach 0. The integrated data will be

in blue, and for a pulse will increase and then decrease back down to its original value in an, ideally,

smooth curve.
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Signal data is a capture of what appears to be a real thermal pulse. Examples of these pulses are

shown in Figures (1) and (2). The process ideally goes as follows: a particle deposits some or all of its

energy into one of the TeO2 cubes, providing a pulse in the temperature. A particle originating from a

double beta decay would likely originate from the detecting cube or one of its neighboring cubes. The

thermocouple detects this pulse and begins to record and, using a buffer, it records from 1 second before

the pulse to a total of 4 seconds (3 seconds after the pulse). Over time the thermal energy deposited

will dissipate into the temperature-maintained background. This process creates what looks like a sharp

increase (energy deposited) followed by a steady decrease (energy dissipates) towards the original tem-

perature. The data it records is differential (dTdt (t)), so the temperature as a function of time comes from

the numerical integral of the data. The pulse height and shape vary on the energy that gets deposited, the

specific cube in the array, and potentially other factors.

Heater data is essentially calibration data. Examples of heater data is shown in Figure (3). A heater

attached to the cube deposits a set amount of energy into the cube, and the system of detection previously

described measures it. While signal pulses may vary a lot in quality, heater pulses tend to be fairly clean

and regular, making it useful to determine how much energy is deposited in a signal pulse compared to a

heater pulse (which has known energy).

Noise data is a randomly acquired data. Examples of noise data is shown in Figures (4) and (5). This

establishes the background noise in the system, which aides in removing or interpreting the background

in signal pulses. Because they tend to have little structure or have a pulse that is not 1 second into the

capture, they are fairly easy to classify as noise.
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Figure 1: Sample of a signal pulse. This is a particularly clean pulse. Both the differential data (dTdt (t),
green, noisier) and integrated (T (t), blue, cleaner) are shown.

Figure 2: Sample of a signal pulse. This one is not too bad in terms of noise, but is worse than Figure
(1).
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Figure 3: Sample of a heater pulse. As being the calibration pulse, these types should be the cleanest in
the set.

Figure 4: Sample of a noise pulse. There appears to be no structure in the capture.
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Figure 5: Sample of a noise pulse with an anomaly. Although there appears to be some sort of pulse at
1 second which would constitute a signal capture, the pulse is inverted and slightly after 1 second which
clarifies that this is in fact a noise capture.

2 Classification Methods

All classification methods aim to take input data (such as the CUORE or Cuoricino data or other vari-

ables) and provide a prediction based on this data. The methods we will be considering are machine

learning methods, which means that a person needs not program in, for instance, what makes a pulse a

heater pulse as opposed to a signal pulse. We provide these methods with a given dataset and, if it is

a supervised learning algorithm, their associated pulse types. The machine learning algorithm will then

devise a method to classify this data as accurately as possible. Since the algorithm generally takes a very

broad mathematical idea and specializes it to the data, it will often be able to classify data it has not seen

before correctly.

We will consider five machine learning algorithms: Support Vector Classifiers (SVC) [6, 7], Ran-

dom Forest Classifiers (RFC) [6], Deep Neural Networks (DNN) [8, 9], Convolutional Neural Networks

(CNN) [9], and an unsupervised learning algorithm, Mini Batch K-Means [6]. Although the DNN and

CNN classifiers are discussed here, no significant results have been achieved and thus their application

to the dataset will not be discussed in the next section.
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2.1 Support Vector Classifier (SVC)

The SVC method uses a simple graphical concept. Consider the scenario where we have objects with

two real-valued parameters (parameters being quantitative descriptions, like age, height, weight, etc.).

These objects will be of two classes (like fast and slow). In Figure (6) some objects of two different

types are plotted based on their traits. It is clear that a line may be drawn separating the two types in this

space, and SVC aims to make this separation. Additionally, as a means of determining how good the fit

is once the data is split, SVC will maximize the functional margin, depicted as the dotted lines in Figure

(6). By having the maximum functional margin, the fit will be most certain to correctly separate data. A

new data point with unknown class may be classified by plotting it and finding which side it is on. It is

easy enough for an example like this, but with Cuoricino data we have 511 data points for each object (if

including all pulse data and no other parameters) and more than two classes. What SVC has to do in this

case is create two 510-D hyperplanes in 511-D space separating the three pulse types from each other.

The mathematics behind this is a bit complicated, but Scikit-Learn provides a simple API to utilize this

tool. [6, 7]

Figure 6: Graph of a two class, 2-D SVC concept. The solid line separates the two clusters and the
dashed lines show the functional margin. [6]
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2.2 Random Forest Classifier (RFC)

The RFC is an ensemble-type classifier which uses many decision trees to classify data. Decision trees

are what a programmer may intuitively (but painstakingly) program when trying to classify data. For

example, with Cuoricino data, the first decision may be: x[0]>4 && x[127]<24. If true, it will

move to one part of the tree and, if false, it will move to the other part of the tree. This process will

continue until it hits the end of the tree, where the final decision is made. A graphic showing this process

for flower classification is shown in Figure (7). Again, the learning part of this is a bit complicated, and

Scikit-Learn’s API is extremely useful. A single decision tree would actually be a quite poor application

for this data, however. The trees are prone to over-fitting, which means that it will learn data it was given

to train off of well, but it will classify new data poorly. The RFC gets around this by creating a forest, a

collection of decision trees, and it polls all the trees at once and chooses the majority vote. This works

surprisingly well and is simply parallelizable. [6]

Figure 7: Graph of a decision tree for flowers. The decision process goes from the top to the bottom,
leftwards being True and rightwards being False decisions. [6]

15



Figure 8: Graphic of fully connected neural network with one hidden layer. This would be an example of
a neural network which processes objects with three features and two types, using four hidden neurons
in the process.
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2.3 Deep Neural Network (DNN)

The neural network takes some inspiration from the biological brain. Our brains consist of neurons

that are able to send signals to adjacent neurons, and those neurons may respond and send signals to

other connected neurons, and the process continues. Without going too deep into neuroscience, this is

essentially how an artificial neural network functions. Of course, to make computation simpler and more

efficient, some details must be changed. For a standard, fully connected, neural network, each ”neuron”,

or node, takes on a certain value. These nodes live in layers. A deep neural network will have many

layers. The first layer will be the input layer, where feature values will be put. For instance, with the

Cuoricino data, the pulse data may be the input layer, with 511 nodes. The last layer will be an output,

one node for each possible outcome. When classifying Cuoricino data, we would have three possible

outcomes (heater, signal, or noise). While this is enough for some progress, a deep neural network

requires what are called hidden layers. These layers are similar to output layers, except they are not the

end of the network. Their size and number may vary depending on what is needed or what works for the

dataset.

Each neuron has a weighted connection to all other neurons in the previous layer. For instance, the

neural network shown in Figure (8) has four nodes in its hidden layer. The top node has a connection to

all three nodes in the input layer. When addressing one of the neurons, we may say we are looking at

the value of ai,j where we are in layer i and looking at neuron j. Each neuron is connected to the layer

before it (if it is not the input layer), and the way we facilitate this mathematically is by saying that:

ai,k = σ

ni−1∑
j=1

ai−1,jwi−1,k,j + bi,k

 (4)

where ni is the number of neurons in layer i, wi,k,j is the weight of the connection between ai,k and

ai−1,j , bi,k is the bias (simply an offset value to make sure the node does not become useless if its

corresponding nodes have low values), and σ is the step function (often a sigmoid) applied to the value.

Without the step function, the network is nothing more than a single matrix transformation, no matter the

complexity. The weights may be more simply expressed as a matrix and the nodes made be expressed as

a vector, resulting in the much cleaner formula:

ai = σ(wi−1ai−1 + bi) (5)
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where ai and bi have shape n, ai−1 has shape m (both are understood to be column vectors), and wi−1

has shape (n,m). It is also understood that σ is applied to all values of its vector input individually.

It is simple enough to move on from here to get the output of the neural network by taking the input

layer, using Equation 5 to get the next, and propagating forward to get the next layer and the next until

the output layer is reached. This is called forward propagation. The values of the weights and biases

may be determined via gradient descent and backwards propagation. Computationally this can become

complicated, so like we will be using Scikit-Learn for the SVC and RFC (and the unsupervised) learning

algorithms, we will be using TensorFlow for neural network algorithms [9].

2.3.1 Gradient Descent for DNNs

The difference between the expected output and the actual output of a neural network is quantified by

error, or the cost function. Typically, error is calculated by:

E =
1

2
(af − y)2 (6)

where af is the final layer in the network (the output), y is the expected output, and it is understood

that by squaring we are finding the magnitude squared of the vector. A trained neural network would

ideally have the minimal error, and so any alterations must be done in hopes of reducing this quantity.

Mathematically, we (messily) perform a derivative:

dE

af
= (af − y) (7)

and in order to minimize error, we go in the negative direction of this derivative (which is really a

gradient). So, we aim to have:

daf = −k(af − y) (8)

where k is some constant that controls the speed at which we approach the minimum, or the learning

rate. The derivative may be expanded, providing:

[
σ′(wf−1af−1 + bf ) ◦ (wf−1∂af−1 + ∂wf−1af−1 + ∂bf )

]
= −k(af − y) (9)

where σ′ is the derivative of the step function and ◦ is the Hadamard product. The Hadamard product

multiplies elements of a matrix or vector independently. For instance, if a = (1, 2, 3) and b = (4, 5, 6)
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then a ◦ b = (4, 10, 18). We may then rearrange elements to achieve the change in wf−1, bf and the

desired change in af−1:

∂af−1 = w−1f−1

[
−k(af − y)�◦σ′(wf−1af−1 + bf )

]
(10)

∂wf−1 =
[
−k(af − y)�◦σ′(wf−1af−1 + bf )

]
a−1f−1 (11)

∂bf =
[
−k(af − y)�◦σ′(wf−1af−1 + bf )

]
(12)

where �◦ is the division version of the Hadamard product and, yes, the weights and layers are being

inverted even though they are not necessarily square matrices. This is possible numerically. Equations

11 and 12 may be used to find the desired change in the bias in the final layer and the weights just before

the final layer. Additionally, ∂af−1 in Equation 10 may be differentiated again, creating a similar

equation to Equation 9, which involves the layers before it and can then be formed into similar versions

of Equations 10, 11, and 12. This is where backpropagation comes in. Error is propagated backwards

in the neural network and the weights and biases are being altered to adjust for it. I invite the reader to

try going through this. There are more mathematically thorough and careful approaches out there [8].

Implementing this method directly results in some unstable learning (inverses obtain infinities, divide

by zeros occur, etc.), so if one were to implement this method by hand more research should be done.

Finally, the selection of k, the learning rate, is quite difficult in itself. With k too large, and the network

will hover around minima and constantly overshoot them, possibly even losing the minima. Too small,

and it will never reach a minimum and may also never have a chance of finding a better minimum. These

issues are handled cleanly where we do not need to consider them within the TensorFlow framework [9].

2.4 Convolutional Neural Network (CNN)

A CNN is a DNN which includes a convolutional layer. This convolutional layer takes the previous layer

and discretely convolves it with a kernel function. This kernel function is usually a few points (typically

around five), and it is what is modified when the network is learning. For instance, perhaps the network

will learn a kernel which takes a derivative, one which takes a local integral, or even some combination.

However, just doing a convolution does not boil the data down at all. If the input layer has 1000 nodes

and one performs a convolution on it, the output still has 1000 nodes (this may vary depending on the

19



type of discrete convolution done, but with a small kernel it will not change by much). So, a pooling

layer is added, which simply pairs nodes up into groups of some set integer (typically two or three), and

then performs an operation on them with the goal of combining them. Usually the operation takes the

maximum of the group or the average. If the groups were of two nodes, then the 1000 nodes are now 500.

Usually a CNN would be designed with multiple convolutional layers and pooling layers (each with its

own learnable kernel) until the layer size is manageable. Then, the typical design inserts a large layer of

hundreds or thousands of nodes, fully connected (like a standard DNN) and then the final layer is a fully

connected output layer (so two or three nodes). These networks are reputably good for image analysis,

and so perhaps signal classification is up its alley. [9]

2.5 Mini Batch K-Means

The Mini Batch K-Means learning algorithm is the only one we will be considering for unsupervised

machine learning. That is, for our application, we will provide the algorithm with a set of pulses, unla-

beled, and observe how it sorts them. This is the faster version of the k-means learning algorithm. The

k-means learning algorithm aims to find a vector that is a good representative of a subset of the data. So,

if provided with heater pulse and noise data, it would likely create a pulse-looking sample to represent

the heater pulses and noise or a line to represent the noise data, without even knowing the classification

in the first place. Then it can classify new data by seeing how it compares to the representatives it now

possesses. This learning algorithm must be told how many classes there are, and so we encounter the

dilemma of how much freedom we should provide it (which will be explored a bit). [6]

3 Pulse Classification Results

For all trials, the data is equally split by type. That is, the datasets that the learning algorithms learn from

and are tested on have the same amount of heater, signal, and noise pulses. Additionally, in the plots

the classes will be labeled Sign (for Signal), Srce (for Source, or heater), and Trnd (for noise, or random

capture). Each algorithm is run multiple times to ensure that its behavior is well understood. Again, the

DNN and CNN classifiers will not be explored here as there are currently no significant results. However,

they seem to possess much potential, especially the CNN, and so continuation of this exploration will

likely entail working with them.
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A probability plot such as Figure (9) will be used throughout the process. In this plot, the vertical

axis is the accepted type, that is, what the pulse actually was. The horizontal axis is the predicted type,

that is, what the learning algorithm thinks it is. The percentages show where the data fell. A pulse in the

top right corner would be a signal pulse, but classified as noise (in this case, 6.91% of all pulses were

in this category). The best learning algorithm will create a diagonal on this plot: all signal pulses are

classified as signals, etc. Because the data is equalized (so there are an equal number of each type of

pulse), each row adds up to 33.33%. In the best-case scenario, the diagonals will all be 33.33%.

3.1 SVC Results

SVC, being unparallelizable, is a fairly slow learning algorithm (minutes as opposed to seconds for RFC).

Regardless, it does well when classifying among heater, signal, and noise pulses. The goodness of fit can

vary from run to run. First is an instance where the algorithm did not do so well. SVC was trained using

the differentiated data in this case, but integrated data behaves just as well (or poorly). Taking an FFT

of the data beforehand is even worse. Figure (9) shows the accuracy of SVC with differential data. It

classifies heater pulses (which tend to be very clean) and noise pulses (which tend to just be noise) fairly

well. However, it has some trouble with signal pulses. In this case, about 21% of the time a signal pulse

will be miscategorized as noise. An example pulse which is miscategorized is shown in Figure (10). The

differentiated data (green) in this example looks to be noise, so it may be reasonable for the algorithm

to miss it. The overall accuracy on untrained data for SVC is about 87.7% while its accuracy on all data

was 88.6% here, indicating that while it was not all that accurate, it did not overfit to the data.

3.2 RFC Results

RFC runs much faster than SVC and provides better results. We use 100 decision trees in the RFC for

these tests. When provided with differential data, it had an overall accuracy of 94.64%, but an accuracy

of only 89.3% on untrained data. While it is still superior to SVC, the large difference between trained

and untrained data is a sign of some overfitting to the data. This is a well-known problem with decision

trees, the underlying components of RFC [6]. This time, instead of only classifying signal pulses as

noise, RFC is also classifying noise pulses as signal. It seems to be finding a compromise, which may be

bringing the better results.
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Figure 9: The accuracy of the SVC learning algorithm in one instance. It used 17,739 samples, half for
training and all for testing. Most notably, it misclassified a significant percent of signal pulses as noise.

Figure 10: An example where SVC classified a signal pulse as noise. The differential data (green, very
noisy) shows little structure. The integrated data (blue, has some shape) does have structure. However,
it is possibly understandable that the algorithm may have trouble with it.
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Figure 11: The RFC learning algorithm’s performance with differential data. It appears to have some
mix-ups with signal and noise data.

Figure 12: The RFC learning algorithm’s performance with integrated data. This shows a strong im-
provement over using differential data, with an approximate four-fold improvement on the signal and
noise mix-ups.
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The RFC seems to thrive with the integrated data (T (t) instead of dT
dt (t)). In one test, we observe

an overall accuracy of 97.8% and an accuracy on untrained data of 95.6%. The accuracy map is shown

in Figure (12). The RFC tends to miss half as many pulse classifications with integrated data when

compared with differential data. However, it still seems to miss about twice as many of the untrained data

when compared with all data (which indicates that it is 3 times worse at classifying data it has not seen

before). A speculative reason as to why the learning algorithm may perform better with integrated data as

opposed to differential data is that the act of integrating averages out the noise within the differential data.

Integration is good at picking out trends around zero in the differential data, so even if the differential

data was very noisy and if there was a pulse hiding in it (the average of the differential data was a little

positive, for instance) then the integrated data would show a steady increase. This decrease in noise

and increase in trend prominence is a good candidate as to why this integrated data is preferred. By

integrating the data beforehand, the learning algorithm does not need to learn how to pick out the small

trends hiding in the noise (i.e., learn how to integrate).

3.3 Mini Batch K-Means Results

Mini Batch K-Means is an unsupervised learning algorithm, meaning that we do not need to provide it

with the classifications of the pulses, only the pulses themselves. The learning algorithm is to observe

patterns and make a decision on how to categorize data. This particular method requires that we tell it

how many clusters there are, i.e. how many pulse classifications there are.

We start with giving the learning algorithm all data (all pulse types) and request that it creates three

categories. From an outside standpoint, we would hope that it finds the heater, signal, and noise data

and splits it up accordingly. Of course, this is what is inferred with the context of the experiment, which

the algorithm does not possess. The results of this test are shown in Figure (13). It appears that it chose

the cleanest data to be in category 0. Category 1 holds some of the slightly noisier data, but since the

majority of this category is still heater pulses it is still mostly clean pulses. Category 2 holds all the rest of

the data which was not entirely clean. Running the algorithm again may bring new categorical patterns,

but it never really discerns between the signal, heater, and noise pulses entirely. It is mostly only able to

decide how clean a signal is.

Next, we reduce the number of clusters from three to two in hopes of bringing a better division
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Figure 13: The Mini Batch K-Means learning algorithm’s classifications of all possible data into three
categories. Note that the numbered categories have no intrinsic relation to the actual capture types (i.e.,
category 0 need not only contain signal pulses for a good classification).

between heater and clean signal pulses versus noise and noisy signal pulses. This test is shown in Figure

(14). This shows a similar behavior as when it was tasked with creating three categories. Category 1

possesses only the cleanest data, mostly heater pulses and some especially clean signal pulses. Note that

this category holds no noise data, much like before. Category 0 holds everything else: lower quality

heater pulses, most signals and all noise.

Although it seems the algorithm has a difficult time discerning among all three data types, perhaps it

will do well with only signal and heater pulse data. The learning algorithm now categorizes all data, sans

noise, into two categories. These results are shown in Figure (15). Not much changes here. Category 0

holds most of the data, while only the cleanest pulses are placed in category 1. We repeat this for only

signal pulses, heater pulses, and noise, and again one category holds most of the data and the other holds

the cleanest data. Interestingly, most of the noise data is put into one category except for about 5%,

whose pulses have an overall downward trend as shown in Figure (16). These are likely the tail ends of

a signal pulse or a heater pulse that just so happened to occur before the random capture.

Lastly, we attempt to observe the Mini Batch K-Means learning algorithm’s behavior when it is
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Figure 14: The Mini Batch K-Means learning algorithm’s classifications of all possible data into two
categories. Category 0 holds most data, while category 1 holds only the cleanest data (strong signal and
most heater pulses).

Figure 15: The Mini Batch K-Means learning algorithm’s classifications of signal and heater pulses into
two categories.
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Figure 16: Representative pulse of category created by Mini Batch K-Means learning algorithm which
possesses an overall downward trend. While data was not intended to be classified in this way, it appears
that the learning algorithm learned to pick out what are likely tail ends of other pulses that were captured
by the random trigger.

provided with a large amount of freedom to discern the signal and heater pulses. We allow the algorithm

to create 10 categories, with results shown in Figure (17). It appears that most of the categories have

similar attributes as before, but categories 2, 3 and 4 seem to contain double pulses, one of which shown

in Figure (18).
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Figure 17: The Mini Batch K-Means learning algorithm’s classifications of signal and heater pulses into
10 categories. The learning algorithm was given free rein on what categories it wanted to create, which
created some interesting results.

Figure 18: Representative double pulse picked out by unsupervised learning algorithm. The first small
pulse likely triggered the detector and then a second pulse occurred later on.
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4 Conclusions

We have observed that the classification of pulse type is feasible. Although it may not be all that con-

vincing that this translates to discerning among particles detected just by their thermal pulse, it is a step.

There are many signal pulses in the dataset that look just like noise and some that look like heater pulses.

But from our observations, it appears that the RFC was able to thrive with this dilemma, only failing to

classify signal pulses about 3% of the time. Most of these 3% do in fact look like the pulse type that

the learning algorithm claimed they were. These pulses have been normalized, meaning that their total

contained energy has been lost (aside from how the pulse compares to the noise around it). This means

that, in the current state, these methods must be somewhat adjusted before attempting to classify CUORE

pulses as alpha, beta, or gamma particles.

If this project is to continue onward with classifying CUORE pulses as radiation particles, some

more consideration must be done. For one thing, neural networks of all kinds (DNN, CNN, etc.) should

be looked into more. CNNs have a good reputation in image analysis, and hopefully this may translate

well to digging deeper into the shapes of these pulses. Since this would likely be a supervised machine

learning endeavor, simply giving the learning algorithm the pulse and its magnitude may only do as well

as what is currently being done to classify pulses. But, perhaps providing the learning algorithm with

the channel number (detector location), trigger time, and any other available information as well as other

pulses close in time and their information could pose an improvement on current methods.
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