Abstract
Pharmaceuticals have been found in wastewater treatment plant (WWTP) effluents and there are scientific studies that indicate at least some of these chemicals have adverse effects on fish health. Two groups of pharmaceuticals that currently cause concerns are natural and synthetic steroids and selective serotonin reuptake inhibitors (SSRIs). Fathead minnows (FHM) are a common species of fish used for research and ethynyl estradiol (EE2) is a synthetic estrogen known to cause decreased fertility in fish. FHM were exposed to EE2 for time periods between 0.25 hours to 144 hours in order to study uptake and disposition in this species. These results demonstrated that EE2 is rapidly absorbed by FHM and distributed to target tissues such as the liver and gonads. These findings support the use of short-term exposure studies of WWTP effluents to assess the potential physiological effects on fish. The use of relatively short exposure times (e.g. 72 hrs) requires fewer resources and permits more WWTP effluents to be tested.

Results
- Small quantities of steroids, but fairly high amounts of SSRIs were found in the WWTP effluents.
- Concern about steroids is still relevant because they have been found in other studies and are potent physiologically (Desbrow).
- Plasma levels of EE2 quickly reached equilibrium with EE2 in the water, within 2 hours.
- Testes and liver tissue levels of EE2 also reached equilibrium quickly, taking approximately 8 hours.

Figure 1. Research involved assaying WWTP effluent from nine treatment plants to determine what pharmaceuticals these effluents contained.

Figure 2. EE2 concentration-time profiles in male FHM blood plasma (top figure), liver and testes (bottom figure) after continuous exposure to 100 ng/l EE2. Fish were exposed using a single pass flow-through exposure system. Blood and tissue sampling was performed in fish serially euthanized at various times of exposure up to 144 hrs (7 d). Values are the mean ± SD; n = 3-6 individuals per sampling time.

Figure 3. EE2 concentration in tissues ng/g.

References

This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013 and Grant No. 0954935 (East Bay Noyo Fellows only) and Grant No. 0853355 (check funding spreadsheet if needed). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. This project has also been made possible with support of the National Marine Sanctuary Foundation. The STAR program is administered by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the California State University (CSU).