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1. Abstract 

Overview 
This project extended on the operating system I wrote in CPE 454 by adding additional features 
on top of the existing implementation. In order to implement them, I researched operating 
system design patterns and hardware details. I used wiki.osdev.org for most research, just like I 
did in CPE 454. The source code for the project is at https://github.com/josepharhar/jos. 

Outline 
This outline contains a list of features I planned on implementing in the operating system. The 
first list contains features which I planned on completing within the first quarter of senior project. 
The second list contains stretch goals which I attempted in the second quarter. I planned on 
completing at least one of the stretch goals. 
Goals: 

● POSIX-like Interprocess Communication (IPC) 
● POSIX-like Shell 
● POSIX-like Semaphores 
● Preemptive Multitasking 

Stretch Goals: 
● TCP Networking with POSIX-like sockets 
● POSIX-like Process Management 

○ Process Tree 
○ Signals 

● FAT32 File Writing 
● Running on bare metal 
● Microkernel Architecture 

  

https://github.com/josepharhar/jos


 

2. Introduction 

Features from CPE 454 
I implemented many features in the operating system during CPE 454, some of which I had to 
go back to and rewrite during the course of the senior project. Here is a list of the CPE 454 
features present in the operating system: 

● Interrupt handling 
● Virtual addressing and swappable page tables 
● Kernel threads 
● VGA console output 
● Keyboard input 
● Physical frame allocator, virtual page allocator, and variable size memory allocator 

(kmalloc) 
● FAT32 filesystem reading 
● System calls 
● User processes loaded from ELF formatted executables 
● fork() for user processes 

Anticipated Design Decisions 
Most of the new features to implement are more focused on user processes compared to the 
work I did in CPE 454, so I anticipated a more fleshed out design for user processes. This 
includes a better build system for user processes and more state stored in process contexts. 
Many more system calls will also be added, but I continued to use the same system call pattern 
I started in CPE 454. 

Implemented Features 
I succeeded in implementing all of my base goals and one stretch goal: 

● IPC 
● Preemptive multitasking 
● Semaphores 
● Shell 
● TCP sockets 



 

3. Key Design Decisions 

Virtual Address Space 
The virtual address space I designed originated from Dr. Bellardo’s virtual address space design 
from CPE 454. The additions I designed were mostly for user processes. I decided to separate 
each section by giving it a unique P4 index in its virtual address which gives each section more 
than enough virtual addresses and makes it easy to identify which section any virtual address 
belongs to in my page fault handler. There was a tradeoff I was not aware of when I put the user 
text at such a high virtual address: support for 32 bit executables and otherwise straightforward 
linking of user processes. In order to link user processes to start at such a high address, I had to 
use the -mcmodel=large gcc flag and disable debug information. Here is a diagram of the 
virtual address space, where only green addresses are user process accessible. 

 



 

User Program Library and New System Calls 
In order to implement the shell, IPC, and the network stack, I needed to design an interface for 
user processes to communicate with the kernel through system calls. I decided to model almost 
all of these interfaces on the POSIX standard library. Although I could have come up with my 
own independently which could have been easier for me to implement or were more efficient, I 
decided to go with POSIX so that I could write cross-platform userspace tests of the library 
which could run on my OS and on Linux. Although I never ended up running my tests on Linux, I 
still had the advantage of being familiar with the library from prior systems programming 
experience. 

Implemented POSIX Library Functions 

Semaphores 
When implementing semaphores, I had to choose between implementing POSIX named 
semaphores or POSIX memory-based semaphores. Named semaphores are accessed by using 
a unique semaphore name, so multiple processes can open the same semaphore by calling the 
library function with the same string. Memory-based semaphores are accessed by multiple 
processes by sharing the same region of memory which the semaphore is stored in. I decided to 
implement named semaphores because of the lack of shared memory support which would 
make it hard or impossible for separate processes to use a semaphore. 
Here is the list of functions I implemented in src/shared/semaphore.h: 

● void sem_open(sem_t* semaphore, const char* name); 

● int sem_post(sem_t* semaphore); 

● int sem_wait(sem_t* semaphore); 

IPC 
I decided to implement pipe() for IPC because it provides a very simple interface for IPC. 
IPC functions from src/shared/unistd.h: 

● int pipe(int pipefd[2]); 

● int write(int fd, const void* buffer, int size); 

● int read(int fd, void* buffer, int size); 

Process Management 
In order to implement the shell, I needed to add command line arguments for launching 
programs and I needed a way for the shell to wait for the child processes it runs, so I added 
these functions in src/shared/unistd.h: 

● int execv(const char* path, char* const argv[]); 

● pid_t wait(); 

http://pubs.opengroup.org/onlinepubs/9699919799/idx/head.html


 

Directory Scanning 
As part of having a functional shell, I decided to write an ls program which could list the entries 
in a directory on the filesystem. Referring again to the POSIX standards, I implemented the 
POSIX dirent.h in src/shared/dirent.h: 

● DIR* opendir(const char* name); 

● dirent* readdir(DIR* dir); 

● int closedir(DIR* dir); 

Network Stack 

PCI Driver 
The virtual network adapter provided by qemu, the virtual machine host my operating system 
runs on, is an Intel E1000 adapter attached on the PCI bus. Since it is on the PCI bus, I had to 
use the PCI interface to scan for the E1000 adapter, properly initialize it, and communicate with 
it. I heavily relied on https://wiki.osdev.org/PCI to learn how to use the x86 PCI interface. Some 
of the initialization required for me to use the E1000 adapter included enabling bus mastering 
and enabling direct memory access. With direct memory access, the E1000 adapter can write 
directly to physical memory regions which are selected by the BIOS. 

Intel E1000 Driver 
The virtual E1000 adapter has many registers which have to be configured in order to send and 
receive packets. In fact, according to this Intel manual for the E1000, there is 128KB of memory 
for registers! I used https://wiki.osdev.org/Intel_Ethernet_i217 as an example to configure the 
E1000. In addition to using this register configuration, I had to use my physical address allocator 
to provide the E1000 physical memory locations to write and read packets and enable interrupts 
on the PIC line it is connected to. At this point, I can send and receive packets with ethernet 
headers on the network! 

Ethernet Driver 
The ethernet driver handles ARP requests and responses and maintains an ARP cache to 
resolve IP addresses to MAC addresses. When an IP address is not in the table, it blocks 
outgoing packets to that IP address and sends an ARP request for that IP. When it gets a 
response, all of the blocked packets get sent to the appropriate MAC address. 

IP Driver 
The IP driver is pretty simple, it just adds IP headers and passes off incoming packets to the 
TCP driver. 

https://wiki.osdev.org/PCI
https://wiki.osdev.org/Intel_Ethernet_i217
https://wiki.osdev.org/Intel_Ethernet_i217


 

TCP Driver 
The TCP driver is based off another TCP implementation I wrote for CPE 465, Advanced 
Networks. I made it mostly by reverse engineering example TCP packet traces, and its 
functionality leaves much to be desired. However, it does work for making basic HTTP requests. 
I would have liked to complete this driver enough to be able to accept incoming TCP 
connections and host a web server, but that would have taken much more time. 

User Program Interface 
Using TCP sockets is the only non-POSIX compliant interface I implemented because I found 
the POSIX interface for opening sockets overly complicated for my use case. Instead, I made 
one method called socket() which takes an IPv4 address and a port, and returns a file 
descriptor which can immediately be used to read or write from the socket using the POSIX IPC 
interface. 

Preemptive Multitasking 
Implementing preemptive multitasking involved two parts: configuring the Programmable Interval 
Timer (PIT) and replacing the cooperative multitasking with interrupt driven context switching. 

Programmable Interval Timer (PIT) 
The PIT has a several registers accessible from I/O ports containing a lot of configuration. For 
preemptive multitasking, I was just concerned with getting some form of recurring interrupt to 
switch process contexts with rather than having high precision to measure time with so I didn’t 
modify any of the PIT registers. All I did was clear the bit on the PIC corresponding to the PIT to 
allow the PIT to send interrupts, and I started getting interrupts on PIC line 0. Choosing this 
method allowed me to implement preemptive multitasking quickly, but going through PIT 
configuration would be helpful if I were to implement timing functionality into my operating 
system later. 

Context Switching 
Changing the context switching from cooperative to preemptive was simple. I replaced the 
process yielding function and corresponding system call with a preempt function which does the 
same thing, except it is called by the PIT interrupt handler to make processes get forced to 
switch contexts every time the PIT sends an interrupt, which with the default PIT configuration 
ended up being a couple times per second. 



 

Design Constraints 
While implementing the new features and rewriting some of the functionality from CPE 454, I 
went back on some design choices to make things more simple and easy to write. First, I was 
having many issues with debugging broken system calls because of system calls interrupting 
themselves and making nested system calls. In order to avoid these issues, I masked the 
interrupt flag for system call interrupts to make them non-interruptible and I replaced the nesting 
pattern with a continuation passing pattern, where a system call will register a callback based on 
what to do after receiving an interrupt and the interrupt handler will call the callback to let the 
system call handler continue doing its work. I also made little or no attempt to minimize the use 
of memory copying, which made the kernel (especially the network stack) much slower. Were it 
not for these design constraints, I don’t think I would have been able to implement all of my 
goals in time. 

4. Future Work 
There’s a virtually limitless number of features I could add to this operating system. In addition 
to the stretch goals which I didn’t implement, including FAT32 filesystem writing, richer process 
management, running on bare metal, and making the kernel a microkernel, there is a plethora of 
work to do to make it more like a usable kernel like Linux or Minix. Getting full POSIX 
compliance would be phenomenal because then I could compile all POSIX dependent 
packages. I could even run it for personal development use! In addition to full POSIX 
compliance, I could shoot for wider hardware support and maybe even implement SMP support. 
With that and further optimizations in the kernel like avoiding memory copies, it could be fast 
enough to compete with other kernels. 

5. Reflections 

Optimizations 
As I mentioned in the previous sections, I used memcpy generously to make things easier when 
I could have figured out how to pass buffers around more efficiently. In addition, I also 
generously swapped page tables when changing process contexts or sending buffers to, from, 
and between processes. 
  



 

Security 
One thing I noticed when writing almost all of my system call handlers was that I was blindly 
accepting input from user processes like pointers and using them without making sure they are 
within the process’s address space. This along with blindly doing pointer arithmetic on data from 
incoming packets are huge security vulnerabilities which are unacceptable in real kernels. If I 
went back I would be safer about pointer usage. 

6. Conclusion 
I had a great time working on this senior project. Getting to dig in and implement many things 
I’ve always wondered about in operating systems has given me a much better understanding of 
how they work and of systems programming in general. I don’t think I’ll have a hard time getting 
around similar terminology like “threads” and “processes” or “pages” and “frames” ever again 
now that I truly know what the underlying meaning is. Writing the network stack was wonderful 
because I got to see how PCI works and what working with PCI and network devices is like, in 
addition to actually implementing drivers for layers 2 through 4 of the OSI model. I also got to 
see what it’s like to implement operating system features against a standard like POSIX. 
However, I feel like I didn’t learn quite as much as I did in CPE 454 when I first started working 
on the operating system because in CPE 454 I had Dr. Bellardo’s lectures and curriculum to 
speed up the learning curve. I would recommend this project and CPE 454 to anyone who is 
interested in going deeper with systems programming. 


