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1 Introduction

The development of quantum mechanics has forever changed and revolutionized the way in which we

view and understand the world in which we live. However, the development of quantum mechanics

launched a still ongoing debate about whether the resulting quantum theory is in fact a realistic descrip-

tion of what physically happens (orthodox viewpoint) or just an extremely accurate mathematical model

for predicting and understanding the world and the statistically dependent measurements we obtain (re-

alist viewpoint) [1]. To theoretically prove the plausibility of the realist view, Einstein, Podolsky, and

Rosen proposed what is now known as the EPR ( Einstein Podolsky Rosen) paradox, a paradox where

information transfered between two entangled particles travels faster than the speed of light (violating

relativity) [2]. The EPR paradox introduced the idea of entangled quantum particles, particles who’s

quantum states are correlated or entangled (the measured state of one particle is dependent on the mea-

sured state of the other). Through experimentation, it was shown that the assumption of locality used in

the EPR paradox was in fact incorrect and therefore the information transfer between entangled particles

did not violate any fundamental laws of nature [1]. Thus, the EPR paradox did not prove the realist view,

allowing the debate of the true nature of quantum mechanics to continue to this day. However, the EPR

paradox did introduce the extraordinary idea of quantum entanglement and the non-classical, non-local

correlation of physical states.

One extraordinary result of non-local quantum entanglement is quantum teleportation, a non-local

cut and paste operation on quantum states. The process of quantum teleportation allows quantum states to

be transfered over distances without physically exchanging the quantum particles themselves. Quantum

teleportation has been verified and successfully preformed in the laboratory. While quantum teleportation

has very interesting applications in quantum information and quantum computing, it may affect the

thermal properties of a system as well. The model we developed specifically investigates how the non-

local effects of quantum teleportation effect and change the thermodynamical quantities of a dynamic

one-dimensional spin system. The model is based on the Ising model of a ferromagnet and is investigated

using the Metropolis algorithm.
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2 Theory

2.1 Quantum Mechanics

2.1.1 EPR Pairs and the Bell States

Within our model, we are only concerned with two state quantum systems such as spin 1
2 particles. Now

consider a system where two spin 1
2 particles are configured in the singlet state:

1√
2

(|↑1↓2〉 − |↓1↑2〉) (1)

where each index refers to the individual particle. Now, if a measurement was preformed on particle 1

there would be a 50% chance that the result would be spin up and a 50% chance the result would be spin

down. However, if particle 1 is measured in the spin up state, it is automatically known that particle 2

is in the spin down state, and vice versa. If particle 1 and 2 are separated by a large distance (several

kilometers or several light years it does not matter) the same result will occur. In this separated situation,

if particle 1 is measured in a spin up state, it is immediately known that particle 2 (several kilometers or

several light years away) is in a spin down state [1]. This interaction over large distances is known as the

EPR Paradox, named after Einstein, Podolsky, and Rosen who published their famous paper in 1935 [2].

Two particles in an EPR pair, such as the singlet state in Eq. 1, reside in what is known as an entangled

state. An entangled two-particle state cannot be described by the product of two one-particle states [1].

Therefore, when two particles are in an entangled state, you cannot identify the specific state of one of the

particles, as its state is dependent, or entangled, with the other particle’s state. The previously mentioned

EPR singlet state is one of four entangled states known as the Bell states or Bell Basis. The four Bell

states are: ∣∣∣Ψ(−)
12

〉
=

1√
2

(|↑1↓2〉 − |↓1↑2〉)∣∣∣Ψ(+)
12

〉
=

1√
2

(|↑1↓2〉+ |↓1↑2〉)∣∣∣Φ(−)
12

〉
=

1√
2

(|↑1↑2〉 − |↓1↓2〉)∣∣∣Φ(+)
12

〉
=

1√
2

(|↑1↑2〉+ |↓1↓2〉)

(2)

It is important to note that the Bell states form a complete orthonormal basis for a set of two entangled

particles [3].
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2.1.2 Quantum Teleportation

One remarkable result of quantum entanglement is quantum teleportation, the act of transmitting quan-

tum information (quantum states) over distances using classical channels. By utilizing the effects of

quantum entanglement, quantum states can be transmitted over distances without physically transferring

the particles themselves. In addition, quantum teleportation does not require the sender to have any

knowledge of the quantum state to be transmitted or the location of the intended receiving observer [3].

The process of quantum teleportation is most easily illustrated using an example. Consider a system of

three spin 1
2 particles, where the first particle, particle 1, resides in an unknown state, and the other two

particles, particle 2 and 3, are prepared in an entangled singlet state. Therefore, the unknown particle can

be described by the wave function:

|φ1〉 = a |↑1〉+ b |↓1〉 (3)

where a and b are unknown coefficients, which can be complex, that satisfy the normalization condition

|a|2 + |b|2 = 1. The other two particles are described by the wave function:∣∣∣Ψ(−)
23

〉
=

1√
2

(|↑2↓3〉 − |↓2↑3〉) (4)

Therefore, the total wave function of this three particle system is:

|Ψ123〉 =
a√
2

(|↑1〉 |↑2〉 |↓3〉 − |↑1〉 |↓2〉 |↑3〉) +
b√
2

(|↓1〉 |↑2〉 |↓3〉 − |↓1〉 |↓2〉 |↑3〉) (5)

where a and b are the coefficients in Eq. 3[3] Now consider a situation where one observer, called

Alice, wished to transfer the unknown quantum state of particle 1 to another observer, called Bob, in

another location (the names of the observers are those used in the original paper [3]). Now this can

be accomplished using the other two entangled particles, particle 2 and 3. Alice is given one of these

entangled particles, say particle 2, and Bob is given the other, particle 3. Though there are nonclassical

correlations between particles 2 and 3, and therefore Alice and Bob, the entire system still resides in the

product state given by Eq. 5. Therefore, particles 2 and 3 contain no information about particle 1 [3].

Now Alice can entangle the two systems (particle 1 and the EPR pair) by preforming a measurement on

particle 1 and particle 2 in the Bell operator basis given by Eq. 2. This measurement will project particle

1 and particle 2 into one of the four Bell states. The resulting state of particle 3 is dependent on the result
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of the bell basis measurement on particles 1 and 2, the Bell state in which particles 1 and 2 are projected.

This is illustrated by rewriting the wave function of the total system in the Bell basis of particles 1 and 2:

|Ψ123〉 =
1

2

[∣∣∣Ψ(−)
12

〉
(−a |↑3〉 − b |↓3〉) +

∣∣∣Ψ(+)
12

〉
(−a |↑3〉+ b |↓3〉)

]
+

1

2

[∣∣∣Φ(−)
12

〉
(a |↓3〉+ b |↑3〉) +

∣∣∣Φ(+)
12

〉
(a |↓3〉 − b |↑3〉)

] (6)

where the bell states of particles 1 and 2 are given by Eq. 2 [3]. Eq. 6 shows that particles 1 and 2 have

an equal probability (25%) of being projected into each of the four Bell states following the Bell basis

measurement. Eq. 6 also illustrates that the resulting state of particle 3 is dependent on the Bell state

into which particles 1 and 2 are projected. For example, if particles one and two are projected into the∣∣∣Ψ(−)
12

〉
state then particle 3 will reside in the state described by |φ3〉 = −a |↑3〉 − b |↓3〉. Therefore, the

four possible resulting states for particle 3 are given by:

|φ3〉1 = −a |↑3〉 − b |↓3〉

|φ3〉2 = −a |↑3〉+ b |↓3〉

|φ3〉3 = a |↓3〉+ b |↑3〉

|φ3〉4 = a |↓3〉 − b |↑3〉

(7)

where the resulting state corresponds directly to the result of the Bell state measurement as seen in Eq. 6.

These states can also be expressed as 180◦ rotations of the original unknown state |φ1〉 about the x, y,

and z axes by applying the appropriate unitary operators to |φ1〉. Thus, the original unknown state of

particle 1 and the resulting states of particle 3 can also be expressed in matrix notation as:

|φ1〉 =

(
a
b

)
|φ3〉1 = − |φ1〉

|φ3〉2 =

(
−1 0
0 1

)
|φ1〉

|φ3〉3 =

(
0 1
1 0

)
|φ1〉

|φ3〉4 =

(
0 −1
1 0

)
|φ1〉

(8)

Therefore, the final state of particle 3 is directly related to the initial unknown state which Alice wished

to transfer to Bob. Since the final state of particle 3 is related to the initial unknown state of particle 1,
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all Bob must do to reconstruct the initial unknown state is apply the correct unitary operator (if any at

all), indicated by Eq. 8, to particle 3 [3]. However, the final state of particle 3, and therefore the unitary

operator that Bob needs to apply, is dependent on the result of Alice’s measurement of particles 1 and 2.

Therefore, for Bob to know what unitary operator to apply to particle 3, Alice must relay the result of her

measurement to Bob through a classical channel [3]. (The information relayed by the classical channel

can not travel faster than the speed of light so quantum teleportation does not violate special relativity.)

It is important to note that 25% of the time particle 3’s state will be |φ3〉1 which is only a 180◦ shift of

|φ1〉 and therefore the same as the initial unknown state. Thus, there is a 25% chance that a quantum

teleportation will occur without Bob applying a unitary operator to particle 3. The interaction in our

model is the same interaction Alice must apply to perform a Bell basis measurement of particles 1 and

2. Therefore, quantum teleportations can occur within our model.

2.1.3 Pair Swapping

Pair swapping is a special case of quantum teleportation where the two particles projected into a Bell

state are both part of separate EPR pairs. When two entangled particles, each in a separate EPR pair,

are projected into a Bell state, the particles with which they were previously entangled are also projected

into a Bell state. This results in the particles swapping entanglement partners. To illustrate this consider

the system of four particles consisting of two separate EPR pairs described by:

|Ψ1234〉 =
∣∣∣Φ(+)

12

〉
⊗
∣∣∣Φ(+)

34

〉
= |↑1, ↑2, ↑3, ↑4〉+ |↓1, ↓2, ↑3, ↑4〉+ |↑1, ↑2, ↓3, ↓4〉+ |↓1, ↓2, ↓3, ↓4〉 (9)

where particles 1 and 2 are in an entangled Bell state and particles 3 and 4 are in a separate entangled

Bell state. Now, if a Bell basis measurement is performed on particles 2 and 3, projecting particles 2 and

3 into a Bell state, the resulting joint state of the four particles will be one of the following four:

|Ψ1234〉 =
∣∣∣Φ(+)

23

〉
⊗
∣∣∣Φ(+)

14

〉
= (|↑2, ↑3〉+ |↓2, ↓3〉)⊗ (|↑1, ↑4〉+ |↓1, ↓4〉)

|Ψ1234〉 =
∣∣∣Φ(−)

23

〉
⊗
∣∣∣Φ(−)

14

〉
= (|↑2, ↑3〉 − |↓2, ↓3〉)⊗ (|↑1, ↑4〉 − |↓1, ↓4〉)

|Ψ1234〉 =
∣∣∣Ψ(+)

23

〉
⊗
∣∣∣Ψ(+)

14

〉
= (|↑2, ↓3〉+ |↓2, ↑3〉)⊗ (|↑1, ↓4〉+ |↓1, ↑4〉)

|Ψ1234〉 =
∣∣∣Ψ(−)

23

〉
⊗
∣∣∣Ψ(−)

14

〉
= (|↑2, ↓3〉 − |↓2, ↑3〉)⊗ (|↑1, ↓4〉 − |↓1, ↑4〉) [4].

(10)

There is an equal probability (25%) for the system to be projected into any of the four states given in

Eq. 10. Eq. 10 also reveals that the Bell state into which particles 2 and 3 are projected is the same
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Bell state which particles 1 and 4 will also be projected. It can be shown that the same result given in

Eq. 10 will result no matter which initial Bell states particles 1 and 2 and particles 3 and 4 initially reside

[4]. The Bell state interaction incorporated within our model can result is pair swapping in addition to

quantum teleportation.

2.1.4 Quantum Decoherence

This section provides a very brief, non-technical, non-mathematical description of quantum decoherence.

The topic of quantum decoherence is extremely complicated and includes aspects of density matrix

theory, which is beyond the scope of the material integrated within our model. This introduction of the

ideas of quantum decoherence is to provide a basic understanding of the subject so that the basic method

in which decoherence is incorporated within the model can be understood. A technical description of

quantum decoherence is given in [5].

Quantum Decoherence is the process by which a quantum state loses its quantum coherence and

devolves into a semi-classical or classical state. This loss of quantum information is necessary if any

observer is to obtain a classical (and therefore useful and realistic) result when observing the system. The

dispersion of this quantum information occurs through and interaction between the quantum system in

question and the external environment (the environment is also a quantum system). Quantum correlations

between the systems allow the quantum information to be dispersed throughout degrees of freedom

external to the system (not available to the observer) [5]. These external degrees of freedom are generally

referred to as the environment. This effective loss of information is desirable since it increases the

entropy of the system [5]. This loss of quantum information to the environment causes the quantum state

to devolve, or decohere, into a semi-classical or classical state. The manner in which a detector measures,

or observes, a specific property of a quantum system is much the same, except now there is an interaction

between the quantum state, the environment, and the detector (the detector must also be considered as

a quantum system). The interaction between the quantum state detector system and the environment

decoheres the quantum state detector system into the specific basis in which the detector is to measure

the system. This specific desired basis of the detector is known as the pointer basis of the detector [5].

The quantum state detector interaction then further decoheres the quantum state into the classical state

that is measured [5]. Our model incorporates a very simplified model of quantum decoherence, in which
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the environment interacts with the particles in the system in a way which causes the entangled Bell states

to decohere into the classical spin up or spin down states.

2.2 Thermal Physics and Statistical Mechanics

2.2.1 Boltzmann Statistics: Boltzmann Factors and the Partition Function

When analyzing a thermodynamical system (especially those containing a large number of particles), it

is often (if not always) more convenient to analyze the system through statistical means. An excellent

way in which to analyze a system statistically is through Boltzmann statistics. Boltzmann statistics are

especially convenient for quantum systems as they are concerned with the energy states of the system,

specifically occupation. Boltzmann statistics provide a means of determining the probability of finding

a system in a specific state, whether the system is a single atom or a gas. However, first it is convenient

to describe the ratio of the probabilities of the system occupying two separate energy states. Boltzmann

statistics states that this ratio of probabilities can be expressed as a ratio of two exponential factors

dependent of each states energy and the temperature of the system. Thus, if the two states considered are

represented by s1 and s2, the ratio of their occupation probabilities can be expressed as:

P (s2)

P (s1)
=
e−E(s2)/kBT

e−E(s1)/kBT
= e−[E(s2)−E(s1)]/kBT = e−∆E/kBT (11)

where E (s1) and E (s2) are the energies of the states s1 and s2, kB is Boltzmann’s constant, T is the

temperature of the system, and ∆E is the energy difference between the two states [6]. These exponential

factors are known as Boltzmann factors. Thus, the Boltzmann factor for a state s is defined as:

Boltzmann Factor = e−E(s)/kBT (12)

In addition to knowing the ratio of occupation probabilities, it is also important to know the occu-

pation probability of each state itself. In order to use Boltzmann factors to determine the probability

that the system will be in a specific energy state, a new statistical quantity must be defined, the partition

function. The partition function of a system is defined as the sum of all the Boltzmann factors of the

system. Thus, the partition function is a sum of the Boltzmann factors over all the states of the system:

Z =
∑
s

e−E(s)/kBT (13)
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where Z denotes the partition function and s is the energy state [6]. With the partition function defined,

the probability of the system residing in a specific state s is given by:

P (s) =
1

Z
e−E(s)/kBT (14)

where Z is the partition function of the system given by Eq. 13. Taking Eq. 14 and the fact that the total

probability of finding the system in a particular state into account, results in the following:∑
s

P (s) =
∑
s

1

Z
e−E(s)/kBT = 1 [6]. (15)

The partition function is an important statistical quantity since it provides far more insight into the

thermodynamics of the system than just the probability that the system resides in a specific state. One of

these thermodynamical quantities is the average energy of the system. The average energy of the system

can be expressed as,

E =
1

Z

∑
s

E (s) e−βE(s) (16)

where the quantity β = 1
kBT

and is used for convenience. Now using β in place of 1
kBT

the partition

function (defined in Eq. 13) can be expressed as:

Z =
∑
s

e−βE(s). (17)

By utilizing Eq. 16 and Eq. 17 it can be shown that the average energy is proportional to a derivative of

the partition function with respect to β. From this, it can be shown that the average energy of the system

is given by:

E = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ (18)

where lnZ is the natural logarithm of the partition function [6].

The average energy of the system provides additional thermal information about the system. One

important quantity that can be determined from the average energy of the system is the heat capacity at

constant volume. The heat capacity at constant volume is given by the derivative of the average energy

with respect to temperature,

CV =
∂E

∂T
[6]. (19)

The heat capacity provides additional insights into the thermodynamics of the system including the

location nature of phase transitions.
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2.2.2 The Ising Model of a Ferromagnet

The Ising model of a ferromagnet is a simplified (yet still complicated) model used to study the behavior

of a ferromagnet. It is named after Ernst Ising who studied it in the 1920’s [6]. A ferromagnet is

composed of magnetic dipoles which have a tendency to align parallel to each other. In a ferromagnet

the parallel alignment of dipoles results in a nonzero net magnetization of the ferromagnet. However, at

higher temperatures, random fluctuations of the dipoles causes some to align in an antiparallel manner,

decreasing the net magnetization. All ferromagnets have a critical temperature, the Curie temperature, at

which their net magnetization becomes zero [6]. The Ising model of a ferromagnet seeks to model this

behavior.

The Ising model of a ferromagnet operates upon two simplifying assumptions about the way in

which the dipoles behave. First, the tendency of neighboring dipoles to align is accounted for, but any

long-range effects between the dipoles are neglected. Secondly, it is assumed that the dipoles have

a preferred axis of magnetization, thus each dipole can only point parallel or antiparallel to this axis.

Therefore, the state of each dipole is either pointing up, aligned with the preferred axis (denoted by

+1) or pointing down, antialigned with the preferred axis (denoted by -1). Thus, if si is the state of

the ith dipole, si=1 if the dipole is pointing up and si=−1 if the dipole is pointing down. The energy

due to the interaction between two neighboring dipoles is given by −εsisj , where dipoles i and j are

neighbors. Thus, the energy due to two neighboring parallel dipoles is −ε, while the energy due to two

neighboring antiparallel dipoles is +ε [6]. The total energy of the system resulting from all the dipole

nearest-neighbor interactions is

U = −ε
∑
<i,j>

sisj (20)

where the sum over < i, j > is carried over all neighboring pairs of dipoles in the system [6]. It is also

convenient to determine the partition function of the system, which is given by:

Z =
∑
[si]

e−βU (21)

where the sum is over all the possible sets of dipole alignments [6]. If the system contains N dipoles

each with two possible alignments, then the partition function given by Eq. 21 will contain 2N terms.

Directly calculating the partition function for the Ising model can become quite complicated if not
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impossible. However, for the one-dimensional case the partition function can be calculated exactly. In

the one-dimensional case of the Ising model, the dipoles are arranged as a simple string (one-dimensional

lattice) so that each dipole only has two nearest-neighbors. In this one-dimensional case the total energy

of the system is given by

U = −ε (s1s2 + s2s3 + s3s4 + ...+ sN−1sN ) (22)

where N is the number of dipoles in the system. With N particles in the system, the partition function,

using Eq. 21, can be written as

Z =
∑
s1

∑
s2

∑
s3

...
∑
sn−1

∑
sN

eβεs1s2eβεs2s3 ...eβεsN−2sN−1eβεsN−1sN (23)

where each sum is executed over the possible values of si which are +1 and -1 [6]. Now the last sum

over sN can be expressed as

∑
sN

eβεsN−1sN = eβε + e−βε = 2 coshβε. (24)

The result of Eq. 24 holds regardless of the state of the sN−1 dipole (whether sN−1 is +1 or -1) [6]. The

next sum, over sN−1, can be calculated in the same way and will yield the same result. This process can

be followed over all sums excluding the first resulting in N − 1 factors of 2 coshβε. The first sum, over

s1 simply results in a 2. Combining these results yields the partition function of the system, which is

Z = 2N (coshβε)N−1 ≈ (2 coshβε)N (25)

where the final simplifying approximation is valid if N is large [6]. With the partition function the

average energy of the system can be calculated. Using Eq. 18, the average energy of the system is

U = − ∂

∂β
lnZ = −Nε tanhβε (26)

where Z is given by Eq. 25 [6]. As Eq. 26 indicates, U → −Nε as T → 0 and U → 0 as T →∞. Thus,

the dipoles are aligned (completely parallel) at T=0 and become less aligned as temperature increases,

reaching a randomly aligned state at high temperature. Though the one-dimensional model produces

exact results, U (Eq. 26) is perfectly smooth which indicates that there is no nonzero critical temperature
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at which the system makes an abrupt transition. This is inconsistent with actual ferromagnets as they do

have a critical temperature [6].

The next step would be to evaluate the Ising model in higher dimensions. However, though a closed

form result for the two dimensional case has been obtained, it is extremely complicated and will not

be discussed. It is important to note that this closed form solution in two dimensions does have a crit-

ical temperature. No closed form solution has been obtained in three dimensions [6]. Another method

(though somewhat crude) of investigating the Ising model in higher dimensions is the mean field approx-

imation. The mean field approximation is not very accurate but does give a good insight into the behavior

of a ferromagnet.

When considering a single dipole, si within the lattice, let n represent the number of nearest neigh-

bors to that dipole. Therefore, n=2 in one dimension, n=4 in two dimensions, n=6 in a three dimensional

simple cubic lattice, etc. Thus, the energy that results from the si dipole interacting with its neighbors is

Ei = −ε
∑

neighbors

sneighbor =

{
−εns : si = 1 (points up)
+εns : si = −1 (points down)

(27)

where s is the average alignment of the nearest-neighbors [6]. The partition function for this dipole is

Zi = eβεns + e−βεns = 2 coshβεns. (28)

Using the partition function the average expected value of the si dipole’s spin alignment is

si =
1

Zi

[
(1) eβεns + (−1) e−βεns

]
=

2 sinhβεns

2 coshβεns
= tanhβεns (29)

Now, this is where the mean field approximation is utilized. The mean field approximation is si = s,

that the dipole alignments in all neighborhoods within the ferromagnet are typical and that they do

not fluctuate away from this thermal average [6]. Applying the mean field approximation results in a

transcendental equation:

s = tanhβεns (30)

where s is now the average dipole alignment for the entire system [6].

Eq. 30 can not be solved analytically, however it can be solved graphically. The graphical solution to

Eq. 30 is shown in Figure 1. As can be seen, for high temperatures (βεn < 1) there is only one solution
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(a) βεn < 1 (b) βεn > 1

Figure 1: The graphical solution to Eq. 30. When βεns is less than 1 there is only one stable solution at
s=0. When βεns is greater than 1, there are three solutions, one unstable at s=0 and two stable nontrivial,
nonzero solutions [6].

of s=0, which means that the system has no net magnetization at high temperatures as expected. For low

temperatures (βεn > 1), there are three solutions, an unstable solution of s=0 (of which the system can

easily be perturbed from), and two stable nonzero solutions. These two stable solutions correspond to a

net magnetization of the system at lower temperatures, one solution corresponds to the dipoles pointing

up and the other corresponds to the dipoles pointing down (the system favors either equally).

The graphical solutions also specifies a critical temperature at which the system moves from one to

three solutions. The critical temperature occurs when βεn=1. Thus the critical temperature, TC is

TC =
nε

kB
[6]. (31)

The mean field approximation is not terribly accurate, however it does provide a fairly consistent quan-

titative description of how the system transitions states when moved from high to low temperatures, or

vice versa.

There is another method in which the Ising model of a ferromagnet can be investigated, Monte Carlo

simulation. In this procedure, a random sample of possible states is generated and these random sample

states are used to compute energy, magnetization, and other thermodynamical properties [6]. However,

since there are an immense number of possible states it is better to let Boltzmann factors act as a guide

in choosing the random states. A Monte Carlo algorithm utilizing importance sampling (the Boltzmann
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factors help choose states of importance) is known as the Metropolis algorithm [6]. This method of

investigating the Ising model is the method on which our model is based. The Metropolis algorithm is

described in more detail in section 3.1. The baseline interaction for our model is dynamic Ising model

investigated under this Metropolis algorithm. The baseline interaction is discussed in section 3.5.1.

3 Ising Inspired Model of One-Dimensional Dynamic Spin System Oper-
ating Under a Local Bell State Interaction

To investigate the thermal properties of a one-dimensional dynamic spin system operating under a Bell-

state projection interaction, we created an Ising inspired model in the Ipython notebook. The model

which we created allows for each particle in the system to be individually identified, the particles to

dynamically diffuse in a temperature dependent matter, Bell state projection interactions to occur on

individual pairs of particles within the system, and decoherence of the quantum Bell states to more

classical states to occur. The way in which the model operates is inspired by the Ising Model of a

Ferromagnet. Though the model is based on the Ising model, it explores an entirely different interaction

and therefore stands in its own right. This section gives a detailed description of the model, its properties,

and the major theoretical ideals. The methodologies and execution of the model are also described.

Blocks of pseudocode have been included to better illustrate how the model is executed and to allow

easy reproduction of the model.

3.1 Model’s Approach: Metropolis Algorithm

In order to examine the thermal effects of a local bell state projection, we decided to employ a random

sampling method similar to that which can be used to investigate the Ising model. This random sampling

method is known as the Metropolis algorithm or Monte Carlo summation with importance sampling [6].

Under this algorithm, random system states are generated based on thermal importance. Boltzmann

statistics guide the random state generation allowing the more likely thermal state configurations to be

generated. These generated states can then be used to calculate average energy and other thermodynamic

quantities. A general outline of how the Metropolis algorithm is executed is as follows: Start with any

random system state. Then choose a random particle/dipole and consider how executing the desired

interaction (Bell state projection or Ising spin flip for example) on that particle will change the systems
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energy. If executing the interaction will lower the energy or the energy will remain unchanged, then

execute it. However, if executing the interaction will raise the energy, randomly decide if the interaction

will be executed, were the random decision is weighted by the Boltzmann probability of:

e
−∆U
kt (32)

where ∆U is the change in energy, k is Boltzmann’s constant, and T is the temperature. Then choose

another random particle/dipole and repeat [6]. Repeated execution of the Metropolis algorithm allows

the most likely states to be generated. Taking the average of a thermodynamical quantity (e.g. energy)

over all iterations at a specific temperature results in the value of the thermodynamical quantity at that

temperature.

3.2 The Model Basics: Defining the Particles and the System

3.2.1 The Particles

At the core of the model are the quantum particles of which the system is composed. Specifically spin

1
2 particles. Initially, all the particles reside in either the spin up or spin down state, none will reside

in a superposition of the two. Now, if two of the particles interact under the local Bell state projection

interaction, they will be projected into one of the four entangled Bell states. Therefore, the particles will

be allowed to reside in one of three possible states, spin up (denoted by +1), spin down (denoted by -1),

or one of the four bell states (denoted by 0). The choice of the numeric values denoting the states is for

energy calculation purposes, which is discussed in section 3.4.1.

In addition to the state of the particle, there are five other qualities, or properties, of each particle

that must be defined: index, position, pairing, Bell state, and Bell state time. The index of the particle

is simply a number by which each particle can be individually identified. Position simply just indicates

the specific position of the particle within the system at any specific time. Paring identifies the particle’s

EPR partner if the particle is part of an EPR pair. The paring information becomes important when a

particle that is part of an EPR pair undergoes a Bell state projection allowing a quantum teleportation or

pair swapping to occur. The Bell state indicates which Bell state, or lack thereof, the particle is in. For

simplicity, each Bell state is denoted by an integer, 1 corresponds to
∣∣Ψ(−)

〉
, 2 corresponds to

∣∣Ψ(+)
〉
, 3

corresponds to
∣∣Φ(−)

〉
, and 4 corresponds to

∣∣Φ(+)
〉
. Lastly, the Bell state time indicates the time that
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a particle has been entangled in a Bell state. The time which a particle has remained in a Bell state is

needed to apply decoherence effects.

Since each particle is represented by six pieces of information, it is extremely difficult to represent

each particle as information in a list or array. Instead, we elected to represent each particle as an object.

Defining each particle as an object presents several advantages. First, the information of each particle

(index, position, paring, state, Bell state, and Bell state time) can be defined as properties of the particle

which can easily be accessed. An example of this advantage would be calling a particle’s pairing infor-

mation. Secondly, since defining the particles as objects with specific properties wraps all the particle’s

information within one object, the one dimensional system can now be easily represented as a list of

these particle objects. Lastly, the properties and methods (functions) of an object can easily be changed

or expanded allowing new information and interactions (such as particle phase and phase shifts) to easily

be integrated later. A pseudo-code algorithm for generating the particle objects is given below.

Algorithm 1 Defining Particle Objects

procedure CREATE CLASS PARTICLE(inherit from object)
function CLASS CONSTRUCTOR(self, index, position, state, pairing=None, bell state=None,

bell state time=None)
self.index=index . index given by integer, unique for each particle
self.position=position . position given by integer
self.state=state . state given by +1, -1, or 0
self.paring=pairing . pairing is set to paired particle object, default of None
self.bell state=bell state . bell state indicated by 1, 2, 3, or 4, default of None
self.bell state time=bell state time . bell state time given as integer, default of None

end function
end procedure

With a new particle object class defined, particle objects can now be created and manipulated. Some

pseudo-code for generating, manipulating, and calling particle information would look something like

this:
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Algorithm 2 Generating and Manipulating Particles
Particle1=PARTICLE(1,5,1) . Creates Particle1 with index=1, position=5, and state=+1 (spin up)
Particle2=PARTICLE(2,9,-1) . Creates Particle2 with index=2, position=9, and state=-1 (spin down)
PRINT(Particle1.index)
1
PRINT(particle2.state)
-1
Particle1.paring=Particle2 . Pairs Particle1 to Particle2
Particle1.state=0 . Sets Particle1’s state to 0 (bell state)
Particle1.bell state=2 . Sets Particle1’s bell state to 2 (

∣∣Ψ(+)
〉
)

Particle2.paring=Particle1 . Pairs Particle2 to Particle1
Particle2.state=0 . Sets Particle2’s state to 0 (bell state)
Particle2.bell state=2 . Sets Particle2’s bell state to 2 (

∣∣Ψ(+)
〉
)

PRINT(Particle1.pairing.position) . Prints position of particle paired to Particle1
9
PRINT(Particle2.pairing.index) . Print index of particle paired to Particle2

3.2.2 The System: A One-Dimensional Gas

However, the model is not just concerned with spin 1
2 particles, but a one dimensional system composed

of them. The system is modeled by a one-dimensional gas organized as a discrete lattice with periodic

boundary conditions. The periodic boundary conditions treat the gas as if it were bent into a circle, so that

the first space in the lattice is adjacent to the last. Each point in the lattice is occupied by a particle. Only

one particle is allowed to occupy any one position (space) in the lattice at any given time. Therefore,

since particles can’t occupy the same position, all positions in the gas will be occupied at all times.

Since the particles are defined as objects, self-containing all their information, the one dimensional

gas can simply be defined as a one dimensional list. However, in the interest of optimizing and allowing

the model to be flexible and easily expanded, the gas was defined as a new class inheriting from the list

class. Defining the gas as a new class offered several advantages. First, this new Gas class is specifically

defined as a list of individual and separate particle objects. Secondly, defining a new class allowed us

to give the gas additional properties, such as temperature, and allows these additional properties to be

easily changed or expanded. Lastly, the particle movement algorithm, energy calculation algorithm,

decoherence algorithm, and other gas property algorithms can be defined as methods (functions) of this

new class. Some pseudo-code for defining this new gas class is shown below.
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Algorithm 3 Defining Gas Class

procedure CREATE CLASS GAS(inherits from list)
function CLASS CONSTRUCTOR(self, length, Temperature)

self=LIST(length)
for i in self

state=RANDOM NUMBER(-1 or 1)
self[i]=PARTICLE(i,i,state)

end for
self.Temperature=Temperature . Defines temperature of gas

end function
function INDEXES(self) . Returns list of particle indexes

for p in self return p.index
end for

end function
function POSITIONS(self) . Returns list of particle Positions

for p in self return p.positions
end for

end function
function STATES(self) . Returns list of particle states

for p in self return p.state
end for

end function
function PAIRINGS(self) . Returns list of particle pairings

for p in self return p.pairing
end for

end function
function BELL STATES(self) . Returns list of particle bell states

for p in self return p.bell state
end for

end function
function BELL STATE TIMES(self) . Returns list of particle bell state times

for p in self return p.bell state times
end for

end function
end procedure
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3.3 Movement Algorithm: Temperature Dependent Particle Diffusion

An important part of our model is the dynamic movement or diffusion of the particles in the gas. It

is integral that the particles move within the gas in a manner consistent with temperature and natural

gas diffusion. Therefore, at higher temperatures the particles must have higher average velocities and

will thus move further on average. To accomplish this we generate the velocity of each particle with a

Gaussian random number generator. The mean of this Gaussian random number generator is produced

by the function:

µ = vmax

(
1− e

−T
Tm

)
(33)

where vmax is the length of the one dimensional gas, T is the temperature of the gas, and Tm is the

temperature at which the mean will reach (1 − 1
e )vmax. To also allow for the standard deviation of the

Gaussian random number generator to increase with temperature, the standard deviation is given by:

σ =
1

2
µ (34)

The random diffusion of particles is executed as follows. First, a new empty gas is created. Because

the particle velocities are random, several particles can try to move to the same position in the gas at

once, which is not allowed. Therefore, each particle must be moved one at a time. Thus, to actually

move the particles, the original gas is iterated through, from one end to the other. Each particle in the

original gas is given a random velocity, generated by the Gaussian random number generator, and a

random direction, 50% chance to move left or right. Then, considering periodic boundary conditions (if

the particles velocity and direction would move it passed the end of the gas, it moves back around to the

other side), the position in the gas which the particle is to move is examined. If the position is empty, the

particle is moved there (the position in the new gas is filled by the particle). If the position is filled, then

the next closest position is examined (as if the particle now had a velocity one less than the one randomly

assigned). This process is continued, moving one step closer to the particles original position, until the

particle is moved to a new position. If all positions between the original desired movement position and

the particle’s original position are full, the particle’s original position is examined. If another particle

has not moved into the particle’s original position, the particle stays there, not moving for this iteration.

However, if a another particle has moved into the particle’s original position, the gas is searched for an

22



empty position and the particle is moved there instead. Finally, once all particles are moved, the original

gas is reset so that it is the same as the new gas. The pseudo-code describing the movement algorithm is

quite long. Therefore, in interest of preserving continuity in the text, the pseudo-code for the movement

algorithm is given in Appendix A.1. The movement function was written as a method (function) of the

gas class.

3.4 Thermodynamical Quantities of the Gas: Energy, Net Spin, Entanglement Density,
and Correlation Function

3.4.1 Energy

To determine how the local bell state projection will effect the thermodynamical properties of the gas,

energy and other thermodynamical properties must be defined and calculated. As for the energy of the

gas, it depends on the states of the particles within it, specifically how the states of adjacent particles are

arranged. In a similar manner to the Ising Model, we defined adjacent particles in aligned states (both

spin up or spin down) to be favorable and adjacent particles in anti-aligned states (one spin up and the

other spin down) to be unfavorable. Therefore, adjacent aligned states will lower the energy by one unit

and adjacent anti-aligned states will raise the energy by one unit. This energy model only accounts for

particles in either spin up or spin down states however, but particles can also exist in Bell states. Since

particles in Bell states exist in a perfect 50/50 superposition of a spin up and spin down states, a particle

in a Bell state is neither aligned or anti-aligned with an adjacent particle, no matter if the particle is in a

spin up, spin down, or Bell state. Therefore, we defined a particle in a bell state to not contribute to the

energy of the system (has an energy contribution of 0). Since the energy of the system is defined by the

alignment or anti-alignment of adjacent particles, we chose to represent the states as follows: spin up as

+1, spin down as -1, and any bell state as 0. Taking this into account, the energy of the entire system can

be defined as:

U = −ε
N∑
i=1

sisi+1 (35)

where ε is the unit of energy (ε=1 for simplicity), N is the length of the gas, and si is the state of the

ith particle. It is important to note that because of periodic boundry conditions the last term in the sum,

sNsN+1 = sNs0. Pseudo-code utilizing Eq. 35 to calculate the energy of the gas is shown below. We

wrote the energy calculation as a method (function) of the gas class.
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Algorithm 4 Energy Calculation

function ENERGY(self) . self is the gas
E=0 . Start energy sum at zero
for i in self do

E=0
if i=LENGTH(self) then . takes periodic boundary conditions into account

E=E+self[0].state*self[i].state . Add last term to energy sum
else

E=E+self[i].state*self[i+1].state . Add ith term to running sum
end if

end for
return (-1)*E

end function

3.4.2 Net Spin

In addition to the energy of the system, we also wished to calculate the net spin or total spin of the

system. The net spin of the system is simply defined as a sum of the spin states of the system. Therefore,

a positive net spin indicates that the gas contains a majority of particles in a spin up state while a negative

net spin indicates that the gas contains a majority of particles in a spin down state. As in the energy,

particles in a Bell state do not contribute to the net spin. Therefore, the net spin, NS, of the system can

be defined as:

NS =
N∑
i=0

si (36)

Pseudo-code for calculating the net spin of the gas according to Eq. 36 is shown below. Just as energy,

the net spin calculation was defined as a method of the Gas class.

Algorithm 5 Net Spin Calculation

function NET SPIN(self) . self is the gas
net spin=0 . Begin net spin sum at zero
for i in self do

net spin=net spin+self[i].state . Add ith term to net spin sum
end for
return net spin

end function
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3.4.3 Entanglement Density

Another quantity of the gas which we wished to calculate and examine was the entanglement density.

The entanglement density is defined as the density of entangled states (bell states) in the gas. Therefore,

the entanglement density, ED, of the gas can be defined as:

ED =

∑
sbs
N

(37)

where sbs = 1 if a particle is in a Bell state and sbs = 0 if a particle is in either a spin up or spin down

state. N is the number of particles (length) of the gas. Pseudo-code for calculating the entanglement

density of the gas is shown below. The function was also written as a method of the Gas class.

Algorithm 6 Calculating Entanglement Density

function ENTANGLEMENT DENSITY(self) . self is the gas
count=0 . Bell state count, initially zero
for i in self do

if self[i].pairing does not equal None then . Check if particle is in Bell state
count=count+1 . If in Bell state add 1 to Bell state count

end if
end for
return count/LENGTH(self) . Return Bell state sum divided by number of particles

end function

3.4.4 Correlation Function

The last thermodynamical quantity which we wished to investigate was the correlation function of the

gas. The correlation function measures how correlated two particles states are when separated by a

distance r. Therefore, the correlation function is a function of particle separation. The value of the

correlation function at a specific particle separation distance, r, is given by:

c(r) =

∑
sisj

2N
where, sisj =

{
1 : i = j
−1 : i 6= j

(38)

where the particles with states si and sj are separated by distance r and N is the number of particles

in the gas. In the model, the correlation function was calculated for separation distances from 1 to half

the length of the gas and was defined as a method (function) of the Gas class. The pseudo-code for

calculating the correlation function is somewhat long so it has been included in Appendix A.2.
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3.5 The Interactions

Investigating the thermodynamical effects of a local Bell state projection interaction in a one dimensional

spin gas is the main purpose of this model. However, to quantify the nature of these effects a baseline

interaction was included. This baseline interaction is the same Ising spin flip interaction used in the

Metropolis algorithm investigation of the Ising Model described in [6].

3.5.1 Baseline Interaction

The baseline interaction is the same as that used to simulate the Ising model using the Metropolis algo-

rithm [6]. Since no particles in the gas are in a Bell state initially, an interaction that is only concerned

with spin flips can be applied. The only difference between the baseline and Ising methods is that parti-

cles move in the baseline model in contrast to the stationary lattice of the Ising model. The interaction

works as follows: Pick a random particle. Calculate the energy difference that would result if the par-

ticle’s spin state is flipped. If flipping the particles spin results in a lower energy or no energy change,

then flip the particle’s spin state. If flipping the particle’s spin state would result in an increase in energy,

then randomly decide to flip the particle’s spin state based on the thermal probability given by Eq. 32.

Pseudo-code for the baseline interaction is given below. The baseline interaction was written as a method

of the Gas class.

Algorithm 7 Baseline Interaction
function BASELINE INTERACTION(self) . self is the gas

T=self.Temperature . set temperature to that of gas
length=LENGTH(self) . length of gas
i=RANDOM INTEGER(0 to length) . pick random particle (by index in gas)
if i=length then . Take periodic boundary conditions on right end into account

Ei=(-1)*((self[i-1].state*self[i].state)+(self[i].state*self[0].state)) . Initial local energy before
spin flip

Eflip=(-1)*((self[i-1].state*((-1)*self[i].state))+(((-1)*self[i].state)*self[0].state)) . Local
energy after spin flip

dE = Eflip - Ei . Energy difference of spin flip.
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else if i=0 then . Take periodic boundary condition on left end into account
Ei=(-1)*((self[length].state*self[i].state)+(self[i].state*self[i+1].state)) . Initial local energy

before spin flip
Eflip=(-1)*((self[length].state*((-1)*self[i].state))+(((-1)*self[i].state)*self[i+1].state)) .

Local energy after spin flip
dE = Eflip - Ei . Energy difference of spin flip.

else
Ei=(-1)*((self[i-1].state*self[i].state)+(self[i].state*self[i+1].state)) . Initial local energy

before spin flip
Eflip=(-1)*((self[i-1].state*((-1)*self[i].state))+(((-1)*self[i].state)*self[i+1].state)) . Local

energy after spin flip
dE = Eflip - Ei . Energy difference of spin flip.

end if
probability=RANDOM NUMBER(between 0 and 1)
if dE ≤ 0 then . spin flip lowers or does not change energy

self[i].state=self[i].state*(-1)
else if probability < EXP((-1*dE)/T) then . If spin flip increases energy flip with probability

given by Eq. 32
self[i].state=self[i].state*(-1)

end if
end function

3.5.2 The Bell State Projection Interaction

The model is designed to study the thermodynamical effects of a local Bell state projection interaction

(the same interaction involved in quantum teleportation and pair swapping). A local Bell state projection

interaction is especially interesting because it is a local interaction which can have long range effects

(quantum teleportation). Thus, the Bell state projection interaction is much more complicated than the

baseline interaction previously described. When two particles are involved in a local Bell state interac-

tion, three separate situations can occur. The first occurs when the two particles are in a simple spin up or

spin down state. In this case, the two particles will be projected into one of the four Bell states given in

Eq. 2. Since neither of the particles is part of an EPR pair, no teleportations will occur. The second situ-

ation occurs when one of the two particles involved in the interaction is part of an EPR pair. In this case,

the two particles involved in the interaction are projected into one of the four Bell states and the state of

the non-paired particle (or a phase shift of the state) is transfered to the particle previously in an EPR pair

(this particle is not involved in the local interaction and can reside at any location within the gas). This
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transfer of quantum state follows the quantum teleportation scheme described in section 2.1.2. The third

situation occurs when both particles involved in the Bell state projection are part of separate EPR pairs.

In this case, a pair swapping will occur in the same manner described in section 2.1.3. Each specific

case must be addressed separately within the model. The interaction is executed within the model by

first randomly selecting a particle within the gas. Then the interaction is executed on this random (ith)

particle and the particle to the right (i+1). The states in which the two particles reside determine which

case will be addressed and executed.

The first case is the simplest. In this case, both particles involved in the interaction reside in a simple

spin up or spin down state (neither particle is part of an entanged pair). Thus, the Bell state projection

interaction will project the two particles into one of the four Bell states given in Eq. 2, resulting in

the entanglement of the particles in an EPR pair. The specific Bell state into which the particles are

projected is random and equally likely (25% chance for each Bell state). However, the occurrence of the

interaction is dependent on the energy change it will create. If the interaction will lower the energy of

the gas or leave it unchanged, then the interaction will occur. However, if the energy will be increased by

the interaction, the interaction will randomly occur, where the occurrence probability is weighted by the

Boltzmann factor given in Eq. 32. Therefore, the change in energy evoked by the interaction must first

be calculated before the interaction can be executed. Since a particle in a Bell state does not contribute to

the energy of the system (energy of zero), the local energy contribution of the particles to the system will

be zero. Thus, the change in energy is given by the local energy contribution of the particles before the

interaction. If the position of the randomly selected particle is given by i (thus the interaction will occur

on particles i and i+1), the energy difference created when two non entangled particles are projected into

a bell state is given by,

∆E = si−1si + sisi+1 + si+1si+2 (39)

where sj is the state of the jth particle in the gas. Some pseudo-code for calculating the energy difference

according to Eq. 39 is given below.

Therefore, if ∆E, given by Eq. 39 or Algorithm 8, is less than or equal to zero the interaction will be

executed and the particles will be projected into an entangled Bell state. If ∆E is greater than zero the

interaction will randomly occur weighted by a Boltzmann factor for the transition, Eq. 32.
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Algorithm 8 Energy Difference

function ENERGY DIFFERENCE(self, i) . self is the gas and i is the index of the randomly chosen
particle

Ediff=self[i-1].state*self[i].state+self[i].state*self[i+1].state+self[i+1].state*self[i+2].state
return Ediff

end function

The second case, where one particle is part of an EPR pair and the other is in a spin up or down

state, is the most complicated. This case is the most complicated because the state (or phase shift of

the state) of the un-entangled particle can be transmitted across the gas. Since the Bell state projection

interaction acting on the gas is the same interaction involved in quantum teleportation, the transmission

of states across the gas, which occurs in this second case, will follow the quantum teleportation scheme

described in section 2.1.2. However, since the state to be transmitted is a simple spin up or spin down

state instead of a superposition of the two, the teleportation interaction will be simplified. Consider the

situation where one of the particles (particle 2) involved in the interaction is part of the singlet state,

Eq. 1, and the other (particle 1) is in a spin up state. The total wave function for the three particles is a

product state which can be expressed in terms of the Bell basis of particles 1 and 2. The expression of

this state can be accomplished by simply setting a=1 and b=0 in Eq. 6. Therefore, the total wave function

for these three particles is,∣∣∣Ψ(−)
23
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〉
|↓3〉

]
(40)

where particle 3 is the particle paired to particle 2 and not involved in the interaction. It can be shown

that the other seven possible situations (all other possible combinations of the four Bell states and a spin
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up or spin down particle) that can occur are,∣∣∣Ψ(−)
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(41)

Eq. 40 and Eq. 41 show that no matter what combination of EPR state and spin state occurs, the

end result of the Bell state projection will be a Bell state and a spin up or down particle. Eq. 40 and

Eq. 41 also show that there is an equal probability (25%) for the two particles in the interaction (particles

1 and 2) to be projected into any of the four Bell states. Lastly, these equations indicate that the final

state (spin up or spin down) of the entangled particle not involved in the interaction is dependent on the

initial Bell state of the EPR pair and the other non-entangled particle, as well as the final Bell state into

which the two interacting particles are projected. Thus, when the interacting particles are projected into

one of the four Bell states, the state or the flipped state of the non-entangled particle is teleported to the

noninteracting particle.

Just as in the first case, the occurrence of the interaction is dependent on the energy change it will

cause. However, only the local energy change is considered in the second case, not the energy change

that will result from the teleported state. The energy change due to the teleported state is not considered

because the resulting teleported state is random and depends on the result of the Bell state projection in-

teraction itself. Therefore, only the local energy change is considered, allowing ∆E to also be calculated

using Eq. 39 and Algorithm 3, however si or si+1 now equals zero instead of ±1. Just as in the first case

the interaction will occur if ∆E ≤ 0, otherwise the the interaction will randomly occur with a probability

given by Eq. 32. However, in the second case the teleportation of a random spin state will also occur.

Therefore, even if the Bell state projection interaction lowers the local energy, the random teleported

state may actually cause the total energy of the system to increase. Conversely, the teleported state may
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cause the total energy of the system to decrease even though the Bell state projection interaction causes

a local energy increase. In addition to this, the teleported state may supplement the net energy increase

or decrease resulting from the Bell state projection interaction.

The third and last case that can occur with the Bell state projection interaction is when both inter-

acting particles are in separate EPR pairs. In this case, the Bell state projection of the two particles will

cause a pair swapping to occur in the same manner described in section 2.1.3. As Eq. 10 shows, there is

an equal probability (25%) of the particles being projected into any of the four Bell States. Also, Eq. 10

shows that the Bell state into which the noninteracting particles are entangled is the same as the Bell

state into which the interacting particles are projected by the interaction. Lastly, since all four particles

effected by the interaction will remain in Bell states (though different ones), the pair swapping will not

change the energy of the gas. Therefore, the interaction will always occur in this case. Since all three

of the above cases must be addressed separately in the interaction code, the code for the interaction is

quite involved and lengthy. Therefore, the pseudo-code for the Bell state projection interaction has been

included in Appendix A.3.

3.5.3 Quantum Decoherence Interaction

Since the central interaction of the model is quantum mechanical in nature, the model also includes a

simplified version of a quantum decoherence interaction as well. This quantum decoherence simulates

an interaction between the gas and the environment which causes the quantum Bell states in the gas to

decohere to the more classical spin up and spin down states. This quantum dechoerence also mitigates

an inherent problem of the interaction, over time the Bell state projection interaction will project all the

particles within the gas into Bell states. The decoherence interaction mitigates this effect by devolving

some of the Bell states within the gas back to spin up and spin down states. The decoherence interaction

operates on the amount of time a particle has resided in a Bell state. The probabiliy that the environmental

interaction will decohere a Bell state into spin up and spin down states is dependent on the time the

particles have been in the Bell state. The decoherence probability is given by,

Pd = 1− e−t/τ (42)
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where t is the time in which the particles have been in the Bell state, and τ is the characteristic decoher-

ence time. When t = τ there is a 1− e−1 ≈ 63% probability that the environment interaction will cause

the bell state to decohere. For small τ values the Bell states will almost immediately decohere back to

spin up or down states, while large τ values will cause almost no decoherence to occur. When Bell states

do decohere, they will decohere into the spin up and spin down states consistent with the Bell state in

which the particles reside. For example, if two particles residing in the
∣∣∣Ψ(+)

12

〉
state, given by∣∣∣Ψ(+)

12

〉
=

1√
2

(|↑1↓2〉+ |↓1↑2〉) ,

decohere into spin up and spin down states, the possible results are

|ψ1〉 = |↑1〉 and |ψ2〉 = |↓2〉

or

|ψ1〉 = |↓1〉 and |ψ2〉 = |↑2〉 .

A similar result will follow for the
∣∣∣Ψ(−)

12

〉
state. The result for the

∣∣∣Φ(+)
12

〉
and

∣∣∣Φ(−)
12

〉
states would be

both spin up or both spin down instead of a combination of the two. The pseudo-code for the decoherence

interaction is somewhat long so it has been included in Appendix A.4 for convenience. The decoherence

function was defined as a method of the Gas class.

3.6 Model Execution: Temperature Iteration

In order to adequately examine the effects of a Bell state projection interaction on the thermodynamical

quantities of the gas, the model must iterate over temperature. To iterate over a temperature range, the

gas is iterated for a defined number of iteration steps at each temperature value within the range. This

iteration, at each temperature value, allows the most likely states for each temperature to be generated.

The thermodynamical quantities (energy, net spin, and entanglement density) are calculated after each

iteration step and then averaged to determine a value for each temperature. The resulting gas from each

iteration step is passed as the initial gas for the next iteration step. Similarly, the resulting gas from each

temperature step is passed as the initial gas to the next temperature value by changing the resulting gas’s

temperature to the next value and repeating the iteration process at the new temperature. Passing the re-

sulting gas from one temperature value to the next gives the calculated thermodynamical quantities more
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continuity with respect to temperature as the initial gas will reside in a very likely state configuration.

The iteration functions at constant temperature for both the baseline and Bell state projection interaction

are shown below. The only difference between the baseline and Bell state projection iteration algorithms

is the specific interactions that are executed.

Algorithm 9 Constant Temperature Iteration

function INTERACTION ITERATION(N, gas, T m, tau) . N is the number of iterations,
T m is the Tm value from Eq. 33 needed for movement algorithm, tau is the characteristic time of the
decoherence interaction

I=LIST(length N) . create time step array
E=LIST(length N) . create energy array
N S=LIST(length N) . create net spin array
Ent Dens=LIST(length N) . create entanglement density array
for i in RANGE(0 to N) do

gas.interaction() . execute interaction, gas.baseline() for baseline or
gas.bell state projection() and gas.decoherence() for Bell state projection interaction

gas.move(T m) . execute movement algorithm
I[i]=i
E[i]=gas.Energy() . calculate energy using energy function
N S[i]=gas.Net Spin() . calculate net spin using net spin function
Ent Dens[i]=gas.Entanglement Density() . calculate entanglement density using

entanglement density function
end for
return gas, I, E, N S, Ent Dens

end function

Constant temperature iteration is also useful for examining the correlation function of the gas at

various temperatures. Therefore, to observe the effects of both the baseline and Bell state projection

interactions on the correlation function, the gas is iterated over a defined number of steps and then the

correlation function is calculated. This can then be repeated for several different temperatures to observe

the temperature effects on the correlation function.

The temperature iteration allows the temperature dependence of the thermodynamical quantities to

be observed for both interactions, baseline and Bell state projection. Pseudo-code for the Bell state

projection and quantum decoherence temperature iteration is shown below.
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Algorithm 10 Bell State Projection and Quantum Decoherence Temperature Iteration

function TEMPERATURE ITERATION(T i, T f, TN, N, size, T m, tau) . T i is initial
temperature, T f is final temperature, TN is the number of temperature values between T i and T f, N
is number of time iteration steps, size is size of gas, T m is Tm for movement algorithm, and tau is τ
for decoherence interaction

Temp=LIST(start=T i, stop=T f, step=step) . create temperature array
Energy=LIST(length TN) . create energy array
Net Spin=LIST(length TN) . create net spin array
Ent Dens=LIST(length TN) . create entanglement density array
gas in=GAS(size, Temp[0]) . create gas
for i in Temp do

gas in.Temperature=Temp[i] . set new temperature value
gas out,I,E,NS,ED=INTERACTION ITERATION(N, gas in, T m, tau) . run iteration function
Energy[i]=AVERAGE(E)
Net Spin[i]=AVERAGE(NS)
Ent Dens[i]=AVERAGE(ED)
gas in=gas out

end for
return Temp, Energy, Net Spin, Ent Dens

end function

The baseline temperature iteration algorithm has not been included because it is essentially the same

as the bell state projection temperature iteration shown above. The only difference between the two

temperature iteration functions is that the Baseline Iteration function is used instead of the Bell state

projection interaction Iteration function.

4 Results and Analysis

The Ising inspired model of a one-dimensional dynamic spin system was utilized to investigate the effects

of a local Bell state projection interaction. The model specifically investigates how the long range effects

of a local Bell state projection interaction changes the thermodynamical properties of a one dimensional

gas. The results from the Bell state projection interaction are compared with a baseline dynamic Ising

interaction from which the model was based. This baseline comparison allows the specific effects of

the Bell state projection interaction to be differentiated from the basic effects of the Ising model. The

model investigates the gas’s energy, net spin, entanglement density, and correlation function with respect

to temperature. Since kB = 1 and ε = 1 in the model, all temperature values are given in units of ε, the
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neighboring particle interaction energy specified in Eq. 35.

4.1 Temperature Iteration Results

The thermodynamical quantities of energy, net spin, and entanglement density were investigated through

temperature iteration. Temperature iteration allows each thermodynamical quantity’s functional depen-

dence on temperature to be determined. We examined how this temperature dependence differed between

the baseline and Bell state projection/decoherence interactions. the high temperature (T & 5) investiga-

tion yielded smooth predictably near zero results for energy and net spin when executed for both inter-

actions. Therefore, the high temperature iteration results have been omitted as they do not contribute to

the discussion or add anymore relevant information. The temperature iterations which do yield relevant

results were conducted over a temperature range from T = 5ε to T = 2ε. The temperature range was

divided into 1,150 evenly spaced temperature steps, where the model gas was iterated 10,000 times at

each individual temperature step. A gas of length 100 was used as well as a Tm = 1000ε value for the

movement algorithm and a τ = 200 value for the decoherence interaction. The energy results for both

the baseline and Bell state projection interactions are shown in Figure 2.

Figure 2: Energy vs Temperature Results.
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As can be seen in Figure 2, there is a difference between the baseline and Bell state projection Ener-

gies. Both energy functions are smooth and seem to follow a functionality similar to the (2cosh(βε))N

functionality of the one-dimensional Ising model. However, the Bell state projection energy has a steeper

curvature and reaches a higher energy. The difference between the energy functions is the result of the

Bell state projection interaction.

Since Temperature iteration produces the gas’s energy as a function of temperature, Eq. 19 can be

utilized to determine the heat capacity at constant volume of the gas. However, since the energy vs

temperature functions, Figure 2, are somewhat noisy, taking derivatives yields undefinable results. So

the heat capacity was calculated using an equivalent method given in Eq. 43.

CV =
1

T 2

(〈
E2
〉
− 〈E〉2

)
(43)

where
〈
E2
〉

is the average of the energy squared and 〈E〉 is the average energy. The heat capacities as

functions of temperature were then determined by using Eq 43. The heat capacities for both the baseline

and Bell state projection interactions are shown together in Figure 3 and separately in Figure 4.

Figure 3: Heat Capacity vs Temperature Results. The units of heat capacity are given in
energy(ε)/temperature(ε).
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(a) Heat Capacity for Baseline Interaction (b) Heat Capacity for Bell State Projection interaction

Figure 4: Heat capacity vs temperature for baseline and Bell state projection interactions. The units of
heat capacity are given in energy(ε)/temperature(ε).

Just as with the energy, there is a difference between the magnitude and curvature of the baseline and

Bell state projection heat capacities. As can be seen in Figure 4a, the baseline heat capacity is relatively

smooth indicating that no phase change occurs in the baseline model. Just like the baseline model, the

Bell state projection heat capacity, Figure 4b, is relatively smooth. However, the Bell state projection

heat capacity has a greater curvature leading up to its maximum. Also, even though Figure 4b is smooth

it does somewhat resemble the non-smooth cusp of universal phase transitions which follow the function,

Cv ∝ |Tc − T |−α (44)

where Tc is the temperature of the phase transition, T is the temperature, and α is a universality pa-

rameter. Changing the τ value or investigating the model in two dimensions may cause the Bell state

projection heat capacity to develop a phase transition following the behavior of Eq. 44.

The net spin results for both the baseline and Bell state projection interactions are shown in Figure 5.

As can be seen in Figure 5, the net spin for both the baseline and Bell state projection interactions is

very noisy and fluctuates greatly at lower temperatures. This indicates that the system never chooses a

preferred spin direction. This lack of a dominating spin direction after a critical temperature indicates

that in both interactions there is no phase change in the total spin of the system. This lack of a phase

change is also apparent in the smooth heat capacity functions.
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(a) Net Spin for Baseline Interaction (b) Net Spin for Bell State Projection Interactions

Figure 5: Net spin vs temperature for baseline and Bell state projection interactions. The net spin is given
in units of s, the magnitude of the spin of a single particle.

Finally the entanglement density vs temperature functions are shown in Figure 6. As can be seen in

Figure 6, the entanglement density decreases with decreasing temperature until reaching a value of zero

near T = 0.7ε. This indicates that the decoherence interaction gains increasing dominance over the Bell

state projection interaction as temperature decreases. Different τ values will need to be investigated to

see if this general trend persists or if it is just a result of this specific τ value.
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Figure 6: Entanglement Density vs Temperature Results.

4.2 Correlation Function Results

In addition to the energy, heat capacity, net spin, and entanglement density, the correlation function of

the gas was also investigated. The correlation function was determined at several different temperatures

for both the baseline interaction and the Bell state projection interaction. A gas of length 100 was used

with values of Tm = 1000ε and τ = 200. The correlation function was calculated after 1000 iterations.

The correlation functions for temperature values of T = 0.001ε ≈ 0ε, T = 0.2ε, T = 0.5ε, and T = 1ε,

are shown in Figure 7. Figure 7 shows some significant differences between the baseline interaction

and Bell state projection interaction correlation functions. First, at all four temperatures, the Bell state

correlation function has more peaks and troughs than the baseline correlation function. Second, and most

importantly, these peaks and troughs seem to occur in a periodic manner. These periodic peaks in the

Bell state correlation function are almost certainly a result of the Bell state projection interaction and

the quantum teleportations it can cause. In the near future, we will preform a Fourier analysis of the

correlation functions to determine if the periodic nature of the correlation function has functional form

or is just random fluctuation. Other τ values will also be investigated in the future to see if this periodic

nature persists.
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(a) T=0.001 (b) T=0.2

(c) T=0.5 (d) T=1

Figure 7: Low temperature correlation functions for temperatures of T = 0.001ε, T = 0.2ε, T = 0.5ε,
and T = 1ε. The separation distance is given by difference in lattice position.
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The periodic nature of the Bell state correlation function seen in Figure 7 does not seem to continue,

or is at least not as apparent, at higher temperatures. The correlation functions for temperatures of

T = 5ε, T = 10ε, T = 20ε, and T = 50ε are shown in Figure 8. Though the higher temperature

(a) T=5 (b) T=10

(c) T=20 (d) T=50

Figure 8: High temperature correlation functions for temperatures of T = 5ε, T = 10ε, T = 20ε, and
T = 50ε. The separation distance is given by difference in lattice position.

correlation functions seem to have no significant periodic nature, the Bell state correlation function for

T = 5ε, Figure 8a, still seems to exhibit some of the periodic nature seen in Figure 7. Otherwise, the

higher temperature correlation functions seem to exhibit a more random than periodic nature. However,

there is another difference between the baseline and Bell state correlation functions at higher temperature.

The Bell state correlation function in all four temperatures in Figure 8 are less correlated than the baseline

correlation function. Other τ values will be investigated in the future to see if the Bell state correlation
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function remains less correlated in all cases.

5 Discussion

The Ising inspired model of a one dimensional dynamic spin system was used to investigate the non-

local effects of a local Bell state projection interaction on the thermodynamical quantities of the system.

Comparing the thermodynamical quantities that resulted from the Bell state projection interaction with

those that resulted from the baseline Ising interaction allowed the non-local effects to be identified. The

energy that resulted from the Bell state projection interaction generally followed the same functionality

as that of the baseline interaction, however it covered a greater range and had a greater curvature than

the baseline energy. This difference in the curvature and magnitude is a result of the non-local and

random effects of the Bell state projection interaction. Similarly, the heat capacity results also presented

a difference in magnitude and curvature with the Bell state projection heat capacity displaying a higher

magnitude. Also, The Bell state projection heat capacity shares some similarities in functionality to

the universal power law heat capacity proportionality seen when a phase change occurs. Even though

the Bell state projection heat capacity never develops a non-smooth cusp, which would indicate a phase

transition, it does resemble the tent shape followed by heat capacities proportional to Eq. 44. Therefore,

even though no phase transition occurred in either of the models, we expect one to develop if the model is

studied in two dimensions. Also, the differing functionality between the two heat capacities may indicate

that the natures of the phase transitions in two dimensions may differ as well. A two dimensional model

will be studied in the future.

Even though the Bell state projection model produced energy and heat capacity results greater in

magnitude and curvature, there is also an issue with the way in which the energy is defined within the

model. The Ising like energy definition of aligned spins being favorable (lower energy) and unaligned

spins being unfavorable (higher energy) is adequate when the particles in the lattice do not move. How-

ever, since the particles in the gas can move, the relative alignment of adjacent particles will change every

time the particles move. Thus, just executing the movement algorithm will cause the energy of the gas

to change. These movement effects are suppressed at low temperatures since the particles do not move

as much or at all. However, at higher temperatures the particles do move, sometimes significantly, and
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the energy change do to the movement may be suppressing any high temperature effects. A solution to

this problem would be to examine quenched (stationary) systems or redefine how the energy of the gas is

determined. The most intuitive manner in which to redefine the energy is to allow some quantum states

to be more favorable (lower energy) than others. One way of modeling this is to put the gas in a magnetic

field so that either the spin up or spin down state is favored more than the other.

As for the net spin results, they were too inconsistent to provide any insight on how the Bell state

projection interaction, or baseline interaction, effected the net spin of the system. All of the net spin

results fluctuated too randomly to allow any general trend to be determined. However, this lack of a

general trend in the net spin indicates that the system never undergoes an abrupt transition in total spin

or magnetization. The entanglement density results however are quantifiable, though there are no Bell

states in the baseline interaction case so there are no baseline results for comparison. However, the

entanglement density results do provide an insight into the interplay between the Bell state projection

interaction and the decoherence interaction. The entanglement density indicates which is dominating, the

Bell state if the entanglement density exponentially approaches one or decoherence if the entanglement

density remains low (near zero). For the τ value used, it is apparent that the decoherence interaction

dominates increasingly with lowering temperature. The effects of varying τ values on the general trend

of the entanglement density still need to be investigated and will be done in the future.

The correlation function results displayed a difference between the Bell state projection interaction

and the baseline interaction as well. As discussed in section 4.2, the correlation function which resulted

from the Bell state interaction displayed periodic tenancies at low temperatures, where the baseline cor-

relation function showed little to no periodic tendencies at the same temperatures. The periodic nature

of the correlation function will be investigated in the future by applying a Fourier transform to the corre-

lation function to determine the frequency components of the function and their respective magnitudes.

This future Fourier analysis will be conducted for the correlation function at various temperatures and

lengths to determine the frequency components dependence on both parameters. By conducting a Fourier

analysis of the correlation function we will be able to determine if the apparent periodic nature is truly a

result of the Bell state projection interaction or some intrinsic function of the model.

In addition to the future investigation of the correlation function and the refinement of the energy
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and its involvement in the interactions, we wish to expand the model in several other regards. Firstly,

we will expand the model into two dimensions allowing a more realistic gas to be modeled. The two

dimensional model will investigate both quenched (stationary) and dynamic systems. Secondly, we wish

to include a more involved and realistic decoherence model dependent of the particle’s phase. Lastly, we

hope the model can come to include particles residing in a superposition of spin up and down states, not

just residing in one of the two. We believe these refinements to the model will further distance the Bell

state projection result from those of the baseline interaction.

6 Conclusions

The Ising inspired model of a one-dimensional dynamic spin system was utilized to investigate the ther-

modynamic effects of a Bell state projection interaction on the system. Since a local Bell state projection

interaction can have long range effects through quantum teleportation, the model specifically worked to

isolate the thermodynamical effects that would result from this local, nonlocal interaction. In order to

isolate these effects, the thermodynamical results of the Bell state projection interaction were compared

to a baseline Ising interaction. The thermodynamical quantiles investigated were the gas’s energy, heat

capacity, net spin, entanglement density, and correlation function. The resulting temperature dependent

energies and heat capacities, from both the Bell state and baseline interactions, had differing curvatures

and magnitudes. Also, the Bell state projection interaction’s heat capacity functionally differed from the

baseline heat capacity as it more closely resembled the universal phase change proportionality function

of Eq. 44. These differences indicate that the Bell state projection interaction does create some change

in the thermodynamic quantities of energy and heat capacity. The temperature dependent net spin results

included too much random fluctuation to determine a general trend in functionality or magnitude. How-

ever, this lack of a general trend indicates that both the Bell state projection and baseline models never

experienced a defined transition in the total spin of the system. The temperature dependent entanglement

density results did follow a general trend however. When the decoherence interaction is neglected (very

high τ values), the entanglement density approaches a value of one in an exponential manner. This is

an inherent result of the Bell state projection interaction. However, when the decoherence interaction

is involved, it mitigates these effects of the Bell state projection interaction and keeps the entanglement
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density low. Overall, the entanglement density represents the interplay of the Bell state projection and

decoherence interactions. The Correlation functions resulting from the Bell state and baseline interac-

tions displayed a significant difference. At low temperatures, the Bell state correlation function generally

displayed a periodic nature which was much less present or not present at all in the baseline correlation

function. At higher temperatures, the periodic nature of the Bell state correlation function becomes non-

apparent , however the Bell state correlation function becomes much less correlated (lower magnitude)

than the baseline correlation function. Overall, the acquired results indicate that the Bell state projection

interaction does effect the thermodynamics of the one dimensional spin system.

The periodic nature of the correlation functions will be investigated in the future through Fourier

analysis. We are also in the process of expanding the model into two dimensions, as well as possibly

including particles which can reside in a super imposed state of spin up and down. In addition to this,

varying τ values in the decoherence interaction will be investigated to determine if varying τ values also

cause a variation in the thermodynamics of the system. In order to correct for the energy variation caused

by particle movement, stationary systems will be studied and the way in which the energy is defined will

be refined to be more complementary to particle movement. Also, the decoherence interaction will be

made more rigorous and realistic.

A Extended Pseudocode Blocks

Some of the pseudocode blocks defining the algorithms and execution of the model are quite long. There-

fore, in the interest of retaining fluidity in the written model description, the longer blocks of pseudocode

have been included in this appendix. These algorithms may reference previous algorithms defined earlier

in the paper.

A.1 The Movement Algorithm

The pseudocode for the movement algorithm is given below. The movement function was written as a

method (function) of the Gas class we defined. Therefore, the self argument just refers to the gas itself.
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Algorithm 11 Particle Movement
function MOVE(self,Tm) . Movement function, self is the gas and Tm is same value as in Eq. 33

new=GAS(length of self, self.Temperature) . Makes new empty gas
for i in new do

new[i]=PARTICLE(empty,none,none)
end for
vmax=length of self . Sets max velocity

for i in self do
moved=no . Sets variable to determined if each particle has been moved
number=RANDOM GAUSSIAN NUMBER(µ,σ) . Generates random number according to

random Gaussian distribution. µ and σ given by Eq. 33 and Eq. 34
velocity=INTEGER(number) . Sets velocity for each particle
if velocity > vmax then velocity=vmax . Makes sure velocity is not grater than vmax
end if
direction=RANDOM NUMBER(between 0 and 1)
if velocity=0 then

if new[i].index=empty then . Particle stays in same spot if other particle is not there
new[i]=self[i]

else
for k in new do . if Particles position is already taken search for empty Position

if new[k].index=empty
new[k]=self[i] then . move particle to empty position
Break

end if
end for

end if
else if direction > 0.5 then . move left

if i + velocity > length self then . Take periodic boundary conditions into account,
moving back to beginning of gas

for j in (velocity + i - LENGTH(self)) to 0 do . Search for empty position in beginning
of gas

if new[j].index=empty then
new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
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if moved=no then . if particle did not move periodically to other side of gas, desired
positions in beginning of gas were not available

for j in LENGTH(self) to i do . search closer positions
if new[j].index=empty then

new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
if moved=no then . Particle was not moved, no desired positions available

for k in new do . search for empty Position
if new[k].index=empty

new[k]=self[i] then . move particle to empty position
Break

end if
end for

end if
end if

else . Periodic boundary conditions not needed
for j in velocity + i to i do . search for empty position

if new[j].index=empty then
new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
if moved=no then . Particle was not moved, no desired positions available

for k in new do . search for empty Position
if new[k].index=empty

new[k]=self[i] then . move particle to empty position
Break

end if
end for

end if
end if
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else if direction <= 0.5 then . move left
if velocity > i then . Take periodic boundary conditions into account, moving particle

back to end of gas
for j in (LENGTH(self)+ i - velocity) to LENGTH(self) do . Search for empty position

in end of gas
if new[j].index=empty then

new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
if moved=no then . if particle did not move periodically to other side of gas, desired

positions in end of gas were not available
for j in 0 to i do . search closer positions

if new[j].index=empty then
new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
if moved=no then . Particle was not moved, no desired positions available

for k in new do . search for empty Position
if new[k].index=empty

new[k]=self[i] then . move particle to empty position
Break

end if
end for

end if
end if

else . Periodic boundary conditions not needed
for j in i - velocity to i do . search for empty position

if new[j].index=empty then
new[j]=self[i] . move particle to empty position if available
moved=yes . note that particle has been moved
Break

end if
end for
if moved=no then . Particle was not moved, no desired positions available

for k in new do . search for empty Position
if new[k].index=empty

new[k]=self[i] then . move particle to empty position
Break

end if
end for

end if
end if

end if
end for
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for i in self do self[i]=new[i] . Set original positions to the moved positions in the new gas
self[i].position=i . Set new positions of each particle

end for
end function

A.2 The Correlation Function

The Pseudocode for the correlation function is given below. The code calculates the correlation function

for separation distances from 1 to half the length of the gas. Just as the movement function, the correlation

function was defined as a method of the Gas class.

Algorithm 12 Correlation Function
function CORRELATION(self) . self is the gas

separation=ARRAY(length of half self) . Create separation array
for i in 1 to LENGTH(self)/2 do . Set values of separation array

separation[i]=i
end for
correlation=ARRAY(length of separation) . Create correlation function array
for i in separation do

cor=1 . Set correlation sum for each separation distance, initially zero
for j in self do . Loop through gas

if j - separation[i] < 0 then . Take periodic boundary conditions on left end into account
if self.state=self[LENGTH(self) + j - separation[i]].state then . Check correlation for

particle distance separation[i] to left
cor=cor+1 . Add to correlation if particles correlated

else
cor=cor-1 . Subtract from correlation if particles are not correlated

end if
if self.state=self[j + separation[i]].state then . Check correlation for particle distance

separation[i] to right
cor=cor+1 . Add to correlation if particles correlated

else
cor=cor-1 . Subtract from correlation if particles are not correlated

end if
else if j + separation[i] > LENGTH(self) then. Take periodic boundary conditions on right

end into account
if self.state=self[j - separation[i]].state then . Check correlation for particle distance

separation[i] to left
cor=cor+1 . Add to correlation if particles correlated
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else
cor=cor-1 . Subtract from correlation if particles are not correlated

end if
if self.state=self[j + separation[i] - LENGTH(self)].state then . Check correlation for

particle distance separation[i] to right
cor=cor+1 . Add to correlation if particles correlated

else
cor=cor-1 . Subtract from correlation if particles are not correlated

end if
else . No periodic boundary conditions needed

if self.state=self[j - separation[i]].state then . Check correlation for particle distance
separation[i] to left

cor=cor+1 . Add to correlation if particles correlated
else

cor=cor-1 . Subtract from correlation if particles are not correlated
end if
if self.state=self[j + separation[i]].state then . Check correlation for particle distance

separation[i] to right
cor=cor+1 . Add to correlation if particles correlated

else
cor=cor-1 . Subtract from correlation if particles are not correlated

end if
end if

end for
correlation[i]=cor/(2*LENGTH(self) . Divide each correlation term by 2N

end for
return separation, correlation

end function
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A.3 The Bell State Interaction Algorithm

The pseudo-code for the Bell state projection interaction is below. The function covers all three cases

described in section 3.5.2. The function was written as a method of the Gas class
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Algorithm 13 Bell State Projection Interaction

function BELL STATE PROJECTION INTERACTION(self) . self is the gas
i=RANDOM NUMBER(between 0 and gas length) . random interaction particle
particle=self[i]
if i=length of gas then

other=self[0] . periodic boundary conditions
else

other=self[i+1]
end if
DE=ENERGY DIFFERENCE(self, i) . Calculate energy difference from interaction
if particle.pairing=None and other.pairing=None then . Case1: both particles not paired

r=RANDOM NUMBER(between 0 and 1) . random Bell state chance
p=RANDOM NUMBER(between 0 and 1) . random interaction probability
if DE<=0 then

particle.state=0 . entangle particles
particle.bell state time=0
particle.pairing=other
other.state=0
other.bell state time=0
other.pairing=other
if r<=0.25 then

particle.bell state=1 . set random Bell state
other.bell state=1

else if r>0.25 and r¡=0.5 then
particle.bell state=2 . set random Bell state
other.bell state=2

else if r>0.5 and r¡=0.75 then
particle.bell state=3 . set random Bell state
other.bell state=3

else
particle.bell state=4 . set random Bell state
other.bell state=4

end if
else if p<EXP(-DE/self.Temperature) then

particle.state=0 . entangle particles
particle.bell state time=0
particle.pairing=other
other.state=0
other.bell state time=0
other.pairing=other
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if r<=0.25 then
particle.bell state=1 . set random Bell state
other.bell state=1

else if r>0.25 and r<=0.5 then
particle.bell state=2 . set random Bell state
other.bell state=2

else if r>0.5 and r<=0.75 then
particle.bell state=3 . set random Bell state
other.bell state=3

else
particle.bell state=4 . set random Bell state
other.bell state=4

end if
end if

else if (particle.paring! =None and other.pairing=None) or ((particle.paring=None and
other.pairing! =None) then . Case2

if particle.paring! =None then . particle is paired
partner=particle.pairing . set partner particle
state=other.state

else if other.paring! =None then . other is paired
partner=other.pairing . set partner particle
state=particle.state

end if
r=RANDOM NUMBER(between 0 and 1) . random Bell state chance
p=RANDOM NUMBER(between 0 and 1) . random interaction probability
if DE<=0 then

particle.state=0 . entangle particles
particle.bell state time=0
particle.pairing=other
other.state=0
other.bell state time=0
other.pairing=other
partner.bell state=None
partner.bell state time=None
partner.pairing=None
if r<=0.25 then

particle.bell state=1 . set random Bell state
other.bell state=1
if partner.bell state=1 or partner.bell state=2 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
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else if r>0.25 and r<=0.5 then
particle.bell state=2 . set random Bell state
other.bell state=2
if partner.bell state=1 or partner.bell state=2 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
else if r>0.5 and r<=0.75 then

particle.bell state=3 . set random Bell state
other.bell state=3
if partner.bell state=3 or partner.bell state=4 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
else

particle.bell state=4 . set random Bell state
other.bell state=4
if partner.bell state=3 or partner.bell state=4 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
end if

else if p<EXP(-DE/self.Temperature) then
particle.state=0 . entangle particles
particle.bell state time=0
particle.pairing=other
other.state=0
other.bell state time=0
other.pairing=other
partner.bell state=None
partner.bell state time=None
partner.pairing=None
if r<=0.25 then

particle.bell state=1 . set random Bell state
other.bell state=1
if partner.bell state=1 or partner.bell state=2 then . set partner state according to Bell

state result
partner.state=state
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else
partner.state=-1*state

end if
else if r>0.25 and r<=0.5 then

particle.bell state=2 . set random Bell state
other.bell state=2
if partner.bell state=1 or partner.bell state=2 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
else if r>0.5 and r<=0.75 then

particle.bell state=3 . set random Bell state
other.bell state=3
if partner.bell state=3 or partner.bell state=4 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
else

particle.bell state=4 . set random Bell state
other.bell state=4
if partner.bell state=3 or partner.bell state=4 then . set partner state according to Bell

state result
partner.state=state

else
partner.state=-1*state

end if
end if

end if
else if particle.paring! =None and other.pairing! =None then . Case3: both particles paired

partner1=particle.pairing . set partner1
partner2=other.pairing . set partner2
r=RANDOM NUMBER(between 0 and 1) . random Bell state chance
p=RANDOM NUMBER(between 0 and 1) . random interaction probability
particle.state=0 . entangle particles
particle.bell state time=0
particle.pairing=other
other.state=0
other.bell state time=0
other.pairing=other
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partner1.state=0 . entangle partners
partner1.bell state time=0
partner1.pairing=partner2
partner2.state=0
partner2.bell state time=0
partner2.pairing=partner1
if r<=0.25 then

particle.bell state=1 . set random Bell state
other.bell state=1
partner1.bell state=1
partner2.bell state=1

else if r>0.25 and r<=0.5 then
particle.bell state=2 . set random Bell state
other.bell state=2
partner1.bell state=2
partner2.bell state=2

else if r>0.5 and r<=0.75 then
particle.bell state=3 . set random Bell state
other.bell state=3
partner1.bell state=3
partner2.bell state=3

else
particle.bell state=4 . set random Bell state
other.bell state=4
partner1.bell state=4
partner2.bell state=4

end if
end if

end function
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A.4 Quantum Decoherence Algorithm

The pseudo-code for the quantum decoherence algorithm is below. This function executes the quantum

decoherence of the Bell states in the gas to spin up and spin down states according to the probability

given by Eq. 42. This function was written as a method of the Gas class.

Algorithm 14 Quantum Decoherence Interaction
function DECOHERENCE(self, tau) . self is the gas and tau is characteristic time

for i in self do
if self[i].paring does not equal None then . if particle is in Bell state

r=RANDOM NUMBER(between 0 and 1) . random chance
t=self[i].bell state time . time in bell state
if r<1-EXP((-1*t)/tau) then . Decohere according to probability of Eq. 42

p=RANDOM NUMBER(between 0 and 1) . result probability
if self[i].bell state=1 or self[i].bell state=2 then . in |Ψ+〉 or |Ψ−〉 states

if p<0.5 then . result 1
self[i].state=1 . spin up
self[i].bell state=None
self[i].bell state time=None
self[i].pairing.state=-1 . spin down
self[i].pairing.bell state=None
self[i].pairing.bell state time=None
self[i].pairing.pairing=None
self[i].pairing=None

else . result 2
self[i].state=-1 . spin down
self[i].bell state=None
self[i].bell state time=None
self[i].pairing.state=1 . spin up
self[i].pairing.bell state=None
self[i].pairing.bell state time=None
self[i].pairing.pairing=None
self[i].pairing=None

end if
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else if self[i].bell state=3 or self[i].bell state=4 then . in |Φ+〉 or |Φ−〉 states
if p<0.5 then . result 1

self[i].state=1 . spin up
self[i].bell state=None
self[i].bell state time=None
self[i].pairing.state=1 . spin up
self[i].pairing.bell state=None
self[i].pairing.bell state time=None
self[i].pairing.pairing=None
self[i].pairing=None

else . result 2
self[i].state=-1 . spin down
self[i].bell state=None
self[i].bell state time=None
self[i].pairing.state=-1 . spin down
self[i].pairing.bell state=None
self[i].pairing.bell state time=None
self[i].pairing.pairing=None
self[i].pairing=None

end if
end if

end if
end if

end for
for j in self do

if self[j].pairing does not equal None then . particle still in Bell state
self[j].bell state time+=1 . increase bell state time by 1

end if
end for

end function
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