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Abstract 
 
INVESTIGATION OF CONJUGATE HEAT TRANSFER IN FLUID-STRUCTURE 
INTERACTION MODELING USING OpenFOAM 
Andrew Joseph Brown 
 
Modern engineering problems are often comprised of highly interacting and 
complex systems.  Modeling of these systems is a difficult problem and involves 
many types of physics.  Traditional models often sought to only solve one type of 
physics and usually did not interact with other models.  Modern computing has 
allowed more and more interaction of these various models.  Commercially 
available software has been readily available as of late to solve complex fluid-
structure interaction problems, but none have effectively captured heat transfer 
across the fluid-structure boundary.  This project investigates the effectiveness of 
using the open source software OpenFOAM to effectively model this enhanced 
interaction.  Progress was made towards a functional solver, though there is still 
work needed in order to completely model conjugate heat transfer in a fluid-
structure interaction problem 
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Nomenclature 
 
Re = Reynold’s number 
µ = shear modulus 
ρ = density 
νf = kinematic viscosity 
νs = Poisson’s ratio 
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1 Introduction 
Fluid Structure Interaction (FSI) is the interaction between a fluid and 

structure.  When a fluid flows around a structure, that structure is deformed 

thereby changing the wetted area as well as the geometry.  As the structure is 

deformed, it changes how the fluid flows around it.  While this interaction can be 

negligible in some cases, low speed wind on a building, it can have very drastic 

effects in others such as aeroelastic failure where accurate modeling is critical.  

These interactions usually take one of two forms, steady and unsteady.  An 

unsteady interaction is characterized by structural deformation that does not 

remain in a stressed state, i.e. one that returns to its original position only to be 

deformed again. 

In recent years, FSI has become an important sub-field of numerical 

simulation.  Prior to this, their existed a wide range of finite element codes for 

structural problems and computational fluid dynamics codes for fluid flow 

problems.  Eventually, these codes were coupled to provide a solution which 

more accurately represents reality.  This joint solution has applications in 

numerous fields including aerospace, bio-medical, power generation, computer 

design, and civil engineering. 

1.1 FSI Methodology 

There are two methodologies for solving coupled FSI systems – the 

monolithic, and the partitioned approach.  The monolithic approach seeks to 

define a series of partial differential equations (PDEs) that govern the entire fluid 

and structural domain and then discretize the complete domain1.  While simple in 
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theory, this approach is difficult to actually implement due to the differing 

mathematical and numerical properties of the two domains1.  Because monolithic 

solvers solve for all variables simultaneously during a single time step, they can 

be more robust and can solve a wider variety of cases.  For identical reasons, 

they are also more computationally expensive and somewhat more difficult to 

code.   

The partitioned approach seeks to utilize existing fluid and structural 

codes and couple these codes at the interface of the two domains.  The fluid 

solver uses a separate set of equations, variables, and mesh than the solid 

solver2.  The coupling happens at the boundary where the pressure from the fluid 

updates the boundary of the solid which is then solved for to determine 

displacement of the interface boundary2.  This updated boundary is then used to 

solve the fluid domain.  This represents sort of a staggered solution where only 

one field is solved per time step2.  Most of the existing FSI codes follow a 

partitioned approach and can be further broken into weakly and strongly coupled 

implementations.  One of the biggest advantages of the partitioned solver is that 

it makes use of already existing, highly refined fluid and structure codes1. 

Weakly coupled solvers, also called loosely coupled, start by predicting 

the structural motion and then solving for the fluid properties3.  These fluid 

properties, primarily pressure and fluid stresses, are transferred to the interface 

where they act as boundary conditions for the structural solver which then solves 

for the structure’s displacement3.  A defining characteristic of these weakly 

coupled solvers is that there is “no check that the predicted structural 
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displacements match the displacements computed at the end of the step”3.  This 

characteristic in particular defines the solver as weakly coupled and gives it an 

explicit nature despite the potential implicit nature of the individual fluid or 

structural solvers3.   

A weakly coupled solver can be made into a strongly coupled solver with 

an additional step that computes the convergence of the predicted and computed 

structural displacements during each step of the solution.  This iteration defines 

the solver as strongly coupled as well as giving it an implicit nature3.  Both block-

Newton root finding and fixed point iteration techniques are used to tighten the 

coupling3 with fixed point being the most common.  The fixed point technique is 

typically implemented with Aitken relaxation4.  Strongly coupled solvers are more 

computationally expensive than their weaker counterparts as a result of the extra 

iterations. 

Weakly coupled solvers are ideal for problems with small deformations 

and momentum variations between time steps as they don’t have the extra 

subiterations at the interface2.  These solvers also are unable to handle cases 

where the density ratio of the fluid and solid approach unity5.  The ultimate 

reason for these shortcomings is the “added-mass effect” related to energy 

conservation at the interface2,3.  When deriving the coupling conditions for the 

fluid and structure, there is an “extra operator in front of the second order time 

derivative” for the structure6.  This operator functions as an “added-mass” and 

takes into account the way in which the fluid alters the natural vibration 

frequencies of the solid6.  Functionally, during solver iterations, the fluid forces 
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are dependent on predicted structural displacements instead of the actual 

displacements and so error is introduced2.  The extra iterations required to 

transform the solver from weakly coupled to strongly coupled have been shown 

to negate the influence of the “added-mass effect”7. 

2 OpenFoam 
OpenFOAM (Open Field Operation and Manipulation) is the code suite 

chosen for the simulations carried out for this research.  This is an open source 

program suite capable of tackling a wide range of both fluid and structural 

problems.  OpenFOAM, initially developed as FOAM, was brought to the open 

source domain with the launch of OpenCFD Ltd. in 2004 and subsequently 

acquired by SGI Corp in 2011*.  It has remained and always will be open source 

due to the bylaws of the managing organization which has allowed a wide range 

of collaboration and development with a greater audience than most commercial 

codes have access to.  This has in turn improved and broadened the scope of 

the software quicker than can be accomplished with most commercial codes.  

The software also allows ease of comparison in the academic community as 

everyone has uninhibited access to the same code.  Commercial users include 

ICE, Strömungsforschung Gmbh, who utilizes it for optimization of air 

conditioning and filtration, as well as move-csc who make use of OpenFOAM for 

turbine design and automotive aerodynamics. 

                                            
* http://www.openfoam.com/features/ 
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2.1 OpenFOAM Introduction 

An object oriented approach was used when OpenFOAM was created in 

C++8.   As described on the OpenFOAM website, the program “follows a highly 

modular code design in which collections of functionality (e.g. numerical 

methods, meshing, physical models,…) are each compiled into their own shared 

library”*.  This structure allows the user to easily modify components of the code 

and adapt the solvers to specific cases.  OpenFOAM can be broken into two 

types of applications, solvers which handle the PDE’s and utilities which handle 

data processing8.  Figure 2-1 shows the basic layout of the program with the 

libraries at the top feeding into the various program components. 

 

 

Figure 2-1: Layout of OpenFOAM structure† 

 

In an effort to ensure the ease of modularity and user adaptability of the 

code, the solver syntax closely resembles the PDE that it is solving for.  “For 

example the following equation 

                                            
* http://www.openfoam.com/features/ 
† http://www.openfoam.org/docs/user/ 
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ρ  

is represented by the code*.” 

 solve 
 ( 
     fvm::ddt(rho, U) 
   + fvm::div(phi, U) 
   - fvm::laplacian(mu, U) 
     == 

    fvc::grad(p) 
); 

This syntax is very intuitive and thus simplifications or additions can easily be 

made to solvers by eliminating or adding terms.  These solvers are also 

procedural in nature, which mimics the natural procedure of the solution 

algorithm being implemented*.  These characteristics combine to allow 

implementation and modification to a multitude of engineering fields. 

2.2 OpenFOAM Solver Creation 

In order to build a new solver, it will be necessary to have a modicum of 

understanding of the solver file structure.  The OpenFOAM library contains 

executable library files with .so extensions, or shared object files.  These make 

up the class definitions that the solvers are based on.  There are also header 

files (.H) known as dependency files that contain the class declaration including 

the name of the class and its function/s.  When a new solver is created, it needs 

to be compiled which is accomplished with the ‘wmake’ command.  This 

command is somewhat “more versatile and easier to use” than the Linux included 

‘make’ command and can be used to compile any code, not just OpenFOAM 

                                            
* http://www.openfoam.org/docs/user/ 
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scripts*.  The typical solver first contains a list of the necessary headers called by 

a ‘# include’ statement*.  The ‘wmake’ command will systematically work 

through this list checking whether the source files have been updated and 

selectively compiling only those that have been. 

The directory structure for a new application can be seen in Figure 2-2.  

All of the files pertaining to the new solver are placed in a directory with the name 

of the new solver.  There is a .C file with the solver name that calls all of the 

necessary libraries as well as initializing the time, meshes, and material 

properties.  This file contains the time loop as well as the calls to the individual 

solvers.  The other .H files in the solver directory relate to the initialization and 

the calls within the time loop.  The Make directory includes a file titled options 

which “contains the full directory paths to locate the header files … and library 

names” while the file titled “files”, lists the entire path and name of the solver 

once it has been compiled*. 

 

Figure 2-2: OpenFOAM Directory Structure* 

                                            
* http://www.openfoam.org/docs/user/ 
 
 
 



 
 

8 

2.2.1 icoThermFsiFoam Creation 

The first step in implementing the OpenFOAM package was to create the 

FSI solver from a fluid and structural solver with the addition of interface 

coupling.  The thermal FSI solver created for this research, icoThermFsiFoam, is 

a combination of two existing solvers with specific modifications.  The structural 

component of the solver “is based on the stressedFoam solver and as such is 

limited to linear stress-strain relationships and relatively small deformations5.”  

The fluid component of the solver is based on icoThermFoam which is itself a 

modification of the icoFoam solver such that thermal effects can be computed 

within the fluid. 

icoFoam is a standard OpenFOAM solver designed to solve transient 

cases for incompressible, laminar, Newtonian fluids*.  It does this by 

implementing the PISO algorithm to solve the incompressible laminar 

simplification of the Navier-Stokes equations†.  The PISO algorithm stands for 

pressure implicit with split operator and is the method utilized in coupling the 

pressure and velocity equations9.  It functions as a loop with “an implicit 

momentum predictor followed by a series of pressure solutions and explicit 

velocity corrections”9 and is solved until the user defined tolerance is satisfied.  

The PISO algorithm is chosen over the SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations) algorithm because it is more efficient for cases 

where the time step is determined by the need for temporal accuracy though the 

SIMPLE algorithm can be used in transient cases as well9.  The icoFoam solver 

                                            
* http://www.openfoam.com/features/ 
† http://www.openfoam.org/docs/user/ 
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is “inherently transient, requiring an initial condition (such as zero velocity) and 

boundary conditions”*. 

The thermal modification of the icoFoam solver was completed and tested 

against a cavity with a moving lid as described in the literature‡.  The first step in 

creating the icoThermFoam solver was to copy the icoFoam solver, modify the 

Make files in order to create the new solver name and recompile the files.  The 

createFields.H file was modified to include a call for the thermal diffusivity value 

as well as creating the volume scalar field for temperature. Finally, the actual 

solver file icoThermFoam.C was altered to include the constant diffusivity, 

incompressible, and no source or sink convective heat transfer PDE represented 

by equation 2 which is a simplification of equation 1, the full form convective 

PDE.  These modifications now complete the new solver and it can be compiled 

for use.  All of the necessary files for the icoThermFoam solver are listed in 

Appendix B. 

 RTTD
t
T

+•∇−∇•∇=
∂

∂
)()( φ  (1) 

 TTD
t
T

∇•−∇=
∂

∂
φ2  (2) 

The test case for the icoThermFoam solver is the slightly modified cavity 

case, which is the standard tutorial for the icoFoam solver.  To modify the tutorial 

case, we need to add the solution schemes to the fvSchemes.H file.  The 

lacplacian scheme for the temperature equation is Gauss linear corrected and 

the divergence scheme is Gauss upwind.  The fvSolution.H file is updated to 
                                            
* http://www.openfoam.org/docs/user/ 
‡ http://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam 



 
 

10 

include the solver controls for the temperature equation.  The biconjugate 

gradient solver with diagonal incomplete-LU (asymmetric) preconditioning is 

selected for this case.  Finally, the temperature boundary conditions are added to 

the initial condition directory (0).  Figure 2-3 shows the temperature distribution in 

the cavity case as given by the literature and Figure 2-4 shows the temperature 

distribution in the same cavity case with the same flow parameters as solved with 

the icoThermFoam solver that was created. 

 

Figure 2-3: Reference Cavity Temperature Distribution* 

 

                                            
*  http://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam 
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Figure 2-4: Experimental Cavity Temperature Distribution 

The actual creation of the icoThermFsiFoam solver starts by creating a 

directory with the same name and copying many files from the stressedFoam 

and icoThermFoam solvers to this new directory.  The icoFoam.C file is used as 

the template for the icoThermFsiFoam.C file and is amended by removing the 

PDE solvers and including several “# include” lines.  This file does not 

contain any PDE’s but includes calls for both the structural and fluid solvers as 

well as all of the other necessary .H files required for the coupled solver.   

The icoThermFoam.C fluid solver is updated to include the continuity 

errors associated with the moving mesh instead of the original continuity error file 

and is renamed solveFluid.H.  Many of the “# include” headers are stripped 

as they are now in the icoThermFsiFoam.C and are no longer needed in the fluid 

solver file.  The structural solver is updated in a similar manner with the time 

stepping code removed as it is now in the icoThermFsiFoam.C file.  All instances 
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of U and T are replaced with Usolid and Tsolid respectively in order for the 

code to keep the fluid and structural parameters separate, especially since the 

“U” in “Usolid” refers to displacement, not velocity as it does in the fluid solver.  

The various other .H files are updated in order to have consistent naming 

schemes for the coupled solver.  One of the most important files that is copied 

from the OpenFOAM libraries is the readCouplingProperties.H file which 

describes to the solver exactly how the two domains are coupled.  Once all of the 

modifications are made to the individual files, the solver can be compiled for use.  

The full icoThermFsiFoam solver code can be found in Appendix A. 

2.3 OpenFOAM Implementation 

The icoThermFsiFoam solver requires a very precise case setup in order 

to run properly.  The case name serves as the parent directory and then the fluid 

and solid sub-directories are created within this structure.  These two domain 

sub-directories each contain the initial time sub-directory (0), as well as the 

constant and system sub-directories associated with a typical OpenFOAM case.  

The constant directory contains a polyMesh sub-directory which contains the 

blockMesh dictionary and all of the mesh files.  The constant directory also 

contains the constant material properties for the particular domain.  The system 

directory within the fluid directory contains the pertinent run information for the 

case.  The same directory within the solid directory contains a soft link to the 

controlDict in the fluid directory which is the overall case control file as well as 

files relating to the different schemes needed to solve the solid domain.  A visual 

representation of the preceding can be seen in a directory and file flowchart for 
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an icoThermFsiFoam case can in Figure 2-5.  This case setup is designed to use 

the fluid directory as the run directory because OpenFOAM expects to see the 0, 

constant and system directories as the first subdirectories it encounters (versus 

fluid and solid under the case name).  This setup necessitates the need for soft 

links so that the solid information can be read from the fluid directory.  When the 

solver writes the output files, they will also be written to the case directory.  Each 

time directory will have the fluid output as well as a sub-directory with the solid 

output.  Soft links to these files can be created within the solid directory using a 

file called linkedSolutions. 

 

Figure 2-5: Case Flow Chart 

3 Experimental Set-up 
The first step in creating a CFD (or FEA) case is defining the geometry of 

the problem that will be solved.  In OpenFOAM this can be accomplished by 

using the blockMesh utility which is designed for simple geometries.  The 

geometry selected for this experiment is the Turek/Hron FSI benchmark4 since 
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there is existing data to compare at least the FSI results to as well as being 

simple and computationally “easy”.  The basic geometry can be seen in Figure 

3-1 and Figure 3-2 with the associated dimensions summarized in  

 

 

 
 
 
 
 
 

Table 3-1.  The basic setup consists of a stationary circle located near the 

inlet with an elastic tail trailing from the downstream side.  This geometry is a 

modified 2D version of the standard CFD benchmark involving a cylinder 

exposed to transverse flow. 

 

 

Figure 3-1: Basic FSI Geometry 

 
 

 

Figure 3-2: Geometry Detail 
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Table 3-1: Summary of Primary Dimensions4 

Parameter Dimension (m) or 
parameter location 

H 0.41 
L 2.5 
C (0.2,0.2) 
r 0.05 
l 0.35 
A (0.6,0.2) 
h 0.02 

 
 

Once the geometry is defined, it will be important to identify regions with 

significant flow phenomena so that we can make sure that we do an adequate 

job of meshing the domain.  Since the vortex shedding of the circle and 

subsequently the motion of the tail are of interest, adequate cell density is 

required in those regions.  This is implemented by adding extra blocks closely 

surrounding the geometry of interest in order to better control mesh density and 

quality.  Figure 3-3 shows all of the blocks used to mesh the domain. 

 

 

Figure 3-3: blockMesh Setup 
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To create the blockMesh dictionary the coordinates for the vertices of 

each block must be defined.  These coordinates are summarized in Appendix C 

and were derived using basic geometry.  The listed coordinates create a 

geometry 10 times larger than that given by the Turek/Hron benchmark but the 

blockMesh dictionary incorporates a scaling function so that the resultant domain 

is identical.  For every block in the domain, the number of cells in each direction, 

x, y, and z, can be set along with grading, or the cell expansion ratio in each of 

the three coordinate directions.  Due to the nature of the FSI problem, two 

separate meshes, and therefore blockMesh dictionaries, will need to be created, 

one for the fluid and one for the structure.  Because of the coupling methodology 

prescribed in the icoThermFsiFoam solver, the vertices of the coupled fluid and 

structural meshes must be coincident.  This means that the same number of cells 

and grading need to be specified in the appropriate directions at the fluid-

structure interface. 

The fluid mesh fills the white portion of Figure 3-3 while the solid mesh fills 

only the black portion.  The gray portion is not meshed as it is defined to act as a 

non-deforming rigid body, or wall, which will shed vortices.  Once the two 

blockMesh dictionaries are fully created, the user can run the blockMesh utility 

from within the case directory to create the requisite mesh domains for the solver 

to solve on.  The checkMesh utility can be used to diagnose problems with the 

blockMesh dictionary and evaluate the quality of the mesh. 

After the geometry is created, the next step in running a simulation is 

setting the various properties on the domain.  These boundary and initial 
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conditions are set inside of the 0 time step directory.  Each parameter (i.e. 

temperature, velocity, or pressure) has its own file and both the boundary and 

initial conditions are set within the single file.  These parameters are defined on 

each patch (which were set in the blockMesh dictionary) of the domain and can 

be set to fixed values, periodic behavior, or any one of a number of other 

conditions.  Symmetry planes are also set in these files by defining a symmetry 

plane for a given patch for each parameter.  Finally, the last step is to specify all 

of the material properties in the ‘constant’ directory.  The icoThermFsiFoam 

solver is designed to be run from the fluid directory so the user can either enter 

that directory and run the program or type: icoThermFsiFoam –case fluid 

from the case name directory. 

3.1 Simulation Setup Parameters 

For this simulation, laminar flow must be maintained in the fluid and the 

solid should be flexible enough that it will result in non-trivial displacement.  The 

laminar flow requirement generally leads to the use of glycerin in physical 

experiments while a flexible solid could be made from polybutadiene or 

polypropylene.  Table 3-2 shows the material properties for these three materials.  

For the sake of this simulation, simplified parameters were used which closely 

resemble these physical materials as can be seen in the same table. 
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Table 3-2: Material Properties 

Material ρ (103 3m
kg ) νs 

 
µ (106 2ms

kg ) 

Polybutadiene 0.91 0.5 0.53 
Polypropylene 1.1 0.42 317 
 ρ (103 3m

kg ) νf (10-3 
s
m2

)  

Glycerin 1.26 1.13  

Simulation Properties 
 ρ (103 3m

kg ) ν s 
 

µ (106 2ms
kg ) 

Solid 1.0 0.4 0.5 
 ρ (103 3m

kg ) νf (10-3 
s
m2

)  

Fluid 1.0 1.0  
 

 

 
 

4 Validation 
4.1 Fluid solver grid independence 

To have confidence in the results of any CFD simulation, it is important to 

determine whether the numerical error is acceptable.  This numerical error will 

theoretically approach zero as the number of mesh points approaches infinity.  

The convergence of the CFD solution will also be less sensitive to mesh 

coarseness as the number of mesh points increases.  It can be unpractical to 
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have too fine a mesh as computation time increases substantially with no 

justifiable gain in accuracy. 

The Richardson extrapolation technique as outlined in 

http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html was used to 

calculate the grid convergence for the fluid solver.  An initial mesh was selected 

and then made more coarse by halving the number of grid points and more fine 

by doubling the number of grid points.  Simulations were performed on these 

three grids with the steady state stagnation pressure at the leading edge of the 

sphere used as the quantity of comparison.  This quantity was chosen due to its 

steady nature and because the pressure force is used to update the solid 

boundary.  The results can be seen in Figure 4-1 which show that the initial mesh 

lies within the GCI (Grid Convergence Index) band and is therefore acceptable 

for future simulations. 
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Figure 4-1: Grid Independence of icoFoam on Turek-Hron geometry 

4.2 FSI solver validation 

The icoThermFsiFoam solver created in section 2.2.1 does not fully 

implement heat transfer between the solid and fluid during an entire experimental 

run.  The reason for this is that OpenFOAM does not contain the regionCoupling 

boundary condition for finite area solvers, which is the type of solver that the 

structural solver is.  The regionCoupling boundary condition allows conjugate 

heat transfer between a solid and fluid domain.  Due to the available moving 

mesh utilities in OpenFOAM and the need for a relatively robust structural solver, 

the choice was made to continue using a finite area based structural solver. 
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5 Complications 
Several attempts were made to construct a finite area version of the 

regionCoupling boundary as many of the boundary conditions that are packaged 

with OpenFOAM are available in both finite area and finite volume forms.  

Ultimately, a functional finite area version of the regionCoupling boundary 

condition was unable to be built.  This meant that the only time there was any 

coupling between the fluid and solid regions was at the inception of a simulation 

due to the initial conditions.  Other similar boundary conditions were investigated 

but none were able to pass gradient information through a moving mesh at a 

solid/fluid boundary from a finite volume solver to a finite area solver. 

When this project was started, OpenFOAM-1.5-dev was the most current 

available version of OpenFOAM that was capable of solving FSI simulations.  

During the course of the project, another branch of OpenFOAM was developed 

as OpenFOAM-1.6-ext.  This branch still maintained some of the ability to solve 

FSI simulations but completely reformulated the structural solver and reworked 

the coupling between the fluid and structural solvers.  There is a chance that with 

significantly more time, the thermal component of this project could be worked 

into the new framework of OpenFOAM-1.6-ext but it would mean the 

abandonment of all of the work undertaken in the OpenFOAM-1.5-dev 

framework.  Future work should be carried out in the framework of OpenFOAM-

1.6-ext as this is the most currently supported version of OpenFOAM that is 

capable of performing FSI simulations. 
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6 Discussion 
6.1 How can it be used in the future? 

FSI solvers, and particularly those that can simulate conjugate heat 

transfer, can be used to investigate any system where determining the interaction 

between a fluid and structure has a significant engineering implications.  

Historically, aeroelasticity has been a major driver for these types of solvers, 

however, other engineering fields are realizing the great potential for this type of 

analysis.  FSI solvers utilizing heat transfer between the fluid and solid could be 

very useful in the design of future energy production systems such as those that 

convert wave energy to electricity.  Biomedical engineering is already embracing 

the basic FSI abilities in modeling fluid movement in veins and arteries.  Adding 

the ability to accurately predict heat transfer between the fluid and artery could 

help determine absorption rates of medicine based on temperature. 

6.2 What else still needs to be done? 

The next step in creating a robust FSI solver in OpenFOAM with heat 

transfer would be to fully implement the regionCoupling boundary condition for 

finite area solvers in version 1.5-dev.  Further work could also include strongly 

coupling the fluid and structural solvers by checking the convergence between 

the predicted and actual computed structural displacements during each step of 

the simulation.  With any computer modeling, it will be necessary to check the 

predicted results with actual experimental data to ensure that the model is 

accurate.  As there is no currently existing heat transfer in FSI benchmark data, it 

makes the most sense to build off of existing FSI benchmark geometries as they 
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feature the more complicated physics.  Guidelines could then be developed in 

order to build a physical experiment based on the computer modeling. 

 
 
 



 
 

24 

References 
 
1 Masarati, P., Mategazza, P., “A Conservative Mesh-Free Approach For 

Fluid Structure Problems,” International Conference on Computational 
Methods for Coupled Problems in Science and Engineering, edited by M. 
Papadrakakis, E. Oñate, B. Schrefler, CIMNE, Barcelona, 2005, pp. 24-
27.  

2 Förster, C., Wall, W., Ramm, E., “Artificial added mass instabilities in 
sequential staggered coupling of nonlinear structures and incompressible 
viscous flows” Computation Methods in Applied Mechanics and 
Engineering, vol. 196, no. 7, 2007, pp. 1278-1293. 

3 Campbell, R., “Fluid-Structure Interaction and Inverse Design Simulations 
for Flexible Turbomachinery,” Ph.D. Dissertation, College of Engineering, 
The Pennsylvania State University, State College, PA, 2010. 

4 Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M., “Numerical 
Benchmarking of Fluid Structure Interaction: A Comparison of Different 
Discretization and Solution Approaches,” Fluid Structure Interaction II, Vol. 
73, 2010, pp. 413-424. 

5 Maus, K., “Constructing solvers for weakly coupled FSI problems using 
OpenFOAM-1.5-dev,” PhD Course in CFD with OpenSource Software 
2009, Chalmers University of Technology, Göteborg, Sweden, 2009. 

6 Causin, P., Gerbeau, J.F., Nobile, F., “Added-mass effect in the design of 
partitioned algorithms for fluid-structure problems,” Computer Methods in 
Applied Mechanics and Engineering, Vol. 194, No. 42-44, 2005, pp. 4506-
4527 

7 Deparis, S., Fernández, M., Formaggia, L., “Acceleration of a Fixed Point 
Algorithm for Fluid-Structure Interaction Using Transpiration Conditions,” 
ESAIM: Mathematical Modeling and Numerical Analysis, Vol. 37, 2003 pp. 
601-616. 

8 Tapia, X., “Modeling of wind flow over complex terrain using OpenFoam,” 
M.S. Thesis, University of Gävle, Gävle, Sweden, 2009. 

9 Jasak, H., “Error Analysis and Estimation for the Finite Volume Method 
with Applications to Fluid Flows,” Ph.D. Dissertation, Department of 
Mechanical Engineering, Imperial College of Science and Medicine, 
London, England, 1996. 

 
 
 



 
 

25 

Appendix A – icoThermFsiFoam Solver Code 
 
icoThermFsiFoam.C 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Application 
    icoThermFsiFoam 
 
Description 
    Transient FSI solver for incompressible, laminar flow of Newtonian 
fluids and 
    linear elastic, small-strain deformation solids. 
 
\*---------------------------------------------------------------------
------*/ 
 
#include "fvCFD.H" 
#include "dynamicFvMesh.H" 
#include "tractionDisplacementFvPatchVectorField.H" 
#include "patchToPatchInterpolation.H" 
#include "tetFemMatrices.H" 
#include "faceTetPolyPatch.H" 
#include "tetPolyPatchInterpolation.H" 
#include "fixedValueTetPolyPatchFields.H" 
#include "pointFields.H" 
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#include "volPointInterpolation.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
int main(int argc, char *argv[]) 
{ 
 
#   include "setRootCase.H" 
 
#   include "createTime.H" 
#   include "createDynamicFvMesh.H" 
#   include "createStressMesh.H" 
#   include "createFields.H" 
 
#   include "readMechanicalProperties.H" 
#   include "readThermalProperties.H" 
#   include "createStressFields.H" 
#   include "readCouplingProperties.H" 
#   include "readTimeControls.H" 
 
#   include "initContinuityErrs.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
    Info<< "\nStarting time loop\n" << endl; 
 
    for (runTime++; !runTime.end(); runTime++) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
 
#       include "readPISOControls.H" 
#       include "CourantNo.H" 
 
#   include "readTimeControls.H" 
#   include "setDeltaT.H" 
//Main solver code: 
#   include "setPressure.H" 
#   include "solveSolid.H" 
#   include "setMotion.H" 
#   include "solveFluid.H" 
 
        runTime.write(); 
 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
 
    Info<< "End\n" << endl; 
 
    return(0); 
} 
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// 
***********************************************************************
** // 
 

tractionDisplacementFvPatchVectorField.C 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
\*---------------------------------------------------------------------
------*/ 
 
#include "tractionDisplacementFvPatchVectorField.H" 
#include "addToRunTimeSelectionTable.H" 
#include "volFields.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
namespace Foam 
{ 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * 
* * * // 
 
tractionDisplacementFvPatchVectorField:: 
tractionDisplacementFvPatchVectorField 
( 
    const fvPatch& p, 
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    const DimensionedField<vector, volMesh>& iF 
) 
: 
    fixedGradientFvPatchVectorField(p, iF), 
    traction_(p.size(), vector::zero), 
    pressure_(p.size(), 0.0) 
{ 
    fvPatchVectorField::operator=(patchInternalField()); 
    gradient() = vector::zero; 
} 
 
 
tractionDisplacementFvPatchVectorField:: 
tractionDisplacementFvPatchVectorField 
( 
    const tractionDisplacementFvPatchVectorField& tdpvf, 
    const fvPatch& p, 
    const DimensionedField<vector, volMesh>& iF, 
    const fvPatchFieldMapper& mapper 
) 
: 
    fixedGradientFvPatchVectorField(tdpvf, p, iF, mapper), 
    traction_(tdpvf.traction_, mapper), 
    pressure_(tdpvf.pressure_, mapper) 
{} 
 
 
tractionDisplacementFvPatchVectorField:: 
tractionDisplacementFvPatchVectorField 
( 
    const fvPatch& p, 
    const DimensionedField<vector, volMesh>& iF, 
    const dictionary& dict 
) 
: 
    fixedGradientFvPatchVectorField(p, iF), 
    traction_("traction", dict, p.size()), 
    pressure_("pressure", dict, p.size()) 
{ 
    fvPatchVectorField::operator=(patchInternalField()); 
    gradient() = vector::zero; 
} 
 
 
tractionDisplacementFvPatchVectorField:: 
tractionDisplacementFvPatchVectorField 
( 
    const tractionDisplacementFvPatchVectorField& tdpvf 
) 
: 
    fixedGradientFvPatchVectorField(tdpvf), 
    traction_(tdpvf.traction_), 
    pressure_(tdpvf.pressure_) 
{} 
 
 
tractionDisplacementFvPatchVectorField:: 
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tractionDisplacementFvPatchVectorField 
( 
    const tractionDisplacementFvPatchVectorField& tdpvf, 
    const DimensionedField<vector, volMesh>& iF 
) 
: 
    fixedGradientFvPatchVectorField(tdpvf, iF), 
    traction_(tdpvf.traction_), 
    pressure_(tdpvf.pressure_) 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * 
* * * // 
 
void tractionDisplacementFvPatchVectorField::autoMap 
( 
    const fvPatchFieldMapper& m 
) 
{ 
    fixedGradientFvPatchVectorField::autoMap(m); 
    traction_.autoMap(m); 
    pressure_.autoMap(m); 
} 
 
 
// Reverse-map the given fvPatchField onto this fvPatchField 
void tractionDisplacementFvPatchVectorField::rmap 
( 
    const fvPatchVectorField& ptf, 
    const labelList& addr 
) 
{ 
    fixedGradientFvPatchVectorField::rmap(ptf, addr); 
 
    const tractionDisplacementFvPatchVectorField& dmptf = 
        refCast<const tractionDisplacementFvPatchVectorField>(ptf); 
 
    traction_.rmap(dmptf.traction_, addr); 
    pressure_.rmap(dmptf.pressure_, addr); 
} 
 
 
// Update the coefficients associated with the patch field 
void tractionDisplacementFvPatchVectorField::updateCoeffs() 
{ 
    if (updated()) 
    { 
        return; 
    } 
 
    const dictionary& mechanicalProperties = 
        db().lookupObject<IOdictionary>("mechanicalProperties"); 
 
    const dictionary& thermalProperties = 
        db().lookupObject<IOdictionary>("thermalProperties"); 
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    dimensionedScalar rho(mechanicalProperties.lookup("rho")); 
    dimensionedScalar rhoE(mechanicalProperties.lookup("E")); 
    dimensionedScalar nu(mechanicalProperties.lookup("nu")); 
 
    dimensionedScalar E = rhoE/rho; 
    dimensionedScalar mu = E/(2.0*(1.0 + nu)); 
    dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 - 2.0*nu)); 
    dimensionedScalar threeK = E/(1.0 - 2.0*nu); 
 
    Switch planeStress(mechanicalProperties.lookup("planeStress")); 
 
    if (planeStress) 
    { 
        lambda = nu*E/((1.0 + nu)*(1.0 - nu)); 
        threeK = E/(1.0 - nu); 
    } 
 
    vectorField n = patch().nf(); 
 
    const fvPatchField<tensor>& gradU = 
        patch().lookupPatchField<volTensorField, tensor>("grad(U)"); 
 
    gradient() = 
    ( 
        (traction_ - pressure_*n)/rho.value() 
      - (n & (mu.value()*gradU.T() - (mu + lambda).value()*gradU)) 
      - n*tr(gradU)*lambda.value() 
    )/(2.0*mu + lambda).value(); 
 
 
    Switch thermalStress(thermalProperties.lookup("thermalStress")); 
 
    if (thermalStress) 
    { 
        dimensionedScalar alpha(thermalProperties.lookup("alpha")); 
        dimensionedScalar threeKalpha = threeK*alpha; 
 
        const fvPatchField<scalar>& T = 
            patch().lookupPatchField<volScalarField, scalar>("T"); 
 
        gradient() += n*threeKalpha.value()*T/(2.0*mu + 
lambda).value(); 
    } 
 
    fixedGradientFvPatchVectorField::updateCoeffs(); 
} 
 
 
// Write 
void tractionDisplacementFvPatchVectorField::write(Ostream& os) const 
{ 
    fvPatchVectorField::write(os); 
    traction_.writeEntry("traction", os); 
    pressure_.writeEntry("pressure", os); 
    writeEntry("value", os); 
} 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
makePatchTypeField(fvPatchVectorField, 
tractionDisplacementFvPatchVectorField); 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
} // End namespace Foam 
 
// 
***********************************************************************
** // 
 

 
tractionDisplacementFvPatchVectorField.H 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Class 
    tractionDisplacementFvPatchVectorField 
 
Description 
    Fixed traction boundary condition for the standard linear elastic, 
fixed 
    coefficient displacement equation (stressedFoam). 
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SourceFiles 
    tractionDisplacementFvPatchVectorField.C 
 
\*---------------------------------------------------------------------
------*/ 
 
#ifndef tractionDisplacementFvPatchVectorField_H 
#define tractionDisplacementFvPatchVectorField_H 
 
#include "fvPatchFields.H" 
#include "fixedGradientFvPatchFields.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------
------*\ 
                   Class tractionDisplacementFvPatch Declaration 
\*---------------------------------------------------------------------
------*/ 
 
class tractionDisplacementFvPatchVectorField 
: 
    public fixedGradientFvPatchVectorField 
{ 
 
    // Private Data 
 
        vectorField traction_; 
        scalarField pressure_; 
 
 
public: 
 
    //- Runtime type information 
    TypeName("tractionDisplacement"); 
 
 
    // Constructors 
 
        //- Construct from patch and internal field 
        tractionDisplacementFvPatchVectorField 
        ( 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>& 
        ); 
 
        //- Construct from patch, internal field and dictionary 
        tractionDisplacementFvPatchVectorField 
        ( 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>&, 
            const dictionary& 
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        ); 
 
        //- Construct by mapping given 
        //  tractionDisplacementFvPatchVectorField onto a new patch 
        tractionDisplacementFvPatchVectorField 
        ( 
            const tractionDisplacementFvPatchVectorField&, 
            const fvPatch&, 
            const DimensionedField<vector, volMesh>&, 
            const fvPatchFieldMapper& 
        ); 
 
        //- Construct as copy 
        tractionDisplacementFvPatchVectorField 
        ( 
            const tractionDisplacementFvPatchVectorField& 
        ); 
 
        //- Construct and return a clone 
        virtual tmp<fvPatchVectorField> clone() const 
        { 
            return tmp<fvPatchVectorField> 
            ( 
                new tractionDisplacementFvPatchVectorField(*this) 
            ); 
        } 
 
        //- Construct as copy setting internal field reference 
        tractionDisplacementFvPatchVectorField 
        ( 
            const tractionDisplacementFvPatchVectorField&, 
            const DimensionedField<vector, volMesh>& 
        ); 
 
        //- Construct and return a clone setting internal field 
reference 
        virtual tmp<fvPatchVectorField> clone 
        ( 
            const DimensionedField<vector, volMesh>& iF 
        ) const 
        { 
            return tmp<fvPatchVectorField> 
            ( 
                new tractionDisplacementFvPatchVectorField(*this, iF) 
            ); 
        } 
 
 
    // Member functions 
 
        // Access 
 
            virtual const vectorField& traction() const 
            { 
                return traction_; 
            } 
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            virtual vectorField& traction() 
            { 
                return traction_; 
            } 
 
            virtual const scalarField& pressure() const 
            { 
                return pressure_; 
            } 
 
            virtual  scalarField& pressure() 
            { 
                return pressure_; 
            } 
 
 
        // Mapping functions 
 
            //- Map (and resize as needed) from self given a mapping 
object 
            virtual void autoMap 
            ( 
                const fvPatchFieldMapper& 
            ); 
 
            //- Reverse map the given fvPatchField onto this 
fvPatchField 
            virtual void rmap 
            ( 
                const fvPatchVectorField&, 
                const labelList& 
            ); 
 
 
        //- Update the coefficients associated with the patch field 
        virtual void updateCoeffs(); 
 
        //- Write 
        virtual void write(Ostream&) const; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
#endif 
 
// 
***********************************************************************
** // 
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createStressMesh.H 
    Foam::Info<< "Create stressMesh for time = " 
    << runTime.timeName() << Foam::nl << Foam::endl; 
 
    Foam::fvMesh stressMesh 
    ( 
        Foam::IOobject 
        ( 
            "solid", 
            runTime.timeName(), 
            runTime, 
            Foam::IOobject::MUST_READ 
        ) 
    ); 
 
    Foam::pointMesh pStressMesh(stressMesh); 
 
    Foam::volPointInterpolation cpi 
    ( 
 stressMesh, 
 pStressMesh 
    ); 

 
createFields.H 
    Info<< "Reading transportProperties\n" << endl; 
 
    IOdictionary transportProperties 
    ( 
        IOobject 
        ( 
            "transportProperties", 
            runTime.constant(), 
            mesh, 
            IOobject::MUST_READ, 
            IOobject::NO_WRITE 
        ) 
    ); 
 
    dimensionedScalar nu 
    ( 
        transportProperties.lookup("nu") 
    ); 
 
    dimensionedScalar rhoFluid 
    ( 
 transportProperties.lookup("rho") 
    ); 
 
    Info<< "Reading field p\n" << endl; 
    volScalarField p 
    ( 
        IOobject 
        ( 
            "p", 
            runTime.timeName(), 
            mesh, 
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            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh 
    ); 
 
 
    Info<< "Reading field U\n" << endl; 
    volVectorField U 
    ( 
        IOobject 
        ( 
            "U", 
            runTime.timeName(), 
            mesh, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh 
    ); 
 
    Info<< "Reading field T\n" << endl; 
    volScalarField T 
    ( 
 IOobject 
 ( 
     "T", 
     runTime.timeName(), 
     mesh, 
     IOobject::MUST_READ, 
     IOobject::AUTO_WRITE 
 ), 
 mesh 
    ); 
 
#   include "createPhi.H" 
 
 
    label pRefCell = 0; 
    scalar pRefValue = 0.0; 
    setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, 
pRefValue); 

 
readMechanicalProperties.H 
    Info<< "Reading mechanical properties\n" << endl; 
 
    IOdictionary mechanicalProperties 
    ( 
        IOobject 
        ( 
            "mechanicalProperties", 
            runTime.constant(), 
            stressMesh, 
            IOobject::MUST_READ, 
            IOobject::NO_WRITE 
        ) 
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    ); 
 
    dimensionedScalar rho(mechanicalProperties.lookup("rho")); 
    dimensionedScalar rhoE(mechanicalProperties.lookup("E")); 
    dimensionedScalar nuS(mechanicalProperties.lookup("nu")); 
 
    Info<< "Normalising E : E/rho\n" << endl; 
    dimensionedScalar E = rhoE/rho; 
 
    Info<< "Calculating Lame's coefficients\n" << endl; 
 
    dimensionedScalar mu = E/(2.0*(1.0 + nuS)); 
    dimensionedScalar lambda = nuS*E/((1.0 + nuS)*(1.0 - 2.0*nuS)); 
    dimensionedScalar threeK = E/(1.0 - 2.0*nuS); 
 
    Switch planeStress(mechanicalProperties.lookup("planeStress")); 
 
    if (planeStress) 
    { 
        Info<< "Plane Stress\n" << endl; 
 
        //- change lambda and threeK for plane stress 
        lambda = nuS*E/((1.0 + nuS)*(1.0 - nuS)); 
        threeK = E/(1.0 - nuS); 
    } 
    else 
    { 
        Info<< "Plane Strain\n" << endl; 
    } 
    Info<< "mu = " << mu.value() << " Pa/rho\n"; 
    Info<< "lambda = " << lambda.value() << " Pa/rho\n"; 
    Info<< "threeK = " << threeK.value() << " Pa/rho\n"; 

 
readThermalProperties.H 
    Info<< "Reading thermal properties\n" << endl; 
 
    IOdictionary thermalProperties 
    ( 
        IOobject 
        ( 
            "thermalProperties", 
            runTime.constant(), 
            stressMesh, 
            IOobject::MUST_READ, 
            IOobject::NO_WRITE 
        ) 
    ); 
 
    Switch thermalStress(thermalProperties.lookup("thermalStress")); 
 
    dimensionedScalar threeKalpha 
    ( 
        "threeKalpha", 
        dimensionSet(0, 2, -2 , -1, 0), 
        0 
    ); 
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    dimensionedScalar DT 
    ( 
        "DT", 
        dimensionSet(0, 2, -1 , 0, 0), 
        0 
    ); 
 
    if (thermalStress) 
    { 
        dimensionedScalar C(thermalProperties.lookup("C")); 
        dimensionedScalar rhoK(thermalProperties.lookup("k")); 
        dimensionedScalar alpha(thermalProperties.lookup("alpha")); 
 
        Info<< "Normalising k : k/rho\n" << endl; 
        dimensionedScalar k = rhoK/rho; 
 
        Info<< "Calculating thermal coefficients\n" << endl; 
 
        threeKalpha = threeK*alpha; 
        DT.value() = (k/C).value(); 
 
        Info<< "threeKalpha = " << threeKalpha.value() << " Pa/rho\n"; 
    } 

 
createStressFields.H 
    Info<< "Reading field U\n" << endl; 
    volVectorField Usolid 
    ( 
        IOobject 
        ( 
            "U", 
            runTime.timeName(), 
            stressMesh, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        stressMesh 
    ); 
 
 
    volScalarField* Tptr = NULL; 
 
    if (thermalStress) 
    { 
        Info<< "Reading field T\n" << endl; 
        Tptr = new volScalarField 
        ( 
            IOobject 
            ( 
                "T", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::MUST_READ, 
                IOobject::AUTO_WRITE 
            ), 
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            stressMesh 
        ); 
    } 
 
    volScalarField& Tsolid = *Tptr; 

 
readCouplingProperties.H 
    Info << "Reading coupling properties" << endl; 
    IOdictionary couplingProperties 
    ( 
        IOobject 
        ( 
            "couplingProperties", 
            runTime.constant(), 
            mesh, 
            IOobject::MUST_READ, 
            IOobject::NO_WRITE 
        ) 
    ); 
 
    // Read solid patch data 
    word solidPatchName(couplingProperties.lookup("solidPatch")); 
 
    label solidPatchID = 
        stressMesh.boundaryMesh().findPatchID(solidPatchName); 
 
 
    // Read fluid patch data 
    word fluidPatchName(couplingProperties.lookup("fluidPatch")); 
 
    label fluidPatchID = 
        mesh.boundaryMesh().findPatchID(fluidPatchName); 
 
 
    if (solidPatchID < 0 || fluidPatchID < 0) 
    { 
        FatalErrorIn(args.executable()) 
            << "Problem with patch interpolation definition" 
            << abort(FatalError); 
    } 
 
 
    // Create interpolators 
    patchToPatchInterpolation interpolatorFluidSolid 
    ( 
        mesh.boundaryMesh()[fluidPatchID], 
        stressMesh.boundaryMesh()[solidPatchID] 
    ); 
 
    patchToPatchInterpolation interpolatorSolidFluid 
    ( 
        stressMesh.boundaryMesh()[solidPatchID], 
        mesh.boundaryMesh()[fluidPatchID] 
    ); 
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    // Grab solid patch field 
    tractionDisplacementFvPatchVectorField& tForce = 
        refCast<tractionDisplacementFvPatchVectorField> 
        ( 
            Usolid.boundaryField()[solidPatchID] 
        ); 
 
 
    // Grab motion field 
 
    // Read fluid patch data 
    word movingRegionName(couplingProperties.lookup("movingRegion")); 
 
    const fvMesh& motionMesh = 
        runTime.objectRegistry::lookupObject<fvMesh>(movingRegionName); 
 
    tetPointVectorField& motionU = 
        const_cast<tetPointVectorField&> 
        ( 
            
motionMesh.objectRegistry::lookupObject<tetPointVectorField> 
            ( 
                "motionU" 
            ) 
        ); 
 
 
    fixedValueTetPolyPatchVectorField& motionUFluidPatch = 
        refCast<fixedValueTetPolyPatchVectorField> 
        ( 
            motionU.boundaryField()[fluidPatchID] 
        ); 
 
    tetPolyPatchInterpolation tppi 
    ( 
        refCast<const faceTetPolyPatch>(motionUFluidPatch.patch()) 
    ); 

 
setPressure.H 
{ 
    // Setting pressure on solid patch 
    Info << "Setting pressure" << endl; 
 
    scalarField solidPatchPressure = 
        interpolatorFluidSolid.faceInterpolate 
        ( 
            p.boundaryField()[fluidPatchID] 
        ); 
 
    solidPatchPressure *= rhoFluid.value(); 
    
    tForce.pressure() = solidPatchPressure; 
 
 
    vector totalPressureForce = 
        sum 
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        ( 
            p.boundaryField()[fluidPatchID]* 
            mesh.Sf().boundaryField()[fluidPatchID] 
        ); 
 
      
    Info << "Total pressure force = " << totalPressureForce << endl; 
} 
 

solveSolid.H 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Application 
    solveSolid 
 
Description 
    Transient/steady-state segregated finite-volume solver of linear-
elastic, 
    small-strain deformation of a solid body, with optional thermal 
    diffusion and thermal stresses. 
 
    Simple linear elasticity structural analysis code. 
    Solves for the displacement vector field U, also generating the 
    stress tensor field sigma. 
 
\*---------------------------------------------------------------------
------*/ 
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{ 
#       include "readStressedFoamControls.H" 
 
        int iCorr = 0; 
        scalar initialResidual = 0; 
 
        do 
        { 
            volTensorField gradU = fvc::grad(Usolid); 
 
            if (thermalStress) 
            { 
                solve 
                ( 
                    fvm::ddt(Tsolid) == fvm::laplacian(DT, Tsolid) 
                ); 
            } 
 
            fvVectorMatrix UEqn 
            ( 
                fvm::d2dt2(Usolid) 
             == 
                fvm::laplacian(2*mu + lambda, Usolid, 
"laplacian(DU,U)") 
 
              + fvc::div 
                ( 
                    mu*gradU.T() + lambda*(I*tr(gradU)) - (mu + 
lambda)*gradU, 
                    "div(sigma)" 
                ) 
            ); 
 
            if (thermalStress) 
            { 
                UEqn += threeKalpha*fvc::grad(Tsolid); 
            } 
 
            //UEqn.setComponentReference(1, 0, vector::X, 0); 
            //UEqn.setComponentReference(1, 0, vector::Z, 0); 
 
            initialResidual = UEqn.solve().initialResidual(); 
 
        } while (initialResidual > convergenceTolerance && ++iCorr < 
nCorr); 
 
#       include "calculateStress.H" 
 
} 
 
 
// 
***********************************************************************
** // 
 

readStressedFoamControls.H 
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    const dictionary& stressControl = 
        stressMesh.solutionDict().subDict("stressedFoam"); 
 
    int nCorr(readInt(stressControl.lookup("nCorrectors"))); 
    scalar convergenceTolerance(readScalar(stressControl.lookup("U"))); 

 
calculateStress.H 
    if (runTime.outputTime()) 
    { 
        volTensorField gradU = fvc::grad(Usolid); 
 
        volSymmTensorField sigma = 
            rho*(2.0*mu*symm(gradU) + lambda*I*tr(gradU)); 
 
        if (thermalStress) 
        { 
            sigma = sigma - I*(rho*threeKalpha*Tsolid); 
        } 
 
        volScalarField sigmaEq 
        ( 
            IOobject 
            ( 
                "sigmaEq", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
            sqrt((3.0/2.0)*magSqr(dev(sigma))) 
        ); 
 
        Info<< "Max sigmaEq = " << max(sigmaEq).value() 
            << endl; 
 
        volScalarField sigmaxx 
        ( 
            IOobject 
            ( 
                "sigmaxx", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
            sigma.component(symmTensor::XX) 
        ); 
 
        volScalarField sigmayy 
        ( 
            IOobject 
            ( 
                "sigmayy", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
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                IOobject::AUTO_WRITE 
            ), 
            sigma.component(symmTensor::YY) 
        ); 
 
        volScalarField sigmazz 
        ( 
            IOobject 
            ( 
                "sigmazz", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
            sigma.component(symmTensor::ZZ) 
        ); 
 
        Info<< "Max sigmazz = " << max(sigmazz).value() 
            << endl; 
 
        volScalarField sigmaxy 
        ( 
            IOobject 
            ( 
                "sigmaxy", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
            sigma.component(symmTensor::XY) 
        ); 
 
        volScalarField sigmaxz 
        ( 
            IOobject 
            ( 
                "sigmaxz", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
            sigma.component(symmTensor::XZ) 
        ); 
 
        volScalarField sigmayz 
        ( 
            IOobject 
            ( 
                "sigmayz", 
                runTime.timeName(), 
                stressMesh, 
                IOobject::NO_READ, 
                IOobject::AUTO_WRITE 
            ), 
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            sigma.component(symmTensor::YZ) 
        ); 
 
        runTime.write(); 
    } 

 
setMotion.H 
{ 
    // Setting mesh motion 
 
    pointVectorField solidPointsDispl =  
        cpi.interpolate(Usolid - Usolid.oldTime()); 
 
    vectorField newPoints = 
        stressMesh.points()  
      + solidPointsDispl.internalField(); 
 
    stressMesh.movePoints(newPoints); 
 
 
    vectorField fluidPatchPointsDispl = 
        interpolatorSolidFluid.pointInterpolate 
        ( 
            solidPointsDispl.boundaryField()[solidPatchID]. 
            patchInternalField() 
        ); 
 
    motionUFluidPatch == 
        tppi.pointToPointInterpolate 
        ( 
            fluidPatchPointsDispl/runTime.deltaT().value() 
        ); 
 
    mesh.update(); 
 
#   include "volContinuity.H" 
 
    Info << "Motion magnitude: mean = "  
        << average(mag(Usolid.boundaryField()[solidPatchID])) 
        << " max = "  
        << max(mag(Usolid.boundaryField()[solidPatchID])) << endl; 
} 
 
 

solveFluid.H 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
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    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Application 
    solveFluid 
 
Description 
    Transient solver for incompressible, laminar flow of Newtonian 
fluids 
    with thermal transport. 
 
\*---------------------------------------------------------------------
------*/ 
 
{ 
        fvVectorMatrix UEqn 
        ( 
            fvm::ddt(U) 
          + fvm::div(phi, U) 
          - fvm::laplacian(nu, U) 
        ); 
 
        solve(UEqn == -fvc::grad(p)); 
 
        // --- PISO loop 
 
        for (int corr=0; corr<nCorr; corr++) 
        { 
 
# include "TEqn.H" 
 
            volScalarField rUA = 1.0/UEqn.A(); 
 
            U = rUA*UEqn.H(); 
            phi = (fvc::interpolate(U) & mesh.Sf())  
                + fvc::ddtPhiCorr(rUA, U, phi); 
 
            adjustPhi(phi, U, p); 
 
            for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) 



 
 

47 

            { 
                fvScalarMatrix pEqn 
                ( 
                    fvm::laplacian(rUA, p) == fvc::div(phi) 
                ); 
 
                pEqn.setReference(pRefCell, pRefValue); 
                pEqn.solve(); 
 
                if (nonOrth == nNonOrthCorr) 
                { 
                    phi -= pEqn.flux(); 
                } 
            } 
 
#           include "movingMeshContinuityErrs.H" 
 
            U -= rUA*fvc::grad(p); 
            U.correctBoundaryConditions(); 
        } 
} 
 
 
// 
***********************************************************************
** // 
 
 

TEqn.H 
// this file will be called to solve the temperature (T) component of 
the fluid 
 
solve 
( 
    fvm::ddt(T) 
  + fvm::div(phi, T) 
  - fvm::laplacian(DT, T) 
); 

 
Make/files 
tractionDisplacement/tractionDisplacementFvPatchVectorField.C 
icoThermFsiFoam.C 
 
EXE = $(FOAM_USER_APPBIN)/icoThermFsiFoam 

 
Make/options 
EXE_INC = \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude \ 
    -ItractionDisplacement \ 
    -I$(LIB_SRC)/dynamicFvMesh/lnInclude \ 
    $(WM_DECOMP_INC) \ 
    -I$(LIB_SRC)/tetDecompositionFiniteElement/lnInclude 
 
EXE_LIBS = \ 
    -lfiniteVolume \ 
    -ldynamicFvMesh \ 
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    $(W_DECOMP_LIBS) \ 
    -llduSolvers 
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Appendix B – icoThermFoam solver code 
 
icoThermFoam.C 
/*---------------------------------------------------------------------
------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright held by original author 
     \\/     M anipulation  | 
-----------------------------------------------------------------------
-------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software; you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
the 
    Free Software Foundation; either version 2 of the License, or (at 
your 
    option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but 
WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM; if not, write to the Free Software Foundation, 
    Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 
 
Application 
    icoThermFoam 
 
Description 
    Transient solver for incompressible, laminar flow of Newtonian 
fluids with 
    thermal transport. 
 
\*---------------------------------------------------------------------
------*/ 
 
#include "fvCFD.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
int main(int argc, char *argv[]) 
{ 
 
#   include "setRootCase.H" 
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#   include "createTime.H" 
#   include "createMesh.H" 
#   include "createFields.H" 
#   include "initContinuityErrs.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * // 
 
    Info<< "\nStarting time loop\n" << endl; 
 
    for (runTime++; !runTime.end(); runTime++) 
    { 
        Info<< "Time = " << runTime.timeName() << nl << endl; 
 
#       include "readPISOControls.H" 
#       include "CourantNo.H" 
 
        fvVectorMatrix UEqn 
        ( 
            fvm::ddt(U) 
          + fvm::div(phi, U) 
          - fvm::laplacian(nu, U) 
        ); 
 
        solve(UEqn == -fvc::grad(p)); 
 
        // --- PISO loop 
 
        for (int corr=0; corr<nCorr; corr++) 
        { 
 
# include "TEqn.H" 
 
            volScalarField rUA = 1.0/UEqn.A(); 
 
            U = rUA*UEqn.H(); 
            phi = (fvc::interpolate(U) & mesh.Sf())  
                + fvc::ddtPhiCorr(rUA, U, phi); 
 
            adjustPhi(phi, U, p); 
 
            for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) 
            { 
                fvScalarMatrix pEqn 
                ( 
                    fvm::laplacian(rUA, p) == fvc::div(phi) 
                ); 
 
                pEqn.setReference(pRefCell, pRefValue); 
                pEqn.solve(); 
 
                if (nonOrth == nNonOrthCorr) 
                { 
                    phi -= pEqn.flux(); 
                } 
            } 
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#           include "continuityErrs.H" 
 
            U -= rUA*fvc::grad(p); 
            U.correctBoundaryConditions(); 
        } 
 
        runTime.write(); 
 
        Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 
            << "  ClockTime = " << runTime.elapsedClockTime() << " s" 
            << nl << endl; 
    } 
 
    Info<< "End\n" << endl; 
 
    return(0); 
} 
 
 
// 
***********************************************************************
** // 

 
createFields.H 
    Info<< "Reading transportProperties\n" << endl; 
 
    IOdictionary transportProperties 
    ( 
        IOobject 
        ( 
            "transportProperties", 
            runTime.constant(), 
            mesh, 
            IOobject::MUST_READ, 
            IOobject::NO_WRITE 
        ) 
    ); 
 
    dimensionedScalar nu 
    ( 
        transportProperties.lookup("nu") 
    ); 
 
    dimensionedScalar DT 
    ( 
 transportProperties.lookup("DT") 
    ); 
 
    Info<< "Reading field p\n" << endl; 
    volScalarField p 
    ( 
        IOobject 
        ( 
            "p", 
            runTime.timeName(), 
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            mesh, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh 
    ); 
 
 
    Info<< "Reading field U\n" << endl; 
    volVectorField U 
    ( 
        IOobject 
        ( 
            "U", 
            runTime.timeName(), 
            mesh, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh 
    ); 
 
    Info<< "Reading field T\n" << endl; 
    volScalarField T 
    ( 
 IOobject 
 ( 
     "T", 
     runTime.timeName(), 
     mesh, 
     IOobject::MUST_READ, 
     IOobject::AUTO_WRITE 
 ), 
 mesh 
    ); 
 
#   include "createPhi.H" 
 
 
    label pRefCell = 0; 
    scalar pRefValue = 0.0; 
    setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, 
pRefValue); 

 
TEqn.H 
// this file will be called to solve the temperature (T) component of 
the fluid 
 
solve 
( 
    fvm::ddt(T) 
  + fvm::div(phi, T) 
  - fvm::laplacian(DT, T) 
); 

 
Make/files 
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icoThermFoam.C   
 
EXE = $(FOAM_USER_APPBIN)/icoThermFoam 

 
Make/options 
EXE_INC = \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude 
 
EXE_LIBS = \ 
    -lfiniteVolume \ 
    -llduSolvers 
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Appendix C – blockMesh Vertice Diagram and 
Coordinates 
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Coordinate # X-Coordinate Y-Coordinate 
0 0.000000 0.000000 
1 0.000000 0.939340 
2 0.000000 2.000000 
3 0.000000 3.060660 
4 0.000000 4.100000 
5 0.939340 0.000000 
6 0.939340 0.939340 
7 0.500000 2.000000 
8 0.939340 3.060660 
9 0.939340 4.100000 
10 2.000000 0.000000 
11 2.000000 0.500000 
12 2.000000 1.500000 
13 1.646450 1.646450 
14 1.500000 2.000000 
15 1.646450 2.353550 
16 2.000000 2.500000 
17 2.000000 3.500000 
18 2.000000 4.100000 
19 3.060660 0.000000 
20 3.060660 0.939340 
21 2.353550 1.646450 
22 2.489898 1.900000 
23 2.489898 2.100000 
24 2.353550 2.358550 
25 3.060660 3.060660 
26 3.060660 4.100000 
27 3.496660 1.900000 
28 3.496660 2.100000 
29 6.000000 0.000000 
30 6.000000 0.939340 
31 6.000000 1.900000 
32 6.000000 2.100000 
33 6.000000 3.060660 
34 6.000000 4.100000 
35 25.000000 0.000000 
36 25.000000 0.939340 
37 25.000000 1.900000 
38 25.000000 2.100000 
39 25.000000 3.060660 
40 25.000000 4.100000 

 


