

INVESTIGATION OF CONJUGATE HEAT TRANSFER IN FLUID-STRUCTURE
INTERACTION MODELING USING OpenFOAM

A Senior Project
presented to

the Faculty of California Polytechnic State University,
San Luis Obispo

In Partial Fulfillment
of the requirements for the degree

Bachelors of Science in Aerospace Engineering

By
Andrew Brown
October 2014

ii

©2014
Andrew Joseph Brown

ALL RIGHTS RESERVED

iii

Abstract

INVESTIGATION OF CONJUGATE HEAT TRANSFER IN FLUID-STRUCTURE
INTERACTION MODELING USING OpenFOAM
Andrew Joseph Brown

Modern engineering problems are often comprised of highly interacting and
complex systems. Modeling of these systems is a difficult problem and involves
many types of physics. Traditional models often sought to only solve one type of
physics and usually did not interact with other models. Modern computing has
allowed more and more interaction of these various models. Commercially
available software has been readily available as of late to solve complex fluid-
structure interaction problems, but none have effectively captured heat transfer
across the fluid-structure boundary. This project investigates the effectiveness of
using the open source software OpenFOAM to effectively model this enhanced
interaction. Progress was made towards a functional solver, though there is still
work needed in order to completely model conjugate heat transfer in a fluid-
structure interaction problem

iv

Table of Contents

LIST OF TABLES ... V
LIST OF FIGURES ... VI
NOMENCLATURE .. VII
1 INTRODUCTION .. 1

1.1 FSI METHODOLOGY .. 1
2 OPENFOAM ... 4

2.1 OPENFOAM INTRODUCTION ... 5
2.2 OPENFOAM SOLVER CREATION ... 6

2.2.1 icoThermFsiFoam Creation ... 8
2.3 OPENFOAM IMPLEMENTATION .. 12

3 EXPERIMENTAL SET-UP ... 13
3.1 SIMULATION SETUP PARAMETERS ... 17

4 VALIDATION ... 18
4.1 FLUID SOLVER GRID INDEPENDENCE ... 18
4.2 FSI SOLVER VALIDATION ... 20

5 COMPLICATIONS ... 20

6 DISCUSSION ... 21
6.1 HOW CAN IT BE USED IN THE FUTURE? .. 21
6.2 WHAT ELSE STILL NEEDS TO BE DONE? ... 22

REFERENCES .. 23

APPENDIX A – ICOTHERMFSIFOAM SOLVER CODE 24
APPENDIX B – ICOTHERMFOAM SOLVER CODE .. 48

APPENDIX C – BLOCKMESH VERTICE DIAGRAM AND COORDINATES 53

v

List of Tables

Table 3-1: Summary of Primary Dimensions4 ... 15
Table 3-2: Material Properties ... 18

vi

List of Figures

Figure 2-1: Layout of OpenFOAM structure .. 5
Figure 2-2: OpenFOAM Directory Structure .. 7
Figure 2-3: Reference Cavity Temperature Distribution 10
Figure 2-4: Experimental Cavity Temperature Distribution 11
Figure 2-5: Case Flow Chart ... 13
Figure 3-1: Basic FSI Geometry .. 14
Figure 3-2: Geometry Detail .. 14
Figure 3-3: blockMesh Setup .. 15
Figure 4-1: Grid Independence of icoFoam on Turek-Hron geometry 19

Nomenclature

Re = Reynold’s number
µ = shear modulus
ρ = density
νf = kinematic viscosity
νs = Poisson’s ratio

1

1 Introduction
Fluid Structure Interaction (FSI) is the interaction between a fluid and

structure. When a fluid flows around a structure, that structure is deformed

thereby changing the wetted area as well as the geometry. As the structure is

deformed, it changes how the fluid flows around it. While this interaction can be

negligible in some cases, low speed wind on a building, it can have very drastic

effects in others such as aeroelastic failure where accurate modeling is critical.

These interactions usually take one of two forms, steady and unsteady. An

unsteady interaction is characterized by structural deformation that does not

remain in a stressed state, i.e. one that returns to its original position only to be

deformed again.

In recent years, FSI has become an important sub-field of numerical

simulation. Prior to this, their existed a wide range of finite element codes for

structural problems and computational fluid dynamics codes for fluid flow

problems. Eventually, these codes were coupled to provide a solution which

more accurately represents reality. This joint solution has applications in

numerous fields including aerospace, bio-medical, power generation, computer

design, and civil engineering.

1.1 FSI Methodology

There are two methodologies for solving coupled FSI systems – the

monolithic, and the partitioned approach. The monolithic approach seeks to

define a series of partial differential equations (PDEs) that govern the entire fluid

and structural domain and then discretize the complete domain1. While simple in

2

theory, this approach is difficult to actually implement due to the differing

mathematical and numerical properties of the two domains1. Because monolithic

solvers solve for all variables simultaneously during a single time step, they can

be more robust and can solve a wider variety of cases. For identical reasons,

they are also more computationally expensive and somewhat more difficult to

code.

The partitioned approach seeks to utilize existing fluid and structural

codes and couple these codes at the interface of the two domains. The fluid

solver uses a separate set of equations, variables, and mesh than the solid

solver2. The coupling happens at the boundary where the pressure from the fluid

updates the boundary of the solid which is then solved for to determine

displacement of the interface boundary2. This updated boundary is then used to

solve the fluid domain. This represents sort of a staggered solution where only

one field is solved per time step2. Most of the existing FSI codes follow a

partitioned approach and can be further broken into weakly and strongly coupled

implementations. One of the biggest advantages of the partitioned solver is that

it makes use of already existing, highly refined fluid and structure codes1.

Weakly coupled solvers, also called loosely coupled, start by predicting

the structural motion and then solving for the fluid properties3. These fluid

properties, primarily pressure and fluid stresses, are transferred to the interface

where they act as boundary conditions for the structural solver which then solves

for the structure’s displacement3. A defining characteristic of these weakly

coupled solvers is that there is “no check that the predicted structural

3

displacements match the displacements computed at the end of the step”3. This

characteristic in particular defines the solver as weakly coupled and gives it an

explicit nature despite the potential implicit nature of the individual fluid or

structural solvers3.

A weakly coupled solver can be made into a strongly coupled solver with

an additional step that computes the convergence of the predicted and computed

structural displacements during each step of the solution. This iteration defines

the solver as strongly coupled as well as giving it an implicit nature3. Both block-

Newton root finding and fixed point iteration techniques are used to tighten the

coupling3 with fixed point being the most common. The fixed point technique is

typically implemented with Aitken relaxation4. Strongly coupled solvers are more

computationally expensive than their weaker counterparts as a result of the extra

iterations.

Weakly coupled solvers are ideal for problems with small deformations

and momentum variations between time steps as they don’t have the extra

subiterations at the interface2. These solvers also are unable to handle cases

where the density ratio of the fluid and solid approach unity5. The ultimate

reason for these shortcomings is the “added-mass effect” related to energy

conservation at the interface2,3. When deriving the coupling conditions for the

fluid and structure, there is an “extra operator in front of the second order time

derivative” for the structure6. This operator functions as an “added-mass” and

takes into account the way in which the fluid alters the natural vibration

frequencies of the solid6. Functionally, during solver iterations, the fluid forces

4

are dependent on predicted structural displacements instead of the actual

displacements and so error is introduced2. The extra iterations required to

transform the solver from weakly coupled to strongly coupled have been shown

to negate the influence of the “added-mass effect”7.

2 OpenFoam
OpenFOAM (Open Field Operation and Manipulation) is the code suite

chosen for the simulations carried out for this research. This is an open source

program suite capable of tackling a wide range of both fluid and structural

problems. OpenFOAM, initially developed as FOAM, was brought to the open

source domain with the launch of OpenCFD Ltd. in 2004 and subsequently

acquired by SGI Corp in 2011*. It has remained and always will be open source

due to the bylaws of the managing organization which has allowed a wide range

of collaboration and development with a greater audience than most commercial

codes have access to. This has in turn improved and broadened the scope of

the software quicker than can be accomplished with most commercial codes.

The software also allows ease of comparison in the academic community as

everyone has uninhibited access to the same code. Commercial users include

ICE, Strömungsforschung Gmbh, who utilizes it for optimization of air

conditioning and filtration, as well as move-csc who make use of OpenFOAM for

turbine design and automotive aerodynamics.

* http://www.openfoam.com/features/

5

2.1 OpenFOAM Introduction

An object oriented approach was used when OpenFOAM was created in

C++8. As described on the OpenFOAM website, the program “follows a highly

modular code design in which collections of functionality (e.g. numerical

methods, meshing, physical models,…) are each compiled into their own shared

library”*. This structure allows the user to easily modify components of the code

and adapt the solvers to specific cases. OpenFOAM can be broken into two

types of applications, solvers which handle the PDE’s and utilities which handle

data processing8. Figure 2-1 shows the basic layout of the program with the

libraries at the top feeding into the various program components.

Figure 2-1: Layout of OpenFOAM structure†

In an effort to ensure the ease of modularity and user adaptability of the

code, the solver syntax closely resembles the PDE that it is solving for. “For

example the following equation

* http://www.openfoam.com/features/
† http://www.openfoam.org/docs/user/

6

pUU
t
U

−∇=∇•∇−•∇+
∂

∂
µφ

ρ

is represented by the code*.”

 solve
 (
 fvm::ddt(rho, U)
 + fvm::div(phi, U)
 - fvm::laplacian(mu, U)
 ==

 fvc::grad(p)
);

This syntax is very intuitive and thus simplifications or additions can easily be

made to solvers by eliminating or adding terms. These solvers are also

procedural in nature, which mimics the natural procedure of the solution

algorithm being implemented*. These characteristics combine to allow

implementation and modification to a multitude of engineering fields.

2.2 OpenFOAM Solver Creation

In order to build a new solver, it will be necessary to have a modicum of

understanding of the solver file structure. The OpenFOAM library contains

executable library files with .so extensions, or shared object files. These make

up the class definitions that the solvers are based on. There are also header

files (.H) known as dependency files that contain the class declaration including

the name of the class and its function/s. When a new solver is created, it needs

to be compiled which is accomplished with the ‘wmake’ command. This

command is somewhat “more versatile and easier to use” than the Linux included

‘make’ command and can be used to compile any code, not just OpenFOAM

* http://www.openfoam.org/docs/user/

7

scripts*. The typical solver first contains a list of the necessary headers called by

a ‘# include’ statement*. The ‘wmake’ command will systematically work

through this list checking whether the source files have been updated and

selectively compiling only those that have been.

The directory structure for a new application can be seen in Figure 2-2.

All of the files pertaining to the new solver are placed in a directory with the name

of the new solver. There is a .C file with the solver name that calls all of the

necessary libraries as well as initializing the time, meshes, and material

properties. This file contains the time loop as well as the calls to the individual

solvers. The other .H files in the solver directory relate to the initialization and

the calls within the time loop. The Make directory includes a file titled options

which “contains the full directory paths to locate the header files … and library

names” while the file titled “files”, lists the entire path and name of the solver

once it has been compiled*.

Figure 2-2: OpenFOAM Directory Structure*

* http://www.openfoam.org/docs/user/

8

2.2.1 icoThermFsiFoam Creation

The first step in implementing the OpenFOAM package was to create the

FSI solver from a fluid and structural solver with the addition of interface

coupling. The thermal FSI solver created for this research, icoThermFsiFoam, is

a combination of two existing solvers with specific modifications. The structural

component of the solver “is based on the stressedFoam solver and as such is

limited to linear stress-strain relationships and relatively small deformations5.”

The fluid component of the solver is based on icoThermFoam which is itself a

modification of the icoFoam solver such that thermal effects can be computed

within the fluid.

icoFoam is a standard OpenFOAM solver designed to solve transient

cases for incompressible, laminar, Newtonian fluids*. It does this by

implementing the PISO algorithm to solve the incompressible laminar

simplification of the Navier-Stokes equations†. The PISO algorithm stands for

pressure implicit with split operator and is the method utilized in coupling the

pressure and velocity equations9. It functions as a loop with “an implicit

momentum predictor followed by a series of pressure solutions and explicit

velocity corrections”9 and is solved until the user defined tolerance is satisfied.

The PISO algorithm is chosen over the SIMPLE (Semi-Implicit Method for

Pressure-Linked Equations) algorithm because it is more efficient for cases

where the time step is determined by the need for temporal accuracy though the

SIMPLE algorithm can be used in transient cases as well9. The icoFoam solver

* http://www.openfoam.com/features/
† http://www.openfoam.org/docs/user/

9

is “inherently transient, requiring an initial condition (such as zero velocity) and

boundary conditions”*.

The thermal modification of the icoFoam solver was completed and tested

against a cavity with a moving lid as described in the literature‡. The first step in

creating the icoThermFoam solver was to copy the icoFoam solver, modify the

Make files in order to create the new solver name and recompile the files. The

createFields.H file was modified to include a call for the thermal diffusivity value

as well as creating the volume scalar field for temperature. Finally, the actual

solver file icoThermFoam.C was altered to include the constant diffusivity,

incompressible, and no source or sink convective heat transfer PDE represented

by equation 2 which is a simplification of equation 1, the full form convective

PDE. These modifications now complete the new solver and it can be compiled

for use. All of the necessary files for the icoThermFoam solver are listed in

Appendix B.

 RTTD
t
T

+•∇−∇•∇=
∂

∂
)()(φ (1)

 TTD
t
T

∇•−∇=
∂

∂
φ2 (2)

The test case for the icoThermFoam solver is the slightly modified cavity

case, which is the standard tutorial for the icoFoam solver. To modify the tutorial

case, we need to add the solution schemes to the fvSchemes.H file. The

lacplacian scheme for the temperature equation is Gauss linear corrected and

the divergence scheme is Gauss upwind. The fvSolution.H file is updated to

* http://www.openfoam.org/docs/user/
‡ http://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam

10

include the solver controls for the temperature equation. The biconjugate

gradient solver with diagonal incomplete-LU (asymmetric) preconditioning is

selected for this case. Finally, the temperature boundary conditions are added to

the initial condition directory (0). Figure 2-3 shows the temperature distribution in

the cavity case as given by the literature and Figure 2-4 shows the temperature

distribution in the same cavity case with the same flow parameters as solved with

the icoThermFoam solver that was created.

Figure 2-3: Reference Cavity Temperature Distribution*

* http://openfoamwiki.net/index.php/How_to_add_temperature_to_icoFoam

11

Figure 2-4: Experimental Cavity Temperature Distribution

The actual creation of the icoThermFsiFoam solver starts by creating a

directory with the same name and copying many files from the stressedFoam

and icoThermFoam solvers to this new directory. The icoFoam.C file is used as

the template for the icoThermFsiFoam.C file and is amended by removing the

PDE solvers and including several “# include” lines. This file does not

contain any PDE’s but includes calls for both the structural and fluid solvers as

well as all of the other necessary .H files required for the coupled solver.

The icoThermFoam.C fluid solver is updated to include the continuity

errors associated with the moving mesh instead of the original continuity error file

and is renamed solveFluid.H. Many of the “# include” headers are stripped

as they are now in the icoThermFsiFoam.C and are no longer needed in the fluid

solver file. The structural solver is updated in a similar manner with the time

stepping code removed as it is now in the icoThermFsiFoam.C file. All instances

12

of U and T are replaced with Usolid and Tsolid respectively in order for the

code to keep the fluid and structural parameters separate, especially since the

“U” in “Usolid” refers to displacement, not velocity as it does in the fluid solver.

The various other .H files are updated in order to have consistent naming

schemes for the coupled solver. One of the most important files that is copied

from the OpenFOAM libraries is the readCouplingProperties.H file which

describes to the solver exactly how the two domains are coupled. Once all of the

modifications are made to the individual files, the solver can be compiled for use.

The full icoThermFsiFoam solver code can be found in Appendix A.

2.3 OpenFOAM Implementation

The icoThermFsiFoam solver requires a very precise case setup in order

to run properly. The case name serves as the parent directory and then the fluid

and solid sub-directories are created within this structure. These two domain

sub-directories each contain the initial time sub-directory (0), as well as the

constant and system sub-directories associated with a typical OpenFOAM case.

The constant directory contains a polyMesh sub-directory which contains the

blockMesh dictionary and all of the mesh files. The constant directory also

contains the constant material properties for the particular domain. The system

directory within the fluid directory contains the pertinent run information for the

case. The same directory within the solid directory contains a soft link to the

controlDict in the fluid directory which is the overall case control file as well as

files relating to the different schemes needed to solve the solid domain. A visual

representation of the preceding can be seen in a directory and file flowchart for

13

an icoThermFsiFoam case can in Figure 2-5. This case setup is designed to use

the fluid directory as the run directory because OpenFOAM expects to see the 0,

constant and system directories as the first subdirectories it encounters (versus

fluid and solid under the case name). This setup necessitates the need for soft

links so that the solid information can be read from the fluid directory. When the

solver writes the output files, they will also be written to the case directory. Each

time directory will have the fluid output as well as a sub-directory with the solid

output. Soft links to these files can be created within the solid directory using a

file called linkedSolutions.

Figure 2-5: Case Flow Chart

3 Experimental Set-up
The first step in creating a CFD (or FEA) case is defining the geometry of

the problem that will be solved. In OpenFOAM this can be accomplished by

using the blockMesh utility which is designed for simple geometries. The

geometry selected for this experiment is the Turek/Hron FSI benchmark4 since

14

there is existing data to compare at least the FSI results to as well as being

simple and computationally “easy”. The basic geometry can be seen in Figure

3-1 and Figure 3-2 with the associated dimensions summarized in

Table 3-1. The basic setup consists of a stationary circle located near the

inlet with an elastic tail trailing from the downstream side. This geometry is a

modified 2D version of the standard CFD benchmark involving a cylinder

exposed to transverse flow.

Figure 3-1: Basic FSI Geometry

Figure 3-2: Geometry Detail

15

Table 3-1: Summary of Primary Dimensions4

Parameter Dimension (m) or
parameter location

H 0.41
L 2.5
C (0.2,0.2)
r 0.05
l 0.35
A (0.6,0.2)
h 0.02

Once the geometry is defined, it will be important to identify regions with

significant flow phenomena so that we can make sure that we do an adequate

job of meshing the domain. Since the vortex shedding of the circle and

subsequently the motion of the tail are of interest, adequate cell density is

required in those regions. This is implemented by adding extra blocks closely

surrounding the geometry of interest in order to better control mesh density and

quality. Figure 3-3 shows all of the blocks used to mesh the domain.

Figure 3-3: blockMesh Setup

16

To create the blockMesh dictionary the coordinates for the vertices of

each block must be defined. These coordinates are summarized in Appendix C

and were derived using basic geometry. The listed coordinates create a

geometry 10 times larger than that given by the Turek/Hron benchmark but the

blockMesh dictionary incorporates a scaling function so that the resultant domain

is identical. For every block in the domain, the number of cells in each direction,

x, y, and z, can be set along with grading, or the cell expansion ratio in each of

the three coordinate directions. Due to the nature of the FSI problem, two

separate meshes, and therefore blockMesh dictionaries, will need to be created,

one for the fluid and one for the structure. Because of the coupling methodology

prescribed in the icoThermFsiFoam solver, the vertices of the coupled fluid and

structural meshes must be coincident. This means that the same number of cells

and grading need to be specified in the appropriate directions at the fluid-

structure interface.

The fluid mesh fills the white portion of Figure 3-3 while the solid mesh fills

only the black portion. The gray portion is not meshed as it is defined to act as a

non-deforming rigid body, or wall, which will shed vortices. Once the two

blockMesh dictionaries are fully created, the user can run the blockMesh utility

from within the case directory to create the requisite mesh domains for the solver

to solve on. The checkMesh utility can be used to diagnose problems with the

blockMesh dictionary and evaluate the quality of the mesh.

After the geometry is created, the next step in running a simulation is

setting the various properties on the domain. These boundary and initial

17

conditions are set inside of the 0 time step directory. Each parameter (i.e.

temperature, velocity, or pressure) has its own file and both the boundary and

initial conditions are set within the single file. These parameters are defined on

each patch (which were set in the blockMesh dictionary) of the domain and can

be set to fixed values, periodic behavior, or any one of a number of other

conditions. Symmetry planes are also set in these files by defining a symmetry

plane for a given patch for each parameter. Finally, the last step is to specify all

of the material properties in the ‘constant’ directory. The icoThermFsiFoam

solver is designed to be run from the fluid directory so the user can either enter

that directory and run the program or type: icoThermFsiFoam –case fluid

from the case name directory.

3.1 Simulation Setup Parameters

For this simulation, laminar flow must be maintained in the fluid and the

solid should be flexible enough that it will result in non-trivial displacement. The

laminar flow requirement generally leads to the use of glycerin in physical

experiments while a flexible solid could be made from polybutadiene or

polypropylene. Table 3-2 shows the material properties for these three materials.

For the sake of this simulation, simplified parameters were used which closely

resemble these physical materials as can be seen in the same table.

18

Table 3-2: Material Properties

Material ρ (103 3m
kg) νs

µ (106 2ms

kg)

Polybutadiene 0.91 0.5 0.53
Polypropylene 1.1 0.42 317
 ρ (103 3m

kg) νf (10-3
s
m2

)

Glycerin 1.26 1.13

Simulation Properties
 ρ (103 3m

kg) ν s

µ (106 2ms
kg)

Solid 1.0 0.4 0.5
 ρ (103 3m

kg) νf (10-3
s
m2

)

Fluid 1.0 1.0

4 Validation
4.1 Fluid solver grid independence

To have confidence in the results of any CFD simulation, it is important to

determine whether the numerical error is acceptable. This numerical error will

theoretically approach zero as the number of mesh points approaches infinity.

The convergence of the CFD solution will also be less sensitive to mesh

coarseness as the number of mesh points increases. It can be unpractical to

19

have too fine a mesh as computation time increases substantially with no

justifiable gain in accuracy.

The Richardson extrapolation technique as outlined in

http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html was used to

calculate the grid convergence for the fluid solver. An initial mesh was selected

and then made more coarse by halving the number of grid points and more fine

by doubling the number of grid points. Simulations were performed on these

three grids with the steady state stagnation pressure at the leading edge of the

sphere used as the quantity of comparison. This quantity was chosen due to its

steady nature and because the pressure force is used to update the solid

boundary. The results can be seen in Figure 4-1 which show that the initial mesh

lies within the GCI (Grid Convergence Index) band and is therefore acceptable

for future simulations.

20

Figure 4-1: Grid Independence of icoFoam on Turek-Hron geometry

4.2 FSI solver validation

The icoThermFsiFoam solver created in section 2.2.1 does not fully

implement heat transfer between the solid and fluid during an entire experimental

run. The reason for this is that OpenFOAM does not contain the regionCoupling

boundary condition for finite area solvers, which is the type of solver that the

structural solver is. The regionCoupling boundary condition allows conjugate

heat transfer between a solid and fluid domain. Due to the available moving

mesh utilities in OpenFOAM and the need for a relatively robust structural solver,

the choice was made to continue using a finite area based structural solver.

21

5 Complications
Several attempts were made to construct a finite area version of the

regionCoupling boundary as many of the boundary conditions that are packaged

with OpenFOAM are available in both finite area and finite volume forms.

Ultimately, a functional finite area version of the regionCoupling boundary

condition was unable to be built. This meant that the only time there was any

coupling between the fluid and solid regions was at the inception of a simulation

due to the initial conditions. Other similar boundary conditions were investigated

but none were able to pass gradient information through a moving mesh at a

solid/fluid boundary from a finite volume solver to a finite area solver.

When this project was started, OpenFOAM-1.5-dev was the most current

available version of OpenFOAM that was capable of solving FSI simulations.

During the course of the project, another branch of OpenFOAM was developed

as OpenFOAM-1.6-ext. This branch still maintained some of the ability to solve

FSI simulations but completely reformulated the structural solver and reworked

the coupling between the fluid and structural solvers. There is a chance that with

significantly more time, the thermal component of this project could be worked

into the new framework of OpenFOAM-1.6-ext but it would mean the

abandonment of all of the work undertaken in the OpenFOAM-1.5-dev

framework. Future work should be carried out in the framework of OpenFOAM-

1.6-ext as this is the most currently supported version of OpenFOAM that is

capable of performing FSI simulations.

22

6 Discussion
6.1 How can it be used in the future?

FSI solvers, and particularly those that can simulate conjugate heat

transfer, can be used to investigate any system where determining the interaction

between a fluid and structure has a significant engineering implications.

Historically, aeroelasticity has been a major driver for these types of solvers,

however, other engineering fields are realizing the great potential for this type of

analysis. FSI solvers utilizing heat transfer between the fluid and solid could be

very useful in the design of future energy production systems such as those that

convert wave energy to electricity. Biomedical engineering is already embracing

the basic FSI abilities in modeling fluid movement in veins and arteries. Adding

the ability to accurately predict heat transfer between the fluid and artery could

help determine absorption rates of medicine based on temperature.

6.2 What else still needs to be done?

The next step in creating a robust FSI solver in OpenFOAM with heat

transfer would be to fully implement the regionCoupling boundary condition for

finite area solvers in version 1.5-dev. Further work could also include strongly

coupling the fluid and structural solvers by checking the convergence between

the predicted and actual computed structural displacements during each step of

the simulation. With any computer modeling, it will be necessary to check the

predicted results with actual experimental data to ensure that the model is

accurate. As there is no currently existing heat transfer in FSI benchmark data, it

makes the most sense to build off of existing FSI benchmark geometries as they

23

feature the more complicated physics. Guidelines could then be developed in

order to build a physical experiment based on the computer modeling.

24

References

1 Masarati, P., Mategazza, P., “A Conservative Mesh-Free Approach For

Fluid Structure Problems,” International Conference on Computational
Methods for Coupled Problems in Science and Engineering, edited by M.
Papadrakakis, E. Oñate, B. Schrefler, CIMNE, Barcelona, 2005, pp. 24-
27.

2 Förster, C., Wall, W., Ramm, E., “Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible
viscous flows” Computation Methods in Applied Mechanics and
Engineering, vol. 196, no. 7, 2007, pp. 1278-1293.

3 Campbell, R., “Fluid-Structure Interaction and Inverse Design Simulations
for Flexible Turbomachinery,” Ph.D. Dissertation, College of Engineering,
The Pennsylvania State University, State College, PA, 2010.

4 Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M., “Numerical
Benchmarking of Fluid Structure Interaction: A Comparison of Different
Discretization and Solution Approaches,” Fluid Structure Interaction II, Vol.
73, 2010, pp. 413-424.

5 Maus, K., “Constructing solvers for weakly coupled FSI problems using
OpenFOAM-1.5-dev,” PhD Course in CFD with OpenSource Software
2009, Chalmers University of Technology, Göteborg, Sweden, 2009.

6 Causin, P., Gerbeau, J.F., Nobile, F., “Added-mass effect in the design of
partitioned algorithms for fluid-structure problems,” Computer Methods in
Applied Mechanics and Engineering, Vol. 194, No. 42-44, 2005, pp. 4506-
4527

7 Deparis, S., Fernández, M., Formaggia, L., “Acceleration of a Fixed Point
Algorithm for Fluid-Structure Interaction Using Transpiration Conditions,”
ESAIM: Mathematical Modeling and Numerical Analysis, Vol. 37, 2003 pp.
601-616.

8 Tapia, X., “Modeling of wind flow over complex terrain using OpenFoam,”
M.S. Thesis, University of Gävle, Gävle, Sweden, 2009.

9 Jasak, H., “Error Analysis and Estimation for the Finite Volume Method
with Applications to Fluid Flows,” Ph.D. Dissertation, Department of
Mechanical Engineering, Imperial College of Science and Medicine,
London, England, 1996.

25

Appendix A – icoThermFsiFoam Solver Code

icoThermFsiFoam.C
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
 icoThermFsiFoam

Description
 Transient FSI solver for incompressible, laminar flow of Newtonian
fluids and
 linear elastic, small-strain deformation solids.

*---
------*/

#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "tractionDisplacementFvPatchVectorField.H"
#include "patchToPatchInterpolation.H"
#include "tetFemMatrices.H"
#include "faceTetPolyPatch.H"
#include "tetPolyPatchInterpolation.H"
#include "fixedValueTetPolyPatchFields.H"
#include "pointFields.H"

26

#include "volPointInterpolation.H"

// *
* * * //

int main(int argc, char *argv[])
{

include "setRootCase.H"

include "createTime.H"
include "createDynamicFvMesh.H"
include "createStressMesh.H"
include "createFields.H"

include "readMechanicalProperties.H"
include "readThermalProperties.H"
include "createStressFields.H"
include "readCouplingProperties.H"
include "readTimeControls.H"

include "initContinuityErrs.H"

// *
* * * //

 Info<< "\nStarting time loop\n" << endl;

 for (runTime++; !runTime.end(); runTime++)
 {
 Info<< "Time = " << runTime.timeName() << nl << endl;

include "readPISOControls.H"
include "CourantNo.H"

include "readTimeControls.H"
include "setDeltaT.H"
//Main solver code:
include "setPressure.H"
include "solveSolid.H"
include "setMotion.H"
include "solveFluid.H"

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << " ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

 Info<< "End\n" << endl;

 return(0);
}

27

//

** //

tractionDisplacementFvPatchVectorField.C
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

*---
------*/

#include "tractionDisplacementFvPatchVectorField.H"
#include "addToRunTimeSelectionTable.H"
#include "volFields.H"

// *
* * * //

namespace Foam
{

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * *
* * * //

tractionDisplacementFvPatchVectorField::
tractionDisplacementFvPatchVectorField
(
 const fvPatch& p,

28

 const DimensionedField<vector, volMesh>& iF
)
:
 fixedGradientFvPatchVectorField(p, iF),
 traction_(p.size(), vector::zero),
 pressure_(p.size(), 0.0)
{
 fvPatchVectorField::operator=(patchInternalField());
 gradient() = vector::zero;
}

tractionDisplacementFvPatchVectorField::
tractionDisplacementFvPatchVectorField
(
 const tractionDisplacementFvPatchVectorField& tdpvf,
 const fvPatch& p,
 const DimensionedField<vector, volMesh>& iF,
 const fvPatchFieldMapper& mapper
)
:
 fixedGradientFvPatchVectorField(tdpvf, p, iF, mapper),
 traction_(tdpvf.traction_, mapper),
 pressure_(tdpvf.pressure_, mapper)
{}

tractionDisplacementFvPatchVectorField::
tractionDisplacementFvPatchVectorField
(
 const fvPatch& p,
 const DimensionedField<vector, volMesh>& iF,
 const dictionary& dict
)
:
 fixedGradientFvPatchVectorField(p, iF),
 traction_("traction", dict, p.size()),
 pressure_("pressure", dict, p.size())
{
 fvPatchVectorField::operator=(patchInternalField());
 gradient() = vector::zero;
}

tractionDisplacementFvPatchVectorField::
tractionDisplacementFvPatchVectorField
(
 const tractionDisplacementFvPatchVectorField& tdpvf
)
:
 fixedGradientFvPatchVectorField(tdpvf),
 traction_(tdpvf.traction_),
 pressure_(tdpvf.pressure_)
{}

tractionDisplacementFvPatchVectorField::

29

tractionDisplacementFvPatchVectorField
(
 const tractionDisplacementFvPatchVectorField& tdpvf,
 const DimensionedField<vector, volMesh>& iF
)
:
 fixedGradientFvPatchVectorField(tdpvf, iF),
 traction_(tdpvf.traction_),
 pressure_(tdpvf.pressure_)
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * *
* * * //

void tractionDisplacementFvPatchVectorField::autoMap
(
 const fvPatchFieldMapper& m
)
{
 fixedGradientFvPatchVectorField::autoMap(m);
 traction_.autoMap(m);
 pressure_.autoMap(m);
}

// Reverse-map the given fvPatchField onto this fvPatchField
void tractionDisplacementFvPatchVectorField::rmap
(
 const fvPatchVectorField& ptf,
 const labelList& addr
)
{
 fixedGradientFvPatchVectorField::rmap(ptf, addr);

 const tractionDisplacementFvPatchVectorField& dmptf =
 refCast<const tractionDisplacementFvPatchVectorField>(ptf);

 traction_.rmap(dmptf.traction_, addr);
 pressure_.rmap(dmptf.pressure_, addr);
}

// Update the coefficients associated with the patch field
void tractionDisplacementFvPatchVectorField::updateCoeffs()
{
 if (updated())
 {
 return;
 }

 const dictionary& mechanicalProperties =
 db().lookupObject<IOdictionary>("mechanicalProperties");

 const dictionary& thermalProperties =
 db().lookupObject<IOdictionary>("thermalProperties");

30

 dimensionedScalar rho(mechanicalProperties.lookup("rho"));
 dimensionedScalar rhoE(mechanicalProperties.lookup("E"));
 dimensionedScalar nu(mechanicalProperties.lookup("nu"));

 dimensionedScalar E = rhoE/rho;
 dimensionedScalar mu = E/(2.0*(1.0 + nu));
 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 - 2.0*nu));
 dimensionedScalar threeK = E/(1.0 - 2.0*nu);

 Switch planeStress(mechanicalProperties.lookup("planeStress"));

 if (planeStress)
 {
 lambda = nu*E/((1.0 + nu)*(1.0 - nu));
 threeK = E/(1.0 - nu);
 }

 vectorField n = patch().nf();

 const fvPatchField<tensor>& gradU =
 patch().lookupPatchField<volTensorField, tensor>("grad(U)");

 gradient() =
 (
 (traction_ - pressure_*n)/rho.value()
 - (n & (mu.value()*gradU.T() - (mu + lambda).value()*gradU))
 - n*tr(gradU)*lambda.value()
)/(2.0*mu + lambda).value();

 Switch thermalStress(thermalProperties.lookup("thermalStress"));

 if (thermalStress)
 {
 dimensionedScalar alpha(thermalProperties.lookup("alpha"));
 dimensionedScalar threeKalpha = threeK*alpha;

 const fvPatchField<scalar>& T =
 patch().lookupPatchField<volScalarField, scalar>("T");

 gradient() += n*threeKalpha.value()*T/(2.0*mu +
lambda).value();
 }

 fixedGradientFvPatchVectorField::updateCoeffs();
}

// Write
void tractionDisplacementFvPatchVectorField::write(Ostream& os) const
{
 fvPatchVectorField::write(os);
 traction_.writeEntry("traction", os);
 pressure_.writeEntry("pressure", os);
 writeEntry("value", os);
}

31

// *
* * * //

makePatchTypeField(fvPatchVectorField,
tractionDisplacementFvPatchVectorField);

// *
* * * //

} // End namespace Foam

//

** //

tractionDisplacementFvPatchVectorField.H
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Class
 tractionDisplacementFvPatchVectorField

Description
 Fixed traction boundary condition for the standard linear elastic,
fixed
 coefficient displacement equation (stressedFoam).

32

SourceFiles
 tractionDisplacementFvPatchVectorField.C

*---
------*/

#ifndef tractionDisplacementFvPatchVectorField_H
#define tractionDisplacementFvPatchVectorField_H

#include "fvPatchFields.H"
#include "fixedGradientFvPatchFields.H"

// *
* * * //

namespace Foam
{

/*---
------*\
 Class tractionDisplacementFvPatch Declaration
*---
------*/

class tractionDisplacementFvPatchVectorField
:
 public fixedGradientFvPatchVectorField
{

 // Private Data

 vectorField traction_;
 scalarField pressure_;

public:

 //- Runtime type information
 TypeName("tractionDisplacement");

 // Constructors

 //- Construct from patch and internal field
 tractionDisplacementFvPatchVectorField
 (
 const fvPatch&,
 const DimensionedField<vector, volMesh>&
);

 //- Construct from patch, internal field and dictionary
 tractionDisplacementFvPatchVectorField
 (
 const fvPatch&,
 const DimensionedField<vector, volMesh>&,
 const dictionary&

33

);

 //- Construct by mapping given
 // tractionDisplacementFvPatchVectorField onto a new patch
 tractionDisplacementFvPatchVectorField
 (
 const tractionDisplacementFvPatchVectorField&,
 const fvPatch&,
 const DimensionedField<vector, volMesh>&,
 const fvPatchFieldMapper&
);

 //- Construct as copy
 tractionDisplacementFvPatchVectorField
 (
 const tractionDisplacementFvPatchVectorField&
);

 //- Construct and return a clone
 virtual tmp<fvPatchVectorField> clone() const
 {
 return tmp<fvPatchVectorField>
 (
 new tractionDisplacementFvPatchVectorField(*this)
);
 }

 //- Construct as copy setting internal field reference
 tractionDisplacementFvPatchVectorField
 (
 const tractionDisplacementFvPatchVectorField&,
 const DimensionedField<vector, volMesh>&
);

 //- Construct and return a clone setting internal field
reference
 virtual tmp<fvPatchVectorField> clone
 (
 const DimensionedField<vector, volMesh>& iF
) const
 {
 return tmp<fvPatchVectorField>
 (
 new tractionDisplacementFvPatchVectorField(*this, iF)
);
 }

 // Member functions

 // Access

 virtual const vectorField& traction() const
 {
 return traction_;
 }

34

 virtual vectorField& traction()
 {
 return traction_;
 }

 virtual const scalarField& pressure() const
 {
 return pressure_;
 }

 virtual scalarField& pressure()
 {
 return pressure_;
 }

 // Mapping functions

 //- Map (and resize as needed) from self given a mapping
object
 virtual void autoMap
 (
 const fvPatchFieldMapper&
);

 //- Reverse map the given fvPatchField onto this
fvPatchField
 virtual void rmap
 (
 const fvPatchVectorField&,
 const labelList&
);

 //- Update the coefficients associated with the patch field
 virtual void updateCoeffs();

 //- Write
 virtual void write(Ostream&) const;
};

// *
* * * //

} // End namespace Foam

// *
* * * //

#endif

//

** //

35

createStressMesh.H
 Foam::Info<< "Create stressMesh for time = "
 << runTime.timeName() << Foam::nl << Foam::endl;

 Foam::fvMesh stressMesh
 (
 Foam::IOobject
 (
 "solid",
 runTime.timeName(),
 runTime,
 Foam::IOobject::MUST_READ
)
);

 Foam::pointMesh pStressMesh(stressMesh);

 Foam::volPointInterpolation cpi
 (
 stressMesh,
 pStressMesh
);

createFields.H
 Info<< "Reading transportProperties\n" << endl;

 IOdictionary transportProperties
 (
 IOobject
 (
 "transportProperties",
 runTime.constant(),
 mesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
);

 dimensionedScalar nu
 (
 transportProperties.lookup("nu")
);

 dimensionedScalar rhoFluid
 (
 transportProperties.lookup("rho")
);

 Info<< "Reading field p\n" << endl;
 volScalarField p
 (
 IOobject
 (
 "p",
 runTime.timeName(),
 mesh,

36

 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

 Info<< "Reading field U\n" << endl;
 volVectorField U
 (
 IOobject
 (
 "U",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

 Info<< "Reading field T\n" << endl;
 volScalarField T
 (
 IOobject
 (
 "T",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

include "createPhi.H"

 label pRefCell = 0;
 scalar pRefValue = 0.0;
 setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell,
pRefValue);

readMechanicalProperties.H
 Info<< "Reading mechanical properties\n" << endl;

 IOdictionary mechanicalProperties
 (
 IOobject
 (
 "mechanicalProperties",
 runTime.constant(),
 stressMesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)

37

);

 dimensionedScalar rho(mechanicalProperties.lookup("rho"));
 dimensionedScalar rhoE(mechanicalProperties.lookup("E"));
 dimensionedScalar nuS(mechanicalProperties.lookup("nu"));

 Info<< "Normalising E : E/rho\n" << endl;
 dimensionedScalar E = rhoE/rho;

 Info<< "Calculating Lame's coefficients\n" << endl;

 dimensionedScalar mu = E/(2.0*(1.0 + nuS));
 dimensionedScalar lambda = nuS*E/((1.0 + nuS)*(1.0 - 2.0*nuS));
 dimensionedScalar threeK = E/(1.0 - 2.0*nuS);

 Switch planeStress(mechanicalProperties.lookup("planeStress"));

 if (planeStress)
 {
 Info<< "Plane Stress\n" << endl;

 //- change lambda and threeK for plane stress
 lambda = nuS*E/((1.0 + nuS)*(1.0 - nuS));
 threeK = E/(1.0 - nuS);
 }
 else
 {
 Info<< "Plane Strain\n" << endl;
 }
 Info<< "mu = " << mu.value() << " Pa/rho\n";
 Info<< "lambda = " << lambda.value() << " Pa/rho\n";
 Info<< "threeK = " << threeK.value() << " Pa/rho\n";

readThermalProperties.H
 Info<< "Reading thermal properties\n" << endl;

 IOdictionary thermalProperties
 (
 IOobject
 (
 "thermalProperties",
 runTime.constant(),
 stressMesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
);

 Switch thermalStress(thermalProperties.lookup("thermalStress"));

 dimensionedScalar threeKalpha
 (
 "threeKalpha",
 dimensionSet(0, 2, -2 , -1, 0),
 0
);

38

 dimensionedScalar DT
 (
 "DT",
 dimensionSet(0, 2, -1 , 0, 0),
 0
);

 if (thermalStress)
 {
 dimensionedScalar C(thermalProperties.lookup("C"));
 dimensionedScalar rhoK(thermalProperties.lookup("k"));
 dimensionedScalar alpha(thermalProperties.lookup("alpha"));

 Info<< "Normalising k : k/rho\n" << endl;
 dimensionedScalar k = rhoK/rho;

 Info<< "Calculating thermal coefficients\n" << endl;

 threeKalpha = threeK*alpha;
 DT.value() = (k/C).value();

 Info<< "threeKalpha = " << threeKalpha.value() << " Pa/rho\n";
 }

createStressFields.H
 Info<< "Reading field U\n" << endl;
 volVectorField Usolid
 (
 IOobject
 (
 "U",
 runTime.timeName(),
 stressMesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 stressMesh
);

 volScalarField* Tptr = NULL;

 if (thermalStress)
 {
 Info<< "Reading field T\n" << endl;
 Tptr = new volScalarField
 (
 IOobject
 (
 "T",
 runTime.timeName(),
 stressMesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),

39

 stressMesh
);
 }

 volScalarField& Tsolid = *Tptr;

readCouplingProperties.H
 Info << "Reading coupling properties" << endl;
 IOdictionary couplingProperties
 (
 IOobject
 (
 "couplingProperties",
 runTime.constant(),
 mesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
);

 // Read solid patch data
 word solidPatchName(couplingProperties.lookup("solidPatch"));

 label solidPatchID =
 stressMesh.boundaryMesh().findPatchID(solidPatchName);

 // Read fluid patch data
 word fluidPatchName(couplingProperties.lookup("fluidPatch"));

 label fluidPatchID =
 mesh.boundaryMesh().findPatchID(fluidPatchName);

 if (solidPatchID < 0 || fluidPatchID < 0)
 {
 FatalErrorIn(args.executable())
 << "Problem with patch interpolation definition"
 << abort(FatalError);
 }

 // Create interpolators
 patchToPatchInterpolation interpolatorFluidSolid
 (
 mesh.boundaryMesh()[fluidPatchID],
 stressMesh.boundaryMesh()[solidPatchID]
);

 patchToPatchInterpolation interpolatorSolidFluid
 (
 stressMesh.boundaryMesh()[solidPatchID],
 mesh.boundaryMesh()[fluidPatchID]
);

40

 // Grab solid patch field
 tractionDisplacementFvPatchVectorField& tForce =
 refCast<tractionDisplacementFvPatchVectorField>
 (
 Usolid.boundaryField()[solidPatchID]
);

 // Grab motion field

 // Read fluid patch data
 word movingRegionName(couplingProperties.lookup("movingRegion"));

 const fvMesh& motionMesh =
 runTime.objectRegistry::lookupObject<fvMesh>(movingRegionName);

 tetPointVectorField& motionU =
 const_cast<tetPointVectorField&>
 (

motionMesh.objectRegistry::lookupObject<tetPointVectorField>
 (
 "motionU"
)
);

 fixedValueTetPolyPatchVectorField& motionUFluidPatch =
 refCast<fixedValueTetPolyPatchVectorField>
 (
 motionU.boundaryField()[fluidPatchID]
);

 tetPolyPatchInterpolation tppi
 (
 refCast<const faceTetPolyPatch>(motionUFluidPatch.patch())
);

setPressure.H
{
 // Setting pressure on solid patch
 Info << "Setting pressure" << endl;

 scalarField solidPatchPressure =
 interpolatorFluidSolid.faceInterpolate
 (
 p.boundaryField()[fluidPatchID]
);

 solidPatchPressure *= rhoFluid.value();

 tForce.pressure() = solidPatchPressure;

 vector totalPressureForce =
 sum

41

 (
 p.boundaryField()[fluidPatchID]*
 mesh.Sf().boundaryField()[fluidPatchID]
);

 Info << "Total pressure force = " << totalPressureForce << endl;
}

solveSolid.H
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
 solveSolid

Description
 Transient/steady-state segregated finite-volume solver of linear-
elastic,
 small-strain deformation of a solid body, with optional thermal
 diffusion and thermal stresses.

 Simple linear elasticity structural analysis code.
 Solves for the displacement vector field U, also generating the
 stress tensor field sigma.

*---
------*/

42

{
include "readStressedFoamControls.H"

 int iCorr = 0;
 scalar initialResidual = 0;

 do
 {
 volTensorField gradU = fvc::grad(Usolid);

 if (thermalStress)
 {
 solve
 (
 fvm::ddt(Tsolid) == fvm::laplacian(DT, Tsolid)
);
 }

 fvVectorMatrix UEqn
 (
 fvm::d2dt2(Usolid)
 ==
 fvm::laplacian(2*mu + lambda, Usolid,
"laplacian(DU,U)")

 + fvc::div
 (
 mu*gradU.T() + lambda*(I*tr(gradU)) - (mu +
lambda)*gradU,
 "div(sigma)"
)
);

 if (thermalStress)
 {
 UEqn += threeKalpha*fvc::grad(Tsolid);
 }

 //UEqn.setComponentReference(1, 0, vector::X, 0);
 //UEqn.setComponentReference(1, 0, vector::Z, 0);

 initialResidual = UEqn.solve().initialResidual();

 } while (initialResidual > convergenceTolerance && ++iCorr <
nCorr);

include "calculateStress.H"

}

//

** //

readStressedFoamControls.H

43

 const dictionary& stressControl =
 stressMesh.solutionDict().subDict("stressedFoam");

 int nCorr(readInt(stressControl.lookup("nCorrectors")));
 scalar convergenceTolerance(readScalar(stressControl.lookup("U")));

calculateStress.H
 if (runTime.outputTime())
 {
 volTensorField gradU = fvc::grad(Usolid);

 volSymmTensorField sigma =
 rho*(2.0*mu*symm(gradU) + lambda*I*tr(gradU));

 if (thermalStress)
 {
 sigma = sigma - I*(rho*threeKalpha*Tsolid);
 }

 volScalarField sigmaEq
 (
 IOobject
 (
 "sigmaEq",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 sqrt((3.0/2.0)*magSqr(dev(sigma)))
);

 Info<< "Max sigmaEq = " << max(sigmaEq).value()
 << endl;

 volScalarField sigmaxx
 (
 IOobject
 (
 "sigmaxx",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 sigma.component(symmTensor::XX)
);

 volScalarField sigmayy
 (
 IOobject
 (
 "sigmayy",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,

44

 IOobject::AUTO_WRITE
),
 sigma.component(symmTensor::YY)
);

 volScalarField sigmazz
 (
 IOobject
 (
 "sigmazz",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 sigma.component(symmTensor::ZZ)
);

 Info<< "Max sigmazz = " << max(sigmazz).value()
 << endl;

 volScalarField sigmaxy
 (
 IOobject
 (
 "sigmaxy",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 sigma.component(symmTensor::XY)
);

 volScalarField sigmaxz
 (
 IOobject
 (
 "sigmaxz",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 sigma.component(symmTensor::XZ)
);

 volScalarField sigmayz
 (
 IOobject
 (
 "sigmayz",
 runTime.timeName(),
 stressMesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),

45

 sigma.component(symmTensor::YZ)
);

 runTime.write();
 }

setMotion.H
{
 // Setting mesh motion

 pointVectorField solidPointsDispl =
 cpi.interpolate(Usolid - Usolid.oldTime());

 vectorField newPoints =
 stressMesh.points()
 + solidPointsDispl.internalField();

 stressMesh.movePoints(newPoints);

 vectorField fluidPatchPointsDispl =
 interpolatorSolidFluid.pointInterpolate
 (
 solidPointsDispl.boundaryField()[solidPatchID].
 patchInternalField()
);

 motionUFluidPatch ==
 tppi.pointToPointInterpolate
 (
 fluidPatchPointsDispl/runTime.deltaT().value()
);

 mesh.update();

include "volContinuity.H"

 Info << "Motion magnitude: mean = "
 << average(mag(Usolid.boundaryField()[solidPatchID]))
 << " max = "
 << max(mag(Usolid.boundaryField()[solidPatchID])) << endl;
}

solveFluid.H
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

46

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
 solveFluid

Description
 Transient solver for incompressible, laminar flow of Newtonian
fluids
 with thermal transport.

*---
------*/

{
 fvVectorMatrix UEqn
 (
 fvm::ddt(U)
 + fvm::div(phi, U)
 - fvm::laplacian(nu, U)
);

 solve(UEqn == -fvc::grad(p));

 // --- PISO loop

 for (int corr=0; corr<nCorr; corr++)
 {

include "TEqn.H"

 volScalarField rUA = 1.0/UEqn.A();

 U = rUA*UEqn.H();
 phi = (fvc::interpolate(U) & mesh.Sf())
 + fvc::ddtPhiCorr(rUA, U, phi);

 adjustPhi(phi, U, p);

 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

47

 {
 fvScalarMatrix pEqn
 (
 fvm::laplacian(rUA, p) == fvc::div(phi)
);

 pEqn.setReference(pRefCell, pRefValue);
 pEqn.solve();

 if (nonOrth == nNonOrthCorr)
 {
 phi -= pEqn.flux();
 }
 }

include "movingMeshContinuityErrs.H"

 U -= rUA*fvc::grad(p);
 U.correctBoundaryConditions();
 }
}

//

** //

TEqn.H
// this file will be called to solve the temperature (T) component of
the fluid

solve
(
 fvm::ddt(T)
 + fvm::div(phi, T)
 - fvm::laplacian(DT, T)
);

Make/files
tractionDisplacement/tractionDisplacementFvPatchVectorField.C
icoThermFsiFoam.C

EXE = $(FOAM_USER_APPBIN)/icoThermFsiFoam

Make/options
EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -ItractionDisplacement \
 -I$(LIB_SRC)/dynamicFvMesh/lnInclude \
 $(WM_DECOMP_INC) \
 -I$(LIB_SRC)/tetDecompositionFiniteElement/lnInclude

EXE_LIBS = \
 -lfiniteVolume \
 -ldynamicFvMesh \

48

 $(W_DECOMP_LIBS) \
 -llduSolvers

49

Appendix B – icoThermFoam solver code

icoThermFoam.C
/*---
------*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright held by original author
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
the
 Free Software Foundation; either version 2 of the License, or (at
your
 option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but
WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM; if not, write to the Free Software Foundation,
 Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
 icoThermFoam

Description
 Transient solver for incompressible, laminar flow of Newtonian
fluids with
 thermal transport.

*---
------*/

#include "fvCFD.H"

// *
* * * //

int main(int argc, char *argv[])
{

include "setRootCase.H"

50

include "createTime.H"
include "createMesh.H"
include "createFields.H"
include "initContinuityErrs.H"

// *
* * * //

 Info<< "\nStarting time loop\n" << endl;

 for (runTime++; !runTime.end(); runTime++)
 {
 Info<< "Time = " << runTime.timeName() << nl << endl;

include "readPISOControls.H"
include "CourantNo.H"

 fvVectorMatrix UEqn
 (
 fvm::ddt(U)
 + fvm::div(phi, U)
 - fvm::laplacian(nu, U)
);

 solve(UEqn == -fvc::grad(p));

 // --- PISO loop

 for (int corr=0; corr<nCorr; corr++)
 {

include "TEqn.H"

 volScalarField rUA = 1.0/UEqn.A();

 U = rUA*UEqn.H();
 phi = (fvc::interpolate(U) & mesh.Sf())
 + fvc::ddtPhiCorr(rUA, U, phi);

 adjustPhi(phi, U, p);

 for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
 {
 fvScalarMatrix pEqn
 (
 fvm::laplacian(rUA, p) == fvc::div(phi)
);

 pEqn.setReference(pRefCell, pRefValue);
 pEqn.solve();

 if (nonOrth == nNonOrthCorr)
 {
 phi -= pEqn.flux();
 }
 }

51

include "continuityErrs.H"

 U -= rUA*fvc::grad(p);
 U.correctBoundaryConditions();
 }

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
 << " ClockTime = " << runTime.elapsedClockTime() << " s"
 << nl << endl;
 }

 Info<< "End\n" << endl;

 return(0);
}

//

** //

createFields.H
 Info<< "Reading transportProperties\n" << endl;

 IOdictionary transportProperties
 (
 IOobject
 (
 "transportProperties",
 runTime.constant(),
 mesh,
 IOobject::MUST_READ,
 IOobject::NO_WRITE
)
);

 dimensionedScalar nu
 (
 transportProperties.lookup("nu")
);

 dimensionedScalar DT
 (
 transportProperties.lookup("DT")
);

 Info<< "Reading field p\n" << endl;
 volScalarField p
 (
 IOobject
 (
 "p",
 runTime.timeName(),

52

 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

 Info<< "Reading field U\n" << endl;
 volVectorField U
 (
 IOobject
 (
 "U",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

 Info<< "Reading field T\n" << endl;
 volScalarField T
 (
 IOobject
 (
 "T",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);

include "createPhi.H"

 label pRefCell = 0;
 scalar pRefValue = 0.0;
 setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell,
pRefValue);

TEqn.H
// this file will be called to solve the temperature (T) component of
the fluid

solve
(
 fvm::ddt(T)
 + fvm::div(phi, T)
 - fvm::laplacian(DT, T)
);

Make/files

53

icoThermFoam.C

EXE = $(FOAM_USER_APPBIN)/icoThermFoam

Make/options
EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = \
 -lfiniteVolume \
 -llduSolvers

54

Appendix C – blockMesh Vertice Diagram and
Coordinates

55

Coordinate # X-Coordinate Y-Coordinate
0 0.000000 0.000000
1 0.000000 0.939340
2 0.000000 2.000000
3 0.000000 3.060660
4 0.000000 4.100000
5 0.939340 0.000000
6 0.939340 0.939340
7 0.500000 2.000000
8 0.939340 3.060660
9 0.939340 4.100000
10 2.000000 0.000000
11 2.000000 0.500000
12 2.000000 1.500000
13 1.646450 1.646450
14 1.500000 2.000000
15 1.646450 2.353550
16 2.000000 2.500000
17 2.000000 3.500000
18 2.000000 4.100000
19 3.060660 0.000000
20 3.060660 0.939340
21 2.353550 1.646450
22 2.489898 1.900000
23 2.489898 2.100000
24 2.353550 2.358550
25 3.060660 3.060660
26 3.060660 4.100000
27 3.496660 1.900000
28 3.496660 2.100000
29 6.000000 0.000000
30 6.000000 0.939340
31 6.000000 1.900000
32 6.000000 2.100000
33 6.000000 3.060660
34 6.000000 4.100000
35 25.000000 0.000000
36 25.000000 0.939340
37 25.000000 1.900000
38 25.000000 2.100000
39 25.000000 3.060660
40 25.000000 4.100000

