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Abstract

We propose two optical neutral atom traps for quantum computing involving the in-

tersection of two or three laser beams. We simulate both the intensity and the potential

energy of the interference pattern. From these simulations we create animations of how the

potential energy and intensity change with varying angles of separation between the laser

beams in the system. We parameterize lines through our interference pattern and fit simple

harmonic oscillator potential energies to the potential energy wells calculated to character-

ize our interference pattern’s atom trapping capabilities. Finally, we investigate a possible

quantum entanglement routine by observing how the geometry of both the intensity pattern

and potential energy changes in our different animations. For the case of the double beam

trap with different beam waists at θ = π/2, we found η = 41.8 KHz and ∆Utrap = 0.042 mK

for BEC atoms, and η = 41.2 KHz and ∆Utrap = 12.4 mK for MOT atoms. For the case of

the triple beam trap with all beams having equal parameters at θ = π/2, θ2 = 0, and γ =

3π/4 we found η = 8.00 KHz and ∆Utrap = 0.62 mK.
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I. INTRODUCTION

The field of quantum computing has received a great deal of attention in the physics com-

munity due to its exciting prospective applications and recent progress made in constructing

systems with characteristics that allow for the formation of so called “qubits.” A qubit, or a

quantum bit, represents a two-level, quantum mechanical system. Canonical examples of a

qubit are a photon’s polarization–be it linearly horizontal or linearly vertical–or an electron’s

spin state–where down and up, or horizontal and vertical correspond to 0 and 1 in terms of

binary. The difference, however, between a qubit and a classical bit is the qubit’s ability to

be in both 0 and 1 simultaneously–a superposition of up and down for the example of the

electron’s spin. Quantum bits also have the ability to be “entangled” with other quantum

bits; this quantum entanglement is a physical phenomenon that occurs when the quantum

state of each qubit cannot be described independently from one another–thus, a change in

the quantum state of one qubit would have an effect on the quantum state of the other

qubit. These properties of superposition and quantum entanglement differentiate quantum

computing from its classical counterpart.

David DiVincenzo, while at IBM, famously developed a list of requirements to construct

quantum computer. The “DiVincenzo Criteria” [1] are: (1) the system must have a large

number of well defined qubits, (2) initialization to a known state for the system must be

easily performed, (3) a universal set of quantum logic gates must be developed, (4) qubit-

specific measurements must be able to be performed, and (5) long coherence times must

exist for the qubits in the system–where coherence time describes how long a quantum state

can exist on average before being perturbed, altered by the environment.

Many different types of systems show promise in fulfilling said criteria–for example, solid-

state systems in which spin states of electrons or nuclei represent the qubits have promise

in their scalability, due to extensive research done on the miniaturizing of semiconductors.

Superconducting systems have shown promise in quantum information processing due to the

ease of fabricating larger systems. It is, however, in cold neutral atom systems that qubits

(atoms) have some of the longest coherence times–offering promise for storing information

for longer periods of time. With this longer information storage time we gain the ability to

complete many logical gate operations before a qubit’s state decoheres.

Qubit storage for cold neutral atom quantum computing is possible by means of creating
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cleverly designed light traps. An example of such an optical atom trap are “optical tweezers.”

In 1970 Arthur Ashkin [2] first trapped micron-sized particles in a tightly focused laser beam

(the tweezers). This method of trapping has seen a great deal of success in microbiology; for

example DNA’s force extension relationship can be determined by stretching the DNA via

manipulation of the beam[3]. Another way to create an optical atom trap is to simply create

walls of laser light that form a box; with the correct laser frequency tuning atoms will be

trapped in the center of the box where there is a dark spot[4]. Optical lattices may also trap

atoms–an optical lattice is created by the interference of counter-propagating laser beams,

creating a periodic structure of bright and dark spots where atoms may be trapped4. The

diffraction pattern of light behind a pinhole can also act as an atom trap. The sequence of

bright and dark spots that form behind the pinhole offer considerable trapping parameters

in all three dimensions of movement[5]. Note that this is not a complete list of all optical

atom traps, nor one that highlights traps that are more favorable than others–it is merely a

brief overview of different mechanisms that may be used to trap atoms using laser light.

This paper concerns itself with utilizing the interference pattern of two or three laser

beams intersecting for trapping atoms. For the instance of two counter-propagating beams:

nodal and antinodal planes are created periodically in the region of overlap due to wave

superposition. Furthermore, varying the angle between the beams alters the separation

distance and orientation of these dark and bright trapping planes (see Fig. 1).

By introducing a difference in beam size between the beams, one beam will create a “wall”

around its counterpart–thereby allowing the system to trap atoms in three dimensions as

this third dimension is now confined due to the newly created light wall. Introducing a third

beam results in tighter traps, resulting in better confinement and trapping time of atoms. We

first investigate the relationships between the trapping parameters of the potential energy

wells created by these systems and the angles of separation, polarization, difference in beam

size, and power of the laser beams. Finally, we investigate a possible entanglement routine

and how it would allow entanglement to propagate through the system.
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FIG. 1. Visualization of the interference of two laser beams at an angle θ.

II. THEORY

A. Optical Dipole Traps

The light traps used in cold, neutral atom quantum computing are called “dipole traps.”

The frequency of the trapping laser is detuned from an atomic resonance frequency–meaning

that the beam is tuned slightly off of the laser frequency that would excite the target atom

to a given energy level–thus the atoms do not absorb laser photons. The electric field of the

laser thereby induces a dipole in the atoms that either repels them from or attracts them to

brighter spots of laser light. There are two different types of detuning: red and blue. Red

detuning describes when the laser beam frequency is tuned slightly below the target atomic

energy, and blue detuning describes when the laser beam is tuned slightly above the target

atomic energy. In the case that our laser beams are red detuned the atoms will be attracted

to the brightest spots in our trap, and for the case that our laser beams are blue detuned

the atoms will be attracted to the darkest spots in the trap. Atoms are typically first cooled

in a Magneto-Optical Trap (MOT) before being trapped in the laser light, as the kinetic

energy of hot atoms is enough to supersede that of the potential energy well created by the
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trapping laser beam system.

What follows is a brief summary, for details see [6]. When a polarizable atom or molecule

is introduced into an electric field the potential-energy operator for the light-atom interaction

is given by

Û(~r) = −1

4
~E0

∗
(~r)α̂ ~E0(~r), (1)

where E0(~r) is the amplitude of the electric field, with ~E(~r, t) = Re[ ~E0(~r)e
−iωt], α̂ is the

polarizability tensor, and ω is the angular frequency of the laser light. The polarizability

tensor’s components written in a spherical basis are

α̂q′,q = (−1)q
′∑
F ′

[
α0,F ′FfF ′F

∑
m

(
cF,1,F

′

m+q−q′,q′,m+qc
F,1,F ′

m,q,m+q |F,m+ q − q〉 〈F,m|
)]

, (2)

where q′ and q = ±1,0 are the spherical basis components, α0,F ′F is the characteristic polar-

izability scalar, fF ′F is the relative oscillator strength of the F → F ′ hyperfine transition,

and c is the Clebsch-Gordan coefficient for the F,m → F ′,m + q dipole transition and

related to the F ′,m + q → F,m + q − q′ dipole transition respectively. The characteristic

polarizability scalar is given by

α0,F ′F = −|〈J
′| |d| |J〉|2

~∆F ′F
, (3)

where ∆F ′F is the laser’s angular frequency detuning from the F → F ′ transition, and

〈J ′| |d| |J〉 is the reduced dipole matrix element for the J → J ′ fine structure transition. To

calculate this expression in SI units we utilize the following relationship:

α0,F ′F = − 3λ3

32π3

Γ

∆F ′F
1.11× 10−10

Jm2

V2 , (4)

where Γ is the linewidth of the energy level of the atom being trapped. The linewidth

describes the uncertainty of exactly what the energy level is and is typically on the order of

MHz in atoms like 87Rb. In our examples we use -10 000 Γ for red laser detuning–meaning

the laser beam frequency is 10 000 Γ below the target atomic resonance–and 1 000 Γ for

blue laser detuning. Finally, the relative oscillator strength is given by

fF ′F = (2J ′ + 1)(2F + 1)

∣∣∣∣∣∣
 F ′ I J ′

J 1 F


∣∣∣∣∣∣
2

, (5)

where the curly braces term is the six-J symbol, and I is the nuclear spin quantum number.
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To calculate the diabatic potential energy for a given atom’s F,mF state we determine

the expectation value of the potential energy operator:

UF,mF
= 〈F,mF | Û |F,mF 〉 . (6)

We then substitute Equation (1) for the potential energy operator into this expression to

yield

UF,mF
= −1

4

∑
q′,q

E∗0q′E0qα̂q′,q, (7)

where E0q′,q are the spherical components of the electric field amplitude with q′, q = ±1, 0

corresponding to right and left circular light polarization, and linear polarization respec-

tively, which we can simplify by exploiting orthonormality and the relationships between

Clebsch-Gordon coefficients to yield

UF,mF
= −1

4

∑
q

(−1)q|E0q|2
∑
F ′

α0,F ′FfF ′F (cF,1,F
′

mF ,q,mF+q)
2. (8)

To write the electric field amplitude in a spherical basis we utilize the spherical unit vectors

ê−1 =

√
2

2
(̂i− iĵ) (9)

êo = k̂ (10)

ê+1 = −
√

2

2
(̂i+ iĵ), (11)

where î, ĵ, k̂ are the typical Cartesian unit vectors along x, y, and z respectively. Thus we

can write the electric field vector as

~E0 = E0−1ê−1 + E00ê0 + E0+1ê+1, (12)

where

E0−1 =
1√
2

(E0x + iE0y), (13)

E00 = E0z, (14)

E0+1 =
1√
2

(−E0x + iE0y). (15)

Finally, after the potential energy has been found, we convert it from units of Joules to units

of Millikelvin by the relation

UF,mF
(mK) = 1000

2

3kB

2I0
ε0c

UF,mF
, (16)

where kB is Boltzmann’s constant, I0 is the intensity of at the center of the laser beam, c is

the speed of light, and ε0 is the permittivity of free space.
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B. Gaussian Laser Beams

A Gaussian beam traveling along the z-axis has an electric field described by the cylin-

drically symmetric expression

E(r, z, t) = E0
w0

w(z)
e−r

2/w(z)2eikr
2/(2R(z))e−itan

−1(z/z0)ei(kz−ωt+φ), (17)

where E0 is the electric field amplitude at the center of the beam, z is the distance traveled

along the z-axis–the axis which the beam is traveling along–z0 is the Rayleigh range–the

distance spanned along the z-axis from the beam waist to where the beam radius has in-

creased by a factor of
√

2, w0 is the beam waist–the radial size of the narrowest portion of

the beam–φ is the phase, r is the radial distance from the center of the beam, R is the radius

of curvature of a wavefront, k is the wave number, ω is the angular frequency, and w is the

beam radius. The beam radius is defined as the radial distance at which the intensity has

dropped to 1/e2 of that at the center of the beam; alternatively, it is the radial distance at

which the electric field has dropped to 1/e of that at the center. The z-dependence of the

beam radius can be described by

w(z) = w0

√
1 + z2/z20 . (18)

z0 is given by

z0 =
πw2

0

λ
, (19)

with λ being the wavelength of the laser. Finally, R is given by

R(z) = z(1 + z20/z
2). (20)

For a detailed derivation of this expression for the electric field see, for example,

Introduction to Optics.[7]

III. THE ATOM TRAPS

A. Double Beam Interference Trap

When another Gaussian beam is introduced coordinate system transformations must be

taken into consideration as cylindrical symmetry is broken in Equation (14). Here we transfer

6



to a more favorable Cartesian metric where r =
√
x2 + y2. We denote the two beams as the

“basis” and “differential” beams where our basis defines our z-axis as its axis of propagation

and our differential beam subtends an angle θ between the basis beam’s axis and its own

beam’s z-axis. Thus we define the differential beam’s coordinates (x2, y2, z2) in terms of the

basis beam’s coordinates (x, y, z) by the transformation relations:

x2 = xcos(θ) + zsin(θ), (21)

y2 = y, (22)

z2 = zcos(θ)− xsin(θ). (23)

The convention here is that the basis beam’s axis, z, travels along to the right, x is downward,

and y is into the plane, as shown in Fig. 2.

FIG. 2. Coordinate system chosen for the double beam system.

For the total electric field we simply add the component electric fields of each individual

beam–for convenience I denote each beam’s electric field expression in a component direction,

l, as E1l for the basis beam’s parameters and E2l for the differential beam’s parameters–i.e.

E1x = E(x, y, z, t):

Ex = E1x(x, y, z) + E2x(x2, y2, z2)cos(θ), (24)
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Ey = E1y(x, y, z) + E2y(x2, y2, z2) (25)

Ez = E2x(x2, y2, z2)sin(θ). (26)

The intensity of the interference pattern is given by

I =
1

2
ε0c| ~E|2, (27)

which can be expanded out to be written as

I =
1

2
ε0c(Re{Ex}2 +Re{Ey}2 +Re{Ez}2 + Im{Ex}2 + Im{Ey}2 + Im{Ez}2), (28)

which we then plot to visualize the geometry of the lattice of traps created.

B. Triple Beam Interference Trap

Adding a third beam requires an additional layer of coordinate transformations. The

transformation relations for this second differential beam with respect to the basis’ coordi-

nates are:

x3 = xcos(γ)cos(θ2) + zsin(γ)cos(θ2)− ysin(θ2) (29)

y3 = zsin(γ)sin(θ2) + ycos(θ2) + xcos(γ)sin(θ2) (30)

z3 = zcos(γ)− xsin(γ), (31)

where γ is the polar angle subtended between the second differential beam and the z-axis,

and θ2 is the azimuthal angular separation between the second differential beam’s y-axis with

the basis beam’s y-axis. We choose y3 to always be coplanar with x and y for simplicity–see

Fig. 3.

Thus when adding the component electric fields of the different beams with the said

coordinate system conventions we obtain:

Ex = E1x(x, y, z) + E2x(x2, y2, z2)cos(θ) + E3x(x3, y3, z3)cos(θ2)cos(γ) + E3ysin(θ2) (32)

Ey = E1y(x, y, z) + E2y(x2, y2, z2) + E3x(x3, y3, z3)cos(γ)sin(θ2) + E3ycos(θ2) (33)

Ez = E2x(x2, y2, z2)sin(θ) + E3x(x3, y3, z3)(−sin(γ)), (34)

see the Appendix for a derivation. We then calculate the interference pattern’s intensity

using Equation (16) as we did in the two-beam case.
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FIG. 3. Coordinate system chosen for the triple beam system.

C. Trap Analysis

To analyze the trap properties it is customary to fit a simple harmonic potential energy

to the traps. We parameterize a line that runs through our interference pattern in a given

direction and fit a simple harmonic potential energy to the simulated potential energy of the

interference pattern along the line–that is we fit a curve of the form U = 1/2 mω2
0x

2, where

m is the mass of the atom being trapped, ω0 is the natural angular frequency associated

with the simple harmonic potential energy fit and x is the spatial displacement. This ω0

gives us the trap frequency, f , which is equal to ω0/2π. A larger trap frequency corresponds

to a more tightly bound atom in the trap. To further quantify the confinement of the fitted

simple harmonic oscillator potential energy we calculate the size of the simple harmonic

9



wave function of the motional ground state along a spatial dimension j, as

βj =

√
~

2πfjm
, (35)

for the 1/e half-width of the wave function’s probability density where fj is the trap frequency

along that spatial dimension j, and m is the mass of the atom being trapped. We define the

trap depth, ∆Utrap, as the difference between the peak of the fitted potential energy of the

path of weakest confinement and the minimum of the potential energy well. The coherence

of the qubits in a dipole trap is also limited by the scattering rate of trap photons. For

blue-detuned traps the scattering rate for a ground state atom–averaged over the entire

wave function–can be written as

η =
π

2
(fw + fs + f3)

Γ

∆
+

Γ

∆~
Umin, (36)

where fs is the frequency in the spatial dimension of strongest confinement in the x-z plane,

fw is the frequency in the spatial dimension of weakest confinement in the x-z plane, and

f3 is the frequency in the spatial y-dimension of the trap. All three directions are always

orthogonal to one another. To account for a non-zero magnitude of intensity at the bottom

of the well we add on the correction term containing Umin–the potential energy at the bottom

of the well.

IV. RESULTS

A. Double Beam Trap

For two exactly equal beams with φ = 0, linear polarization along y, w0 = 0.1 mm,

laser powers of P=10 W–corresponding to I0 = (2P )/(πw2
0) ≈ 6.37 × 108 W/m2–and an

angular displacement of π/2 between the propagation directions of the beams we calculate

the interference pattern and the potential energy for the F = 1,mF = −1 quantum state of

87Rb–all following calculated potential energies are those of 87Rb. It should be noted that

the potential energy is equal for all possible F,mF configurations unless the pattern exhibits

some circular polarization. We plot the intensity viewed from the positive y-direction at y

= 0 m in Fig. 4. We use a detuning of 1,000Γ, and a wavelength of λ = 780 (nm) in all

examples. We calculate the potential energy and plot it viewed from the same perspective

as the intensity plots–see Fig. 5
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Plot of Intensity for Two Equal Beams

FIG. 4. Plot of the trap intensity in W/m2 as seen from the positive y-direction in the x− z plane

at θ = π/2 with y=0.

Plot of Potential Energy for Two Equal Beams

FIG. 5. Plot of the potential energy in mK for the F = 1, mF = −1 quantum state as seen from

the positive y-direction in the x− z plane at θ = π/2 with y=0.

For this case of equal beams we find that we yield nodal planes along the x = z direction

and that confinement is strong (∆Utrap = 242 mK). In the x = −z direction and along the

y-direction , however, we find that there is no confinement. See Fig.s 6 and 7 for plots of

the intensity and potential energy in the x− y plane at z = 0 m.
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Plot of Potential Energy for Two Equal Beams

FIG. 6. Plot of the potential energy in mK for the F = 1, mF = −1 quantum state as seen from

the positive y-direction in the x− y plane at θ = π/2 with z=0.

Plot of Potential Energy for Two Equal Beams

FIG. 7. Plot of the potential energy in mK for the F = 1, mF = −1 quantum state as seen from

the positive z-direction in the x− y plane at θ = π/2 with z=0.

Next, we investigate the instance that our beams are circularly polarized. To circularly

polarize our beams we introduce a phase difference of π/2 between each beams’ electric

field’s x-component and y-component with respect to their corresponding coordinate sys-
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tems. Thus φx1 = φx2 = 0, and φy1 = φy2 = π/2, where the number 1 corresponds to the

basis beam and the number 2 corresponds to the differential beam. We polarize our beams

along x = y for each beam’s respective coordinate system to see the effects most distinctly.

We plot the instance of two equal beams with these polarization angles, and the right cir-

cularly polarized beams–see Figs. 8, 9, 10, and 11 for intensity plots and potential energy

plots at θ = π/2.

Plot of Intensity for Equal Beams

FIG. 8. Plot of the intensity pattern as seen from the positive y-direction in the x− z plane with

each beam being equal.

Plot of Potential Energy for Equal Beams

FIG. 9. Plot of the potential energy as seen from the positive y-direction in the x− z plane with

each beam being equal for the F=1, mF=-1 quantum state.
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Plot of Intensity for Right Circularly Polarized Beams

FIG. 10. Plot of the intensity pattern as seen from the positive y-direction in the x− z plane with

each beam being right circularly polarized.

Plot of Potential Energy for Right Circularly Polarized Beams

FIG. 11. Plot of the potential energy as seen from the positive y-direction in the x− z plane with

each beam being right circularly polarized for the F=1, mF=-1 quantum state.

We find that the intensity pattern for this circularly polarized case is identical to the

linear case, and that in the F=1, mF=-1 quantum state the atoms are confined more in the

right circularly polarized case than in the linearly polarized case–with ∆Utrap being closer

to 200 mK than 100 mK.
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To confine the third spatial dimension in our traps we introduce a difference in beam

waist between the beams. We set w0 = 0.1 mm for the basis beam and w0 = 0.01 mm for

the differential beam. We match the center intensity of the beams by decreasing the laser

power of the differential beam 100 fold to 0.1 W. We plot both the intensity and potential

in Figs. 12, and 13.

Plot of Intensity for Beams with Differing Beam Waists

FIG. 12. Plot of the intensity pattern as seen from the positive y-direction in the x− z plane with

each beam having a different beam waist at θ = π/2 and y = 0 m.

Plot of Potential Energy for Beams with Differing Beam Waists

FIG. 13. Plot of the potential energy as seen from the positive y-direction in the x− z plane with

each beam having a different beam waist at θ = π/2 and y = 0 m.

In the case of differing beam waist we find that there is a general curvature associated with

the intensity and potential energy plots. An overall convexity in curvature in the x = −z

direction is attributed with an interference pattern closer to the origin whereas an overall

concavity is apparent with larger y positions. This is because at these larger distances we
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are sufficiently close to the “wall” of light created by the difference in beam waists–thus

creating three dimensional confinement. We display this change in curvature in Fig. 14.

Plot of Potential Energy Data for Beams with Differing Beam Waists

FIG. 14. Potential energy data along the weak direction at θ = π/2 with the vertical axis in mK

and the horizontal axis in units of 5.71×10−7 m/step.

To characterize the trapping properties of this pattern we parameterize lines traveling

along the strongest dimension of the traps–i.e. z = x–the weakest dimension of the traps–

i.e. z = −x–and a line in the y direction traveling through the bottom of a trapping plane.

We fit our potential energy wells using Mathematica’s fitting method. We do two sets of

fits: one being aimed towards atoms of Bose-Einstein condensate (BEC) temperatures, and

the other aimed towards atoms of MOT temperatures. Fig. 15 is the fit along the strongest

dimension for both cases listed above, Fig. 16 is the fit along the y direction for the BEC

instance, and Fig. 17 is the fit in the weakest dimension for the BEC instance. It should

be noted that the bottom of the wells shown are closer to zero than the plots indicate–

the nonzero values of the bottom of the wells and the value fluctuations amongst plots is

attributed to the finite resolution of our calculated potential energies.
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Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 15. Simple harmonic oscillator potential energy fits to calculated potential energy for the

double beam system in the strong dimension at θ = π/2 with the vertical axis in mK and the

horizontal axis in units of 5.71×10−7 m/step.

Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 16. Simple harmonic oscillator potential energy fits to calculated potential energy for the

double beam system in the y-direction at θ = π/2 with the vertical axis in mK and the horizontal

axis in units of 5.71×10−7 m/step.
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Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 17. Simple harmonic oscillator potential energy fits to calculated potential energy for the

double beam system in the weak dimension at θ = π/2 with the vertical axis in mK and the

horizontal axis in units of 5.71×10−7 m/step.

We find the trapping frequencies and ground state sizes and list them in Table I. With

TABLE I. Trapping Parameters for the Potential Energy Pattern of the Beams with Different Beam

Waists at π/2 for BEC atoms.

Direction β (nm) f (MHz)

x = z 2.14 25.29

−x = z 11.6 0.86

y 9.56 1.27

these values we calculate a scattering rate of 41.8 KHz and a trap depth of 0.042 mK.

For the MOT atoms we find the fits for the wells on a larger scale as they are hotter than

the BEC atoms. Figs. 18 and 19 show the fits in the weak dimension and the y-direction

respectively.
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Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 18. Simple harmonic oscillator potential energy fits to calculated potential energy for the

double beam system in the y-direction at θ = π/2 with the vertical axis in mK and the horizontal

axis in units of 5.71×10−7 m/step.

Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 19. Simple harmonic oscillator potential energy fits to calculated potential energy for the

double beam system in the weak dimension at θ = π/2 with the vertical axis in mK and the

horizontal axis in units of 5.71×10−7 m/step.
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We find the trapping frequencies and ground state sizes and list them in Table II.

TABLE II. Trapping Parameters for the Potential Energy Pattern of the Beams with Different

Beam Waists at π/2 for MOT atoms.

Direction β (nm) f (MHz)

x = z 2.14 25.29

−x = z 18.3 0.35

y 13.8 0.61

With these values we calculate a scattering rate of 41.2 KHz and a trap depth of 12.4 mK.
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B. Triple Beam Trap

To gain some intuition as to how the interference pattern of a triple beam system changes

with varying γ, θ, and θ2 we make several animations. For the instance of variable γ with

θ = π/2 and θ2 = 0 see gif 1 (a schematic of the beam dynamics is shown in Fig. 20), γ =

π/4, θ2 = π/4, and variable θ is shown in gif 2 (a schematic of the beam dynamics is shown

in Fig. 21), and γ = π/4, θ = π/2, and variable θ2 is shown in gif 3 (a schematic of the

beam dynamics is shown in Fig. 22)–all gifs can be found the gifs folder. We also create an

animation of the potential energy for the F = 2, mF = 2 quantum state where γ = π/2,

θ2 = π/2, and variable θ in gif 4 (a schematic of the beam dynamics is shown in Fig. 23).

In each case the varying angle is evolving from 0 to 2π.

Diagram for Beam Dynamics

FIG. 20. Schematic for variable γ with θ = π/2 and θ2 = 0.
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Diagram for Beam Dynamics

FIG. 21. Schematic for γ = π/4, θ2 = π/4, and variable θ.

Diagram for Beam Dynamics

FIG. 22. Schematic for γ = π/4, θ = π/2, and variable θ2.
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Diagram for Beam Dynamics

FIG. 23. Schematic for γ = π/2, θ2 = π/2, and variable θ.

To investigate the trapping properties of our triple beam system we, again, calculate the

potential energy and fit a simple harmonic potential energy to some trap locations. For the

instance of three equal beams with laser powers of 0.10 W, w0 = 0.1 mm, y = 0 m, and

linear polarization with θ = π/2, γ = 3π/4, and θ2 = 0, we plot the potential energy from

the positive and negative y-directions in the x− z plane in Fig.s 24 and 25 respectively.
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FIG. 24. Plot of the intensity pattern as seen from the positive y-direction in the x− z plane with

θ = π/2, γ = 3π/4, and θ2 = 0.

FIG. 25. Plot of the intensity pattern as seen from the negative y-direction in the x− z plane with

θ = π/2, γ = 3π/4, and θ2 = 0.

We parameterize lines traveling along the three dimensions of the trap: the strongest

dimension–i.e. x = z–the weakest being −x = z, and the y direction. We fit our potential

energy wells in these three dimensions using the series method and the least squares fitting

method–see Fig. 26. for the x = y fit, Fig. 27 for the z direction fit, and Fig. 28 for the
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x = −z fit.

Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 26. Simple harmonic oscillator potential energy fits to calculated potential energy of our

triple beam system along x = z with θ = π/2, γ = 3π/4, and θ2 = 0 with the vertical axis in mK

and the horizontal axis in units of 5.71×10−7 m/step.

Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 27. Simple harmonic oscillator potential energy fits to calculated potential energy for the

triple beam system along the y direction with θ = π/2, γ = 3π/4, and θ2 = 0 with the vertical

axis in mK and the horizontal axis in units of 5.71×10−7 m/step.
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Simple Harmonic Oscillator Potential Energy Fits to Calculated Potential Energy

FIG. 28. Simple harmonic oscillator potential energy fits to calculated potential energy for the

triple beam system along x = −z direction with θ = π/2, γ = 3π/4, and θ2 = 0 with the vertical

axis in mK and the horizontal axis in units of 5.71×10−7 m/step.

We find the trapping frequencies and ground state sizes and list them in Table II.

TABLE III. Trapping Parameters for the Potential Energy Pattern of the Triple Beam System at

θ = π/2, γ = 3π/4, and θ2 = π/2.

Direction β (nm) f (MHz)

x = z 6.60 2.66

−x = z 9.55 1.27

y 10.3 1.08

With these values we calculate a scattering rate of 8.00 KHz, and a trap depth of 0.62

mK.
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C. Entanglement

For the triple beam trap we investigate how information may propagate through the

interference pattern. Bringing two trapped atoms close to one another we may entangle

their wave functions by pulsing both of them with a laser beam. If we then take one of these

two entangled qubits and entangle it with another qubit we propagate entanglement from

qubit 1 to qubit 3 or from qubit 2 to qubit 3. For us to channel entanglement through our

system we must be able to entangle qubits in a logical sequence. We analyze the case where

we vary γ with θ = π/2 and θ2 = 0 as seen in gif 2. We oscillate the value of γ between

3π/4 and 7π/4 to translate qubit entanglement diagonally along the edges of the hexagonal

interference structure shown by the black line drawn in Fig. 29.

FIG. 29. How entanglement would propagate through the interference pattern by oscillating γ

between 3π/4 and 7π/4 (γ=π).

We start at our maximum γ and entangle the two trapped atoms (each well is assumed

to contain one trapped atom each) indicated by the circle in Fig. 30. By decreasing γ to

3π/4 we then separate the two entangled atoms and bring them together with two different

trapped atoms–indicated by the circles in Fig. 31. With appropriate laser pulses we can
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pass entanglement to these two atoms. If we continue to increase γ back to our maximum

value the two newly entangled atoms could have their entanglement passed on to two more

new atoms along the diagonal. We continue this oscillation of γ until the entanglement has

propagated to the intended qubit, even if they reside far away from each other in the trap

array.

FIG. 30. Initial location of the two atoms being entangled with one another at γ = 7π/4.

FIG. 31. Final locations of the two entangled atoms–now able to entangle with two new atoms at

γ = 3π/4

Propagating entanglement in our trap array allows us to complete logical gate operations

on various qubits in our system–allowing us to complete quantum computations.
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V. CONCLUSION

We proposed two optical neutral atom trap arrays involving the intersection of two or

three laser beams. We investigated the nature of our double beam trap by analyzing how

the intensity pattern and calculated potential energy changed with varying beam waist,

and beam polarization. By fitting simple harmonic energies to the interference pattern’s

calculated potential energy we were able to characterize the traps by their trap frequencies–

and thus their scattering rates–and their motional ground state sizes. By inspecting our

potential energy plots we were able to determine the trap depths. For the case of the double

beam trap with different beam waists at θ = π/2, we found η = 41.8 KHz and and ∆Utrap

= 0.042 mK for BEC atoms, and η = 41.2 KHz and ∆Utrap = 12.4 mK for MOT atoms. For

the case of the triple beam trap with all beams having equal parameters at θ = π/2, θ2 =

0, and γ = 3π/4 we found η = 8.00 KHz and ∆Utrap = 0.62 mK. We created animations to

analyze how the potential energy and intensity changed with varying angles of separation

between the laser beams in the system. Finally we highlighted a possible atom entanglement

routine by oscillating the polar angle, γ, in our triple beam system between 3π/4 and 7π/4

and discussed how entanglement would propagate through the system.
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VI. APPENDIX

Assuming that the basis beam lies completely along the z-axis and defines our coordinate

basis we write

E1 = E1xî+ E1y ĵ, (37)

because the electric field is prohibited from pointing in the direction of beam propagation.

Our first differential beam subtends and angle θ with the basis beam and lies in the x − z

plane (see Fig. 32)–thus we write out its electric field in terms of the basis coordinate system

as

E2 = E2xcos(θ)̂i+ E2y ĵ + E2xsin(θ)k̂. (38)

FIG. 32. Diagram of the double beam coordinate system and the electric field component’s pro-

jections.

The second differential beam subtends a polar angle of γ with respect to the basis beam

and is rotated about an azimuthal angle of θ2. Using the convention that the y3-component of

the second differential beam lies completely the x−y plane we can determine it’s projections

of it’s electric field components on the basis axes.

The second differential beam’s electric field components written in terms of the coordinate

basis can be determined entirely by the projections of the x3-and y3-axes onto our basis axes
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as there is no electric field component in the direction of propagation (the z3-direction). x3’s

radial projection is given as x3cos(γ) (see Fig. 33 for a visual reference).

FIG. 33. Diagram of the triple beam coordinate system and the x3-component’s projection.

Thus its projection along y is x3cos(γ)sin(θ2), whereas y3’s projection along y is given as

y3cos(θ2). Replacing the coordinates x3 and y3 with the electric field components E3x and

E3y and taking a superposition of the electric field components from the other beams in this

direction results in the expression:

Ey = E1y(x, y, z) + E2y(x2, y2, z2) + E3x(x3, y3, z3)cos(γ)sin(θ2) + E3ycos(θ2). (39)

Similarly we take the projections of x3 and y3 along the x-axis to yield

Ex = E1x(x, y, z) + E2x(x2, y2, z2)cos(θ) + E3x(x3, y3, z3)cos(θ2)cos(γ)− E3ysin(θ2). (40)

Finally, the only component of the electric field in the z-direction is given as the projection

of x3 along z, hence

Ez = E2x(x2, y2, z2)sin(θ) + E3x(x3, y3, z3)(−sin(γ)). (41)
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