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Hypersurfaces with nonegative Ricci curvature in Hn+1 

Vincent Bonini1 · Shiguang Ma2 · Jie Qing3 

Abstract 
Based on properties of  n-subharmonic functions we show that a complete, noncompact, 
properly embedded hypersurface with nonnegative Ricci curvature in hyperbolic space has 
an asymptotic boundary at infinity of at most two points. Moreover, the presence of two points 
in the asymptotic boundary is a rigidity condition that forces the hypersurface to be an equidis-
tant hypersurface about a geodesic line in hyperbolic space. This gives an affirmative answer 
to the question raised by Alexander and Currier (Proc Symp Pure Math 54(3):37–44, 1993). 

Mathematics Subject Classification 53C40 · 53C21 

1 Introduction 

For immersed hypersurfaces φ : Mn → Hn+1 with appropriate orientation we recall the 
following successively stronger pointwise convexity conditions determined by the principal 
curvatures κ1, . . . , κn : For  all  i �= j ∈ {1, . . . , n} 

κi > 0 (strict) convexity � � 
n � 

κi κl − κi 
2 ≥ n − 1 nonnegative Ricci curvature 

l=1 
κiκ j ≥ 1 nonnegative sectional curvature 
κi ≥ 1 horospherical convexity 
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The influence of curvature conditions on the geometry and the asymptotic boundary of 
complete noncompact hypersurfaces in hyperbolic space Hn+1 has been studied by Epstein, 
Alexander and Currier, and the authors in [1,2,4,8–10]. In Epstein [10] it is shown that 
the asymptotic boundary of a complete proper embedding of R2 into H3 with nonnegative 
Gaussian curvature has a single point asymptotic boundary. The same is true for any complete 
noncompact horospherically convex hypersurface immersed in Hn+1. In fact, in [8] it is  
shown by Currier that the only complete noncompact horospherically convex hypersurface 
immersed in Hn+1 is a horosphere. While in Alexander and Currier [1,2] it is shown that a 
complete, noncompact, embedded hypersurface φ : Mn → Hn+1 with nonnegative sectional 
curvature has at most two points in its asymptotic boundary. Moreover the presence of two 
points in the boundary at infinity is a rigidity condition that forces φ(M) to be an equidistant 
hypersurface. Recently, in [4] it is shown by the authors that the same conclusion as in [1,2] 
holds for immersed hypersurfaces. 

In [1,2] it is observed that a properly embedded strictly convex hypersurface in hyperbolic 
space can be realized as a global vertical graph of a height function over a domain in a 
horosphere and that the height function is subharmonic when restricted to any 2-plane when 
the hypersurface has nonnegative sectional curvature. Based on the theory of subharmonic 
functions Alexander and Currier then managed to show that the asymptotic boundary is totally 
disconnected. In [2] the question was raised as to whether or not nonnegative Ricci curvature 
suffices for their asymptotic boundary theorem. In this note we affirmatively answer their 
question. 

Main Theorem For n ≥ 3, suppose that � is an n-dimensional complete, noncompact hyper-
surface properly embedded in hyperbolic space Hn+1 with nonnegative Ricci curvature. Then 
∂∞� consists of at most two points. The case that ∂∞� consists of two points is a rigidity 
condition that forces � to be an equidistant hypersurface about a geodesic line. 

The classification of complete noncompact Riemannian manifolds with nonnegative Ricci 
curvature is very interesting and complicated subject (cf. Shen and Sormani [14], for exam-
ple). On the other hand, from our main theorem and its proof we are able to easily classify 
those hypersurfaces that are properly embedded in hyperbolic space. In fact, there are only 
two classes: one is the cylinder R×S

n−1 and the other consists of nonnegative Ricci curvature 
metrics on Rn . 

Corollary Suppose that (Mn , g) is a complete and noncompact Riemannian manifold with 
nonnegative Ricci curvature that can be properly isometrically embedded in hyperbolic space 
H

n+1. Then  (Mn , g) is either the standard cylinder R× Sn−1 or it is a complete nonnegative 
Ricci curvature metric on Rn. 

As suggested for embedded hypersurfaces in [2], in Sect. 2 we realize the rigidity result 
of our main theorem ultimately as consequence of the Cheeger–Gromoll splitting theorem 
[7], and the Gauss and Codazzi equations. Our proof of the rigidity part is local in nature and 
therefore does not need the embeddedness assumption. In fact, we can further strengthen the 
result by only assuming that the boundary at infinity has more than one connected component 
(cf. Theorem 2.1) as the Cheeger–Gromoll splitting theorem [7] will guarantee that such a 
hypersurface has exactly two ends. The key to our proof is to show that Ricci flat directions 
are in fact principal directions of the hypersurface for n ≥ 3 (cf. Lemma 2.1). To resolve this 
issue we appeal to the fact that the Ricci operator and the shape operator of a hypersurface 
in any space form are pointwise simultaneously diagonalizable thanks to Bourguignon [5]. 
Then from the Gauss and Codazzi equations we are able to show that the principal curvatures 
are constant reciprocals with multiplicities 1 and n − 1. The fact that such a hypersurface 



must be an equidistant hypersurface then follows from the following classification theorem 
of so-called isoparametric hypersurfaces in hyperbolic space due to Cartan [6]. 

Cartan Theorem ([6]) An isoparametric hypersurface in Hn+1 must be either a sphere Sn, 
a hyperbolic space Hn, a Euclidean space  Rn (called a horosphere), all three are totally 
umbilic, or a cylinder Sk × Hn−k , where each factor is a space form. 

The most difficult part in proving the main theorem is to show that a connected asymp-
totic boundary can only be a single point. To do this, we pursue an avenue closely related to 
[1,2]. However, one nontrivial observation of ours is that problems related to Ricci curvature 
are sometimes reduced to the n-Laplacian equation. This was discovered in the context of 
conformal geometry, which can be applied to hypersurfaces in hyperbolic space as well. In 
Sect. 3 we prove that hypersurfaces embedded in hyperbolic space with nonnegative Ricci 
curvature give rise to height functions that are Euclidean n-subharmonic. Then in Sect. 4 we 
apply the theory of n-subharmonic functions to show that hypersurfaces embedded in hyper-
bolic space with nonnegative Ricci curvature must have asymptotic boundaries of Hausdorff 
dimension zero and are therefore a single point when connected. It is rather surprising that our 
calculation for Ricci curvature in dimensions larger than 2 (cf. Theorem 3.1) goes perfectly 
in line with what was observed in [1, Theorem 2.1] for Gaussian curvature in dimension 2. 

For convenience of the reader, we conclude this section with a brief explanation of the 
curvature conditions under consideration. Suppose {e1, . . . , en} is an orthonormal basis of 
principal directions of an immersed hypersurface φ : Mn → H

n+1. Due to the Gauss 
equations, the sectional curvatures of � = φ(M) are given by K (ei , e j ) = κiκ j − 1 for  
i �= j and therefore nonnegative sectional curvature is equivalent to the principal curvature 
condition κiκ j ≥ 1 for  i �= j for hypersurfaces in Hn+1. Clearly then all principal curvatures 
of a hypersurface φ : Mn → Hn+1 with nonnegative sectional curvature are nonzero and of 
the same sign. The same is true for hypersurfaces with nonnegative Ricci curvature. Indeed, 
writing the Ricci curvature as the sum of sectional curvatures we see ⎛   

n � � � ⎝ ⎠Ric(ei ) = K (ei , e j ) = (κiκ j − 1) = κi κ j − κi 
2 − (n − 1). 

j �=i j �=i j=1 

Therefore, for hypersurfaces in Hn+1, nonnegative Ricci curvature is equivalent to the prin-
cipal curvature condition ⎛   

n � ⎝ ⎠κi κ j − κi 
2 ≥ n − 1 > 0 

j=1 

for all i = 1, . . . , n, which clearly implies that all principal curvatures of φ are nonzero. 
Moreover, since � � � � 

n n � � 
2 2κi κl − κi ≥ n − 1 > 0 and  κ j κl − κ j ≥ n − 1 > 0, 

l=1 l=1 

if κi < 0 and  κ j > 0 for  some  i �= j , we arrive at the contradiction  

n n � � 
κl < κi < 0 and  κl > κ j > 0. 

l=1 l=1 

Hence, the principal curvatures of a hypersurface in hyperbolic space with nonnegative Ricci 
curvature are all nonzero and of the same sign as claimed. 



The orientation we take on hypersurfaces with nonnegative Ricci curvature is the orien-
tation for which the second fundamental form of the hypersurface is positive definite. That 
is, we take the orientation so that all principal curvatures of the hypersurface are positive. 
With this orientation we may view nonnegative Ricci curvature as intermediate curvature 
condition between strict convexity and nonnegative sectional curvature. In particular, with 
our choice of orientation we have 

Ric ≥ 0  ki > 0, ∀i . (1.1) 

Finally, we echo the question raised by Alexander and Currier [2] as to whether or not the 
Main Theorem in this paper still holds for immersed hypersurfaces. 

2 Asymptotic boundary of multiple components 

In this section we show that complete noncompact hypersurfaces immersed in hyperbolic 
space with nonnegative Ricci curvature and multiple component asymptotic boundaries are 
in fact equidistant hypersurfaces. Our approach is very much local in nature, hence we do 
not need to assume the hypersurfaces are embedded. 

Let (Mn , g) be a complete Riemannian manifold with nonnegative Ricci curvature that can 
be isometrically immersed into Hn+1. If  ∂∞M has more than one connected component, then 
(Mn , g) has a line. Then by the Cheeger–Gromoll splitting theorem [7] (see also Toponogov 
[13] for dimension 2), M splits isometrically as the product M ∼ , gN )= R×N n−1 where (N n−1 

is a complete (n − 1)-manifold with nonnegative Ricci curvature. Naturally, the product 
structure carries to the level of the tangent bundle and the Levi-Civita connection ∇ on M , 
which forces the Riemannian curvature tensor of (Mn , g) to split accordingly. Hence, the 
factor R of the product M ∼= R× N represents a flat direction in M . 

To be more precise, let (x1, x2, . . . , xn) denote local coordinates on a neighborhood of M 
adapted to the product structure M ∼= R×N where x1 = t is the coordinate corresponding to 
distance in the factor R and (x2, . . . , xn) are local coordinates on N . Then locally the metric 

g = dt2 + gN 

where gN is independent of t and ∂ is a flat direction. The Riemannian curvature tensor 
∂t 

Ri jkt  = 0 (2.1) 

for all i, j, k ∈ {1, . . . , n}. Therefore, 
Rit  = 0  (2.2)  

for all i ∈ {1, . . . , n}. In other words, the flat direction ∂ is pointwise an eigendirection for 
∂t 

the Ricci curvature operator corresponding to the eigenvalue 0. 
It turns out that the key to establish rigidity is to know that the flat direction is a principal 

direction of the hypersurface. A pleasantly surprising fact due to Bourguignon [5] (see also [3] 
Corollary 16.17) is that the Ricci curvature form and the second fundamental form commute 
since the second fundamental form of a hypersurface in a space form is always a Codazzi 
tensor. 

Lemma 2.1 Suppose that φ : Mn → H
n+1 is an isometric immersion where Mn has non-

negative Ricci curvature and splits as R×N. Then, for n  ≥ 3, the flat direction is a principal 
direction for φ. 



	






Proof It is well-known that the second fundamental form of a hypersurface in a space form is a 
Codazzi tensor. Due to Bourguignon [5] (see also Besse [3] Corollary 16.17), it follows that the 
Ricci operator and the shape operator then commute. Hence, the Ricci operator and the shape 
operator preserve each other’s invariant subspaces and are therefore pointwise simultaneously 
diagonalizable. Let V0 denote the eigenspace of the Ricci operator that corresponds to the 
eigenvalue 0 at a point on the hypersurface. Clearly, dim(V0) ≥ 1 since it contains at least 
the flat direction. 

Let {e1, . . . , en} denote an orthonormal basis of principal directions with the principal 
curvatures κi at the point. Up to linear combinations of the principal directions in their 
respective eigenspaces, we may assume that {e1, . . . , en} simultaneously diagonalizes the 
Ricci curvature operator. Moreover, since dim(V0) ≥ 1, up to reordering we may assume 
V0 = span{e1, . . . , ek} for some 1 ≤ k ≤ n. Clearly, if  k = 1, then the flat direction is a 
principal direction. Otherwise, let us assume k ≥ 2. Then, for each i = 1, . . . , k, ⎛   

n � ⎝ ⎠0 = Ric(ei ) = κi κ j − κi 
2 − (n − 1) = κi H − κi 

2 − (n − 1), (2.3) 
j=1 

nwhere H = 1 κ j is the mean curvature. From (2.3) we see  j=

H ± H2 − 4(n − 1)
κi = for i = 1, . . . , k. 

2 

But then, since n ≥ 3, κi > 0 for  all  i = 1, 2, . . . , n, and  k ≥ 2, we must have 

H − H2 − 4(n − 1)
κi = κ0 = for i = 1, . . . , k. 

2 

Therefore, every vector in V0 is a principal direction associated with the principal curvature 
κ0. Thus, the flat direction is a principal direction at any point on the hypersurface. �
 

It is interesting to notice that Lemma 2.1 works only for dimensions larger than 2. For flat 
cases in dimension 2 one needs Volkov and Vladimirova [15] instead (please see [4] for an  
alternative proof in dimension 2). We are now in a position to apply the Codazzi equations 
to establish the rigidity result. 

Theorem 2.1 For n ≥ 3, let  φ : Mn → H
n+1 be an isometric immersion of a complete 

noncompact manifold (Mn , g) with nonnegative Ricci curvature. If the asymptotic boundary 
at infinity ∂∞φ(M) has more than one connected component, then φ(M) is an equidistant 
hypersurface about a geodesic line. 

Proof Let Xi = φ∗( ∂
∂ 
xi 
) denote the local frame on the hypersurface adapted to the product 

structure. From the discussion above we may assume that Xt = φ∗( ∂
∂ 
x1 
) is a unit length 

flat direction that is orthogonal to X2, . . . , Xn . In addition, due to Lemma 2.1, we may also  
assume that Xt is a principal direction with principal curvature κ0. Then, from (2.1) and  
Gauss equations we have 

= RH0 = Rit j t  i t j t  + I Ii j  I Itt  − I Ii t  I It j  

= −gi j  + κ0 I Ii j  for i, j = 2, . . . , n (2.4) 

and therefore 
1 

I I  = gN (2.5)
κ0 



1when restricted to directions tangential to N . That is,  κi = 
κo 

for all i = 2, . . . , n. Now  since  

g = dt2 + gN with gN independent of t , it follows that the Christoffel symbols for g satisfy 

j j
�i t  = �ti  = �i j

t = 0 for  any  i, j ∈ {1, . . . , n}. (2.6) 

Furthermore, from (2.5), we see � � 
1 2∇Xt I Iii  = Xt (gN )i i  = ||Xi || Xt (κi ) (2.7)gNκ0 

for any i ∈ {2, . . . , n}. Moreover, from the Codazzi equations, we find 

∇Xt I Iii  = ∇Xi I Iti  = −�i i
l I Ilt  + �ti

l I Ili  = 0. (2.8) 

Meanwhile, 

Xi (κ0) = ∇Xi I Itt  = ∇Xt I Iti  = −�t t
l I Ili  + �ti

l I Ilt  = 0. (2.9) 

Thus, from (2.7), (2.8) and  (2.9) it follows the principal curvatures κ0 and κi = 1 are
κ0 

constant. 
Due to Currier [8, Theorem B] it follows that κ0 �= κi for i �= 1 since otherwise κ0 = 

κi = 1 so the hypersurface is horospherically convex and therefore a horosphere, which 
contradicts the assumption that the hypersurface has more than one end. Therefore, locally 
the hypersurface has exactly two distinct constant principal curvatures κ0 of multiplicity 1 
and 1 of multiplicity n − 1. It then follows from Cartan Theorem (cf. Cartan Theorem in 

κ0 
the introduction) that the hypersurface is an equidistant hypersurface about a geodesic line. 

�
 

3 Calculations for vertical graphs in hyperbolic space 

In [1,2,10] it is observed by Epstein, Alexander and Currier that a complete, noncompact, 
properly embedded, strictly convex hypersurface in hyperbolic space can be realized globally 
in Busemann coordinates as a graph of a height function over a domain in a horosphere. More-
over, in [1,2] it is shown that embedded hypersurfaces with nonnegative sectional curvature 
give rise to height functions that are subharmonic with respect to the Euclidean metric when 
restricted to any 2-plane. Then, as a consequence of the theory of subharmonic functions on 
domains in the plane, in [1,2] it is concluded that a hypersurface embedded in hyperbolic 
space with nonnegative sectional curvature must have a single point asymptotic boundary 
when the asymptotic boundary is connected. 

Moving on to the situations when only Ricci curvature is assumed to be nonnegative, the 
theory of subharmonic functions in dimension 2 is not applicable and the method in [1,2] fails 
in dimensions larger than 2. Our approach here is to employ the theory of n-subharmonic 
functions instead of subharmonic functions in dimensions n > 2. 

Consider the upper half-space model Rn+1 of hyperbolic space with standard coordinates + 
(x1, . . . , xn, xn+1) and hyperbolic metric 

dx1
2 + · · · + dx2 

n+1 gH = .2xn+1 

In the upper half-space model of hyperbolic space we note that 

H 
∂ 1 ∂ 

H 
∂ 1 ∂ ∇ ∂ =  i j  and ∇ ∂ = −  . 

∂xi ∂x j xn+1 ∂xn+1 ∂xα ∂xn+1 xn+1 ∂xα 



	

Note that in our convention Greek letters run from 1, 2, . . . , n + 1 while Latin letters run 
from 1, 2, . . . , n. Let  � be the vertical graph of a function xn+1 = f (x1, . . . , xn) over a 
domain in 

R
n = {(x1, x2, . . . , xn+1) ∈ R

n+1 : xn+1 = 0}.+ 

Denote the induced tangent vectors on � by 

∂ ∂ 
Xi = + fi 

∂xi ∂xn+1 

∂ fwhere fi = . Then the induced metric on � as a hypersurface in Hn+1 is given by 
∂xi 

g := f −2( i j  + fi f j )dxi dx j 

with inverse � � 
i j  i j  − 

fi f j
g = f 2  ,

1 + |D f |2 

where we have denoted the Euclidean norm squared of the Euclidean gradient of f by 

n � 
|D f |2 =  i j  fi f j = f 2 .i 

i=1 

Then a straightforward computation gives � � 
∂ ∂ ∂ ∇X

H 

i
X j = f −1 ( i j  + f fi j  − fi f j ) − fi − f j . 

∂xn+1 ∂x j ∂xi 

Hence, with respect to unit normal 

f 
ν = 1 (− f1,− f2, . . . ,− fn, 1) 

(1 + |D f |2) 2 

on �, we compute the second fundamental form of � 

I Ii j  = �∇H X j , ν� =  
1 

( i j  + fi f j + f fi j ). (3.1)Xi 1 
f 2(1 + |D f |2) 2 

Moreover, denoting the Euclidean Laplacian of f by � f , it follows that the mean curvature 
of � is 

n � � �1 fi f j
H =  i j  − ( i j  + fi f j + f fi j ) 

(1 + |D f |2) 2
1 1 + |D f |2 

i, j=1 ⎛   
n �1 f ⎠ = ⎝n + f � f − fi j  fi f j . 

(1 + |D f |2) 2
1 1 + |D f |2 

i, j=1 

Now at any point x ∈ Rn where h = log f is finite and D f (x) �= 0, we may choose local 
coordinates where ∂ = D f  is the Euclidean unit vector in the direction of D f  and with 

∂x1 |D f |
∂ ff j (x) = (x) = 0 for  all  j �= 1. In such coordinates f 2 = |D f |2 so we may write the 
∂x j 1 

mean curvature of � at such a point x as � � 
n � �

1 + f 2 �f f 1 
H = 3 f11 + 1 + 1 fii  + . (3.2) 

(1 + f 2 2 f (1 + f 2 2 f 
1 ) 1 ) i=2 



Next we calculate the Ricci curvature for the vertical graph � in hyperbolic space via 
Gauss equations 

R� 
i jkl  = −(gik g jl  − gil g jk) + (I Iik I I jl  − I Iil I I jk). 

From (3.1) it follows that the Ricci curvature tensor has components 

n � � �1 f j fl
Rik  = −(n − 1)gik  +   jl  − 

f 2(1 + |D f |2) 1 + |D f |2 
j,l=1 

× (( ik  + fi fk + f fik)(  jl  + f j fl + f f jl) − ( il  + fi fl + f fil)(  jk  + f j fk + f f jk)) 

1 = −(n − 1)gik  + 
f 2(1 + |D f |2) ⎛ ⎛   

n �f ⎠×⎝( ik  + fi fk + f fik) ⎝n + f � f − f jl f j fl
1 + |D f |2 

j,l=1 ⎛    
n n � �f ⎠⎠− ( il  + fi fl + f fil) ⎝ lk  + f flk  − f jk f j fl . (3.3)

1 + |D f |2 
l=1 j=1 

Now, let us consider the gradient of f with respect to the induced metric g � � n 

∇g f = gi j  fi X j = f 2  i j  − 
fi f j 

fi X j = 
f 2 � 

f j X j ,
1 + |D f |2 1 + |D f |2 

j=1 

and its normalization 
n �∇g f f = f j X j . ||∇g f ||g |D f |(1 + |D f |2) 21 

j=1 

Denoting the components of the normalized gradient of f by 

f̄ i = 
f 

fi , |D f |(1 + |D f |2) 21 

from (3.3) we calculate the Ricci curvature in the direction of the normalized gradient of f 

n � 
Rik f̄ i f̄ k = −(n − 1) + 

1 
fi fk|D f |2(1 + |D f |2)2 

i,k=1 ⎛ ⎛   �f
n ⎠×⎝( ik  + fi fk + f fik) ⎝n + f � f − f jl f j fl

1 + |D f |2 
j,l=1 ⎛    

n 
f

n � � ⎠⎠− ( il  + fi fl + f fil) ⎝ lk  + f flk  − f jk f j fl
1 + |D f |2 

l=1 j=1 

1 = −(n − 1) + |D f |2(1 + |D f |2)2 ⎛⎛   
n � ⎝ ⎠× ⎝|D f |2 + |D f |4 + f fik fi fk 

i,k=1 



  �f
n ⎠× ⎝n + f � f − f jl f j fl

1 + |D f |2 
j,l=1 � � 

n n � � 
− fl + |D f |2 fl + f fil fi 

l=1 i=1 ⎛    
n 

f
n � � ⎝ ⎠⎠× fl + f flk fk − f jk f j fl fk . (3.4)

1 + |D f |2 
k=1 j,k=1 

For convenience, we denote 

n n � � 
fi j  fi f j = H1( f ) and fik fk j  fi f j = H2( f ). 

i, j=1 i, j,k=1 

Then we may write (3.4) as  

1 
f̄ i ¯ |D f |2(1 + |D f |2)2Rik  f k = −(n − 1) + (|D f |2(1 + |D f |2) + f H1( f )) � � � 

f H1( f )× n + f � f − − |D f |2(1 + |D f |2) + 2 f H1( f )
1 + |D f |2 �� 

f 2(H1( f ))2 

+ f 2 H2( f ) − 
1 + |D f |2 � 

1 = −(n − 1) + n|D f |2(1 + |D f |2) + n f H1( f )|D f |2(1 + |D f |2)2 

f 2(H1( f ))2 

+ f � f |D f |2(1 + |D f |2) + f 2 H1( f )� f − f H1( f )|D f |2 − 
1 + |D f |2 � �� 

f 2(H1( f ))2 

− |D f |2(1 + |D f |2) + 2 f H1( f ) + f 2 H2( f ) − 
1 + |D f |2 

|D f |2 f = −(n − 1) + ((n − 2)H1( f )
1 + |D f |2 |D f |2(1 + |D f |2)2 

+� f |D f |2(1 + |D f |2) + f H1( f )� f − H1( f )|D f |2 − f H2( f )). (3.5) 

Now, as above, at any given point where h = log f is finite and D f  �= 0, we choose a 
local normal coordinate such that ∂ is a Euclidean unit vector in the direction of D f . Then  

∂x1 
pointwise we may simplify (3.5) as follows: � 

f 2 f1Rik f̄ i f̄ k = −(n − 1) + (n − 2) f11 +� f (1 + f1
2)

1 + f 2 (1 + f1
2)2 

1 � 
n � 

f 2+ f f11� f − f11 f1
2 − f 1i 

i=1 � � � 
f 2 f 1 + f 2 1 + f1

2 

= −(n − 1) 1 + (n − 1) f11 + 1 − (n − 1)
1 + f 2 (1 + f1

2)2 f f1 � � � 
n n1 + f 2 � � 

1 f 2+ f + f11 fii  − f 1if 
i=2 i=2 



� � 
n � � n

f 2 1 + f1
2 � 1 f 2 � 

= + f11 fii  + − (n − 1)− f1
2 
i . 

(1 + f1
2)2 f f (1 + f1

2)2 
i=2 i=2 

(3.6) 

But then, since the Ricci curvature is nonnegative, it follows that Rik f̄ i f̄ k ≥ 0 so  
 � ��
 � 
n � �

1 + f 2 �f f 1 
3

1 + f11 1 fii  + ≥ (n − 1). (3.7) 
(1 + f 2 2 f (1 + f 2 2 f 

1 ) 1 ) i=2 

Note that the sum of the two factors in (3.7) is the mean curvature in the light of (3.2). 

Lemma 3.1 On a hypersurface in hyperbolic space with nonnegative Ricci curvature the 
mean curvature of the hypersurface H ≥ n. 

Proof From the assumption that the Ricci is nonnegative, for each i = 1, . . . , n, one has 

κi H ≥ n − 1 + κi 
2 

where κi denote the principal curvatures. Therefore, with our choice of orientation, κi > 0 
and n � 

2 H2H2 ≥ n(n − 1)+ κi ≥ n(n − 1)+ 
1 

n 
i=1 

which implies that H ≥ n. �
 

Since both sum and product are positive, the two factors on the left of the Eq. (3.7) are  
both positive. Therefore, � � � � � � n � � � 1 + f 2 �� 1 + f 211 � 1�(n − 1) + f11 · fii  + ≥ (n − 1) . (3.8)

f f f 
i=2 

Theorem 3.1 Suppose that � is a vertical graph of a function xn+1 = f (x1, . . . , xn) in the 
upper half-space model of hyperbolic space with f ∈ C2 wherever the hyperbolic height 
function h = log f is finite. If � has nonnegative Ricci curvature, then the height function is 
Euclidean n-subharmonic. That is, 

�n log f = Div(|D log f |n−2 D log f ) ≥ 0 (3.9) 

wherever h = log f is finite. 

Proof One may focus on the points where D f  �= 0. From (3.8) and Young’s inequality, we 
have � � 

n �1 + f1
2 f11 1 + f1

2 fii  1 
2(n − 1) ≤ (n − 1) + + + (n − 1)

f 2 f f 2 f f 2 
i=2 

which implies 

f 2 � �f11 1 
n 

fi i  
2 

0 ≤ (n − 1) − (n − 1) + = (n − 1)(log f )11 + (log f )i i
f f 2 f 

i=2 i=2 
n � −2= (n − 2)|D log f | (log f )i j (log f )i (log f ) j +�(log f ) 

i, j=1 

−(n−2)= |D log f | �n log f (3.10) 

and completes the proof. �
 



	 	

	

	

	 	

	

	

	

	

4 n-Subharmonic functions and proof of main theorem 

Let� be a complete, noncompact, properly embedded hypersurface in H
n+1 with nonnegative 

Ricci curvature. Then from (1.1) � is strictly convex and it is known that � is the boundary 
of a strictly convex body U in hyperbolic space. Then the recession set R(�) for � is the 
collection of end points at infinity of all geodesic rays which lie entirely inside U. Thanks to 
Epstein, Alexander and Currier [1,2,10], it is also known that � can be realized as a vertical 
graph of a height function over a domain in any horosphere centered at a point in the recession 
set (cf. [1,2,10]). Let us state a lemma to collect some useful facts for us. 

Lemma 4.1 (cf. [1, Proposition 2.2]) Suppose that � is a complete, noncompact, properly 
embedded, strictly convex hypersurface in hyperbolic space. Then � is a graph of a height 
function h : → R ∪ {−∞}. Here  ⊂ Hp0 , where  Hp0 is a horosphere centered at some 
point p0 in the recession set R(�). Moreover the following hold: 

• The domain is a convex and open subset of Hp0 . 
• The height function h is continuous and locally bounded from above in . 
• P({h = −∞}) ∪ {p0} is the recession set R(�), where  P is the simple orthogonal 

projection when using the half space model taking p0 as the infinity. 

Proof One can refer to the graph below for the notions. Note that all geodesic lines from p0 

have one-to-one correspondence with the horosphere Hp0 . From (1.1),U is strictly convex. 
So all geodesic lines from the point p0 are exclusively of three kinds: those lying entirely 
inside U; those lying entirely outside U; those intersecting � transversally. The intersection 
points of Hp0 with those geodesic lines which are not lying entirely outside U make up the 
domain . Since  U is open and convex, it is easy to prove that is open and convex in Hp0 . 
Let (x1, . . . , xn, xn+1 = ey) be the Busemann coordinate and assume Hp0 is given by y = 0. 
In this coordinate, � together with the recession set R(�)\{p0} can be viewed as the graph 
of the function y = h(x1, . . . , xn) over . � corresponds to where h is finite and R(�)\{p0}
corresponds to where h = −∞. It is not difficult to prove that h is continuous in from the 
fact the hypersurface is smooth and convex. So it is locally bounded from above in since 
h < +∞ in . The third item is also obvious from our construction. 



	

In this section, based on the theory of n-subharmonic functions and n-polar sets in [11,12] 
by Heinonen, Kilpelainen, and Martio, and Lindqvist, we present an argument here to show 
that for a complete properly embedded hypersurface with nonnegative Ricci curvature, the 
set 

{h = −∞} ⊂  

is totally disconnected. In particular, p0 is a connected component of the recession set, since 
if there were other points in the connected component containing p0, these points are totally 
disconnected, which is absurd. Then if the hypersurface is not an equidistant hypersurface, 
∂∞� = {p0}. So we will complete the proof of the main theorem. 

For the convenience of the readers we recall some of the basics in the theory of p-
subharmonic functions on domains in Rn . Our introduction here is mostly based on [11,12], 
therefore readers are referred to [11,12] for details and proofs. First we recall Definition 7.1 
of [11] (see also Definition 5.1 of [12]), which defines viscosity p-subharmonic functions in 
terms of the comparison principle. 

Definition 4.1 ([11, Definition 7.1] [12, Definition 5.1]) A function u : W → R∪ {−∞} is 
called viscosity p-subharmonic in a domain W ⊂ R

n , if  

(1) u is upper semi-continuous in W ; 
(2) u �≡ −∞ in W ; 
(3) For each W1 ⊂⊂ W , the comparison principle holds: if v ∈ C(W 1) is p-harmonic in 

W1 and v| ≥ u| , then  v ≥ u in W1.∂W1 ∂W1 

The most important analytic tools for us are Theorems 10.1 and 2.26 in [11], which we state 
as follows: 

Theorem 4.1 ([11, Theorems 10.1 and 2.26]) Suppose that u is a viscosity p-subharmonic 
function defined in a domain W ⊂ R

n. Then its p-polar set {u = −∞} ⊂  W is  of  



	

	

	

	

	

zero p-capacity and of Hausdorff dimension at most n − p. Particularly, for a viscosity 
n-subharmonic function u, the set {u = −∞} is of zero n-capacity and 

dimH ({u = −∞}) = 0. 

Therefore, the main issue in proving the Main Theorem is to verify that the height functions 
for complete properly embedded hypersurfaces in hyperbolic space with nonnegative Ricci 
curvature are viscosity n-subharmonic in ⊂ R

n . In the light of Definition 4.1, we only need 
to verify the comparison principle. Here we make a note that viscosity p-subharmonic func-
tions may not belong to W 1, p 

loc  . However, if it is locally bounded from below, then it belongs 

to W 1, p 
loc  . For our purpose we introduce the notion of weakly p-subharmonic functions. 

Definition 4.2 ([12, Definition 2.12]) For p ≥ 1 and a domain W ⊂ Rn , a function u ∈ 
W 1, p 

loc  (W ) satisfying � 
�|Du|p−2 Du, Dη�dx  ≤ 0 for each η ∈ C0 

∞(W ) and η ≥ 0 (4.1) 

is called a weakly p-subharmonic function in W . 

From Theorem 2.15 in [12] and subsequent remarks we have the following comparison 
principle for weakly p-subharmonic functions. 

Theorem 4.2 ([12, Theorem 2.15]) Suppose that u is a weakly p-subharmonic function and 
v is a p-harmonic function in a bounded domain W ⊂ R

n. If for every ζ ∈ ∂ W 

lim sup u(x) ≤ lim inf v(x) (4.2) 
x→ζ x→ζ 

with the possibilities ∞ ≤ ∞ and −∞ ≤ −∞ excluded, then u ≤ v almost everywhere in 
. 

Consequently, due to Theorem 3.1 in the previous section, away from the recession set, the 
height function h is clearly weakly n-subharmonic and satisfies the comparison principle. 
Now we are ready to prove our main theorem. 

Proof of theMain Theorem We claim that the height function h = log f is viscosity n-
subharmonic in its domain as defined in Lemma 4.1. It is clear that h �≡ −∞ and that 
h is upper semi-continuous. One only needs to verify the Comparison Principle in (3) of 
Definition 4.1. Assume otherwise, that condition (3) does not hold for h in . Let  v ∈ C(W ) 
be an n-harmonic function in W ⊂⊂ with v ≥ h on ∂W but h > v  in some nonempty 
open subset W0 ⊂ W with h = v on ∂W0. Then it is easily seen that W0 ∩ {h = −∞} = ∅. 
That is to say the height function h is finite in W0 and therefore satisfies the comparison 
principle Theorem 4.2 on W0, which is a contradiction. Thus, the height function is indeed 
viscosity n-subharmonic. 

In the light of Theorem 4.1, we know that dimH (R(�)) = 0. So the asymptotic boundary 
is totally disconnected, that is, every connected component of the asymptotic boundary can 
only be a single point. If the asymptotic boundary has more than one connected component, 
then we know ∂∞� consists of exactly two points by the Cheeger–Gromoll splitting theorem 
[7] and the discussion in Sect. 2. Hence, by Theorem 2.1, it follows that � is an equidistant 
hypersurface. Otherwise, the asymptotic boundary must consist of a single point. So the proof 
of the Main Theorem is complete. 

Our corollary now follows easily from our main theorem and the discussion above. From 
our main theorem one easily sees that a manifold (Mn , g) with nonnegative Ricci curvature 



	

that can be isometrically embedded in Hn+1 can either be embedded as an equidistant hyper-
surface and is therefore diffeomorphic to a cylinder R × Sn−1 or it can be embedded as a 
hypersurface with single point boundary at infinity. In the latter case, one finds in that the 
hypersurface can be realized as the graph of a smooth (nonsingular) height function over a 
convex open domain in a horosphere and is therefore diffeomorphic to Rn . 
�
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