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Third generation LIGO detectors will be limited by thermal noise at a low frequency band where 

gravitational wave signals are expected to exist. A large contribution to thermal noise is caused by 

internal friction of the mirror and suspension elements. In order to meet the quantum mechanical 

sensitivity limits of the detector, it will be necessary to further push down the contribution of thermal 

noise. Future detectors will require new materials with extremely high mechanical quality. Silicon at 

cryogenic temperatures shows the promise to provide the required mechanical quality due to its 

vanishing expansion coefficient at 120 K. The fluctuation dissipation theorem links thermal noise to 

mechanical dissipation which, in turn, motivates us to study the quality factor of silicon cantilevers. An 

experiment is designed to measure the mechanical quality of silicon flexures at cryogenic temperatures. 

Utilizing a ring-down method in vacuum, we determine the quality factor of a silicon cantilever at room 

temperatures. Q-factors of up to 2.84 ∙ 105 were measured.  Further experiments should be performed at 

cryogenic temperatures with etched samples to determine how the quality factor is impacted. In 

addition, an introduction to LIGO and the respective sources of noise is presented.  
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Figure 1: A picture of the LIGO Livingston site with the two perpendicular arms that extend for 4 

kilometers. 

 

1. Introduction 

The idea of gravitational waves comes from the work of Albert Einstein in the early 

20th century. During this time, Einstein revamped Newtonian gravitational theory by 

showing that local mass-energy is equivalent to local space-time curvature. This was 

quantified in the Einstein field equations which are a set of non-linear partial differential 

equations (Equation 1) [1].  

                                                 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈                                                (1) 

Here 𝑅𝜇𝜈 is the Ricci curvature tensor, 𝑔𝜇𝜈 is the metric tensor, R is the scalar curvature, Λ 

is the cosmological constant, G is Newton’s gravitational constant, c is the speed of light in 

vacuum, and 𝑇𝜇𝜈 is the stress-energy tensor. In addition to implying a number of 

phenomena, wave solutions exist for these equations.  
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Gravitational waves have never been directly observed before but there is little 

doubt that they exist. Gravitational waves are implied by Einstein’s theory of relativity, 

which has accumulated numerous experimental confirmations since its postulation. 

Newtonian gravity does not provide for gravitational radiation and thus, changes in the 

gravitational field must be transmitted at infinite speed. This violates the already 

confirmed special theory of relativity, which states that information cannot be transmitted 

faster than the speed of light. Since special relativity has already been confirmed on 

numerous occasions, it is accepted that gravitational waves must propagate at the speed of 

light or less.  

The geometry of space-time can be expressed by the metric tensor 𝑔𝛼𝛽 which 

connects the space-time coordinate 𝑑𝑥𝛼  (Where 𝛼 = 0,1,2,3) to the spacetime interval 𝑑𝑠 

[1]: 

                                                      𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽                                                               (2) 

The gravitational waves far from any substantial source of gravity will be very weak. We 

can then approximate the background metric as the flat Minkowski metric and, 

subsequently, the gravitational wave field as the sum of this flat metric and a small 

perturbation [1]: 

 
                                                                     𝑔𝛼𝛽 = 𝜂𝛼𝛽 + ℎ𝛼𝛽                                                                   (3) 

 
 

To obtain an explicit solution of the metric perturbation ℎ it is necessary to make a gauge 

choice. The most useful gauge with regards to this context is the transverse traceless gauge. 

In this gauge, and in the weak field limit discussed above, the Einstein equations become a 

system of linear equations, specifically a system of wave equations [1]: 
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                                                                   (∇2 −
1

𝑐2

𝜕2

𝜕𝑡2) ℎ𝛼𝛽 = 0                                                               (4) 

 
 

This equation tells us that gravitational waves travel at the speed of light and that the 

gravitational wave tensor  ℎ can be considered to be the gravitational wave field. The wave 

field is transverse and traceless and for waves traveling in the z direction, it can be 

expressed as follows [1]:  

                                                           ℎ𝛼𝛽 = (

0 0 0 0
0 ℎ𝑥𝑥 ℎ𝑥𝑦 0

0 ℎ𝑦𝑥 ℎ𝑦𝑦 0

0 0 0 0

)                                                            (5) 

 

Since the Riemann tensor is symmetric, ℎ also satisfies: 

                                                                              ℎ𝑦𝑥 = ℎ𝑥𝑦                                                                          (6) 

 
This symmetry implies that there two possible polarization states which are denoted ℎ× 

and ℎ+ and can be expressed as follows [1]: 

                                                                  ℎ+ = 𝑅𝑒[𝐴+𝑒−𝑖𝜔(𝑡−
𝑧

𝑐
)]                                                               (7) 

 

                                                                  ℎ× = 𝑅𝑒[𝐴×𝑒−𝑖𝜔(𝑡−
𝑧

𝑐
)]                                                               (8) 

                    
These solutions resolve the problem with instantaneous action-at-a-distance of Newtonian 

gravitation theory. More importantly, they imply that the gravitational field moves with the 

speed of light in turn bringing news of space-time curvature at a finite speed [1]. 

Experiments aiming to detect gravitational waves produced by large astronomical 

events have been underway for the past 40 years but only now have sensitivities reached a 

level where detection is a real possibility within the next few years. LIGO, a large scale 

physics experiment consisting of the most sensitive gravitational wave detectors in the 
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world, is expected to detect a gravitational wave that may originate from coalescing 

neutron stars and black holes, spinning neutron stars, and supernovas [2]. Each detector is 

essentially a Michelson interferometer which consists of mirror test masses suspended as 

pendula whose displacements are detected by measuring subsequent phases of lasers 

reflected off of the masses (Figure 2). 

 

 
Figure 2: A Schematic of the Michelson interferometer consisting of Fabry-Perot arm 

cavities.  

  
These displacements occur when a gravitational wave passes and distorts space-

time through the detector. The strain that would be detected by the interferometer is 

limited by a number of noise sources including seismic noise, shot noise, radiation 

pressure, and thermal noise. Figure 3 displays the projected noise of all sources for 

advanced LIGO. Research has already begun on how to reduce noise for 3rd generation 

LIGO interferometers. For instance, radiation pressure will be addressed using squeezed 

light and filter cavities [3]. Once this radiation pressure is reduced, thermal suspension 

noise will be a significant source of noise at low frequencies. The thermal noise associated 

with the mirror masses' suspensions is one of the most significant noise sources in a 

frequency band centered on 100 Hz [4]. This prompts us to investigate the effects of 
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thermal noise on the suspension. But first, let us take a look at the various sources of noise 

inherent in the detector.  

 
 

 
 

Figure 3: The projected effect of various noise sources for the Advanced LIGO detector 
 

  

The above figure shows the effect of the different noise sources for the upgraded 

LIGO detector. Shot noise falls under the category of quantum noise and its main limitation 

to the sensitivity of the LIGO interferometers comes at about frequencies above 100 Hz [4]. 

To understand shot noise, we must first consider Poisson statistics. Poisson statistics come 

into play in systems where there is some event whose probability of occurring in a fixed 

time interval is constant. Photons emitted from a laser beam obey the Poisson distribution:  

 

                                                                         𝑝(𝑛) =
𝜇−𝑛𝑒−𝜇

𝑛!
                                                                       (9) 
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Where 𝜇 is the expected number of photons, n is the number of photons and 𝑝(𝑛) is the 

probability of observing that amount of photons. The Poisson distribution is unique by the 

fact that the standard deviation is equal to the square root of the average. So now, we may 

go about thinking of the laser beam as particles (photons). Or, we may go about thinking of 

the beam as waves. It turns out that the laser beam is both wave-like and particle-like but 

we are not surprised by this since wave-particle duality applies. When the beam is in a 

wave-like state there is an uncertainty associated with the phase. When the beam is in 

more of a particle-like state, there is an uncertainty associated with the number of 

particles. The product of these two uncertainties must be greater than or equal to 1 

(Heisenberg uncertainty).  Therefore, the uncertainty of the phase is directly related to the 

uncertainty in the number of particles. The uncertainty in the phase of a laser beam due to 

quantization of light is called shot noise [4].  

 Seismic noise is the result of ground motion coupling to the motion of the mirrors. It 

can be suppressed in multiple ways such as suspending the mirrors as pendula or by 

sensing ground motion and actively feeding this back into cancellation controls [4].  

 Mirror coating noise is associated with thermal noise in the coatings. Thermal noise 

is described in the next section.  

 
 

1.1 Thermal Noise 
 
The first insight into thermal noise began in 1828 when Robert Brown observed a 

ceaseless jiggling of pollen molecules suspended in water [4]. Later, Einstein showed that 

the fluctuations of the pollen particles arose from the impacts of water molecules on the 

grain. Specifically, he theorized that the mean-square displacement of a particle is 
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                                                                  𝑥𝑇ℎ𝑒𝑟𝑚
2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑘𝐵𝑇

1

3𝜋𝑎𝜂
                                                             (10) 

 
 
Where 𝜏 is the duration of observation, 𝑎 is the radius of a spherical grain, and 𝜂 is the 

viscosity of the fluid [4].  In itself, the equation represents a link between the random 

fluctuations of the particle to the mechanism for dissipation i.e. the viscosity of the water. 

The example of Brownian noise is a special case of the fluctuation-dissipation theorem 

which relates the dissipation of a dynamical system with its equilibrium thermal 

fluctuations [2]. Specifically, the theorem connects the linear relaxation of a system in a 

non-equilibrium state to its statistical fluctuations in equilibrium [5]. The theorem was 

further quantified in 1928 when Johnson and Nyquist showed that the mean-square 

voltage of a resistor depends on the resistance: 

 
                                                                     〈𝑉2〉 = 4𝑅𝑘𝐵𝑇∆𝜈                                                                 (11) 

 
 
 Where ∆𝜈 is the bandwidth over which the voltage is measured,  𝑉2 (the voltage squared) 

is a sort of a generalized fluctuating force and 𝑅 (the resistance) represents dissipation. 

This means that any sort of dissipation guarantees fluctuating forces when the system is at 

rest which, in the case of LIGO's mirrors and mirror suspensions, masks the signal that one 

attempts to observe.  However, it also implies that one does not need to make a detailed 

microscopic model of any dissipation phenomenon in order to predict the fluctuation 

associated with it [4].  

The theorem shows us that the way to reduce the level of thermal noise is to reduce 

the amount of dissipation. However, this would be against our intuition since the 

equipartition theorem guarantees 
1

2
𝑘𝐵𝑇 of energy for the mean value of each quadratic 
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degree of freedom in a system. Thus, one would think that the only way to reduce 

fluctuation is through a reduction of temperature. But, the equipartition theorem speaks of 

the mean value of quadratic terms thus implying an integral over all values of the particular 

degree of freedom. This means that the integral of the thermal noise power spectrum over 

all frequencies is independent of dissipation. For the case of a damped forced oscillator, the 

fluctuation-dissipation theorem gives the relationship between loss and displacement 

noise at a certain frequency. At the resonant frequency, displacement noise is inversely 

proportional to mechanical loss and off resonance, it is directly proportional. This means 

that we can rearrange fluctuation energy if we decrease the mechanical loss and thus 

funnel that noise into the resonant frequencies.  This, in turn, prompts us to examine low 

loss materials and investigate other parameters that will minimize thermal noise in the 

suspension system of the 3rd generation LIGO project. Currently, advanced LIGO operates 

on fused silica as the mirror substrate and suspension fiber but a demand for an increase in 

sensitivity of the detector opens new candidates that may be used in 3rd generation 

detectors. Silicon is a promising candidate for test masses and suspension elements due to 

its vanishing coefficient of thermal expansion and excellent mechanical and optical 

properties [6]. Our aim is to investigate the mechanical dissipation of silicon flexures by 

calculating its quality factor at various temperatures and for a number of frequencies.  

 

1.2 Sources of Thermal Noise 
 
The main sources of thermal noise for crystalline silicon are external, thermoelastic, 

phonon-phonon, and surface loss. External noise comes from friction at the point of 

suspension or collisions with residual gas particles. External sources of dissipation, 
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however, are relatively miniscule sources of noise and can be neglected for our purposes. 

Phonon-phonon noise arises from a modulation of lattice vibrations when an external 

oscillation is applied with a wavelength much longer than the wavelength of thermal 

phonons. This redistribution of all phonons generates entropy and is thus a loss 

mechanism, however, it is only a significant contributor to noise at low temperatures. 

Thermoelastic loss arises from the fact that when a sample is bent, one side of it is heated 

and the other is cooled. The local temperature difference causes a heat flux which increases 

entropy and thus dissipates energy. Surface loss originates from cracks and contaminations 

in a small surface layer of the silicon, however, it is not fully understood. The expected 

contribution to mechanical loss of a silicon flexure from thermoelastic and phonon-phonon 

loss is displayed in figure 4. Our effort was focused around measuring the thermoelastic 

loss at room temperature.  

 

 
Figure 4: Summary of possible mechanical loss sources of a silicon flexure at 70 Hz 
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2. Experimental Design 
 
 In 2013, I spent a summer at Cal Tech and performed this experiment under the 

supervision of a post-doctorate physicist. Our primary goal was to measure the quality 

factor of a thin silicon flexure and, in turn, quantify the amount of thermal noise at different 

resonant frequencies. The quality factor is a dimensionless parameter that describes how 

under-damped an oscillator or resonator is. Equivalently, the Q-factor is a resonator’s 

bandwidth relative to its center frequency.  

The initial apparatus consisted of a HeNe laser, cryostat (figure 5), stainless steel 

clamp, aluminum corner reflector, electrostatic driving plate, PEEK insulator, and a thin 

silicon flexure. The components within the cryostat are displayed in figure 6. In order to 

measure a mechanical quality factor, the silicon flexure must be excited into oscillatory 

motion. The electrostatic driving plate (ESD) produces a non-uniform electrodynamic field 

which, when placed near the silicon flexure, forces the cantilever to oscillate. A signal 

generator and high-voltage source provided the ESD’s power and allowed a manual input 

of the signal’s frequency and amplitude. To minimize vibrational losses, the silicon 

cantilever was clamped down with stainless steel blocks. To achieve a reasonable amount 

of heat transfer between the cantilever and cryostat, a thin layer of PEEK was inserted 

beneath the clamp. The clamp attached to the cantilever via screws which were made of 

silver in order to prevent cold welding. The signal readout of the oscillation consisted of 

directing the laser through the side of the cantilever and reflecting it back out onto a split 

photodiode which could then translate a projected oscillatory shadow into a voltage 
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difference. This signal was amplified, sent to an oscilloscope, and then displayed onto a 

spectrum analyzer.  

 

 
Figure 5: The initial cryostat with no vacuum or electronic attachments 

 
 
 

 
Figure 6: A SolidWorks drawing of the internal components to the cryostat 
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Due to time constraints, the focus was switched to measuring the Q factor at room 

temperature. A new vacuum chamber (figure 7) was utilized allowing us to simply transfer 

the clamp, cantilever and ESD. The chamber had two port windows which allowed us to 

direct the laser through the vessel and onto the photodiode without the need to reflect back 

out. The split photodiode itself was constructed by gluing two photodiodes adjacent to each 

other (figure 8). A ring-down method was employed which consisted of exciting the 

cantilever to a resonant frequency (a frequency which stimulates a maximum amount of 

oscillation), turning off the excitation, and observing the expected exponential decay of an 

under-damped oscillator: 

                                                         𝑥(𝑡) = 𝐴𝑒−𝑏𝑡 2𝑚⁄ cos (𝜔𝑡 − 𝜙)                                                      (12) 
 
 The free-decaying amplitude follows an exponential law of the form [7]: 

                                                            𝑎(𝑡) = 𝑎0 ∙ 𝑒−
𝑡

𝜏                                                            (13) 
 

The characteristic ring-down time 𝜏 is used to determine the quality factor [7]: 

                                                                               𝑄 = 𝜋𝜐0𝜏                                                                       (14) 
 

Where 𝜐0 is the temperature dependent resonant frequency. The quality factor is related to 

the mechanical loss (In this case, thermoelastic) by: 

                                                                            𝑄(𝜔) =
1

𝜙(𝜔)
                                                                    (15) 

 
In turn, the mechanical loss angle at 6 resonant modes was measured. 
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Figure 7: A new vacuum chamber with dual port windows 

 

Figure 8: The split photodiode with the laser directed onto it 
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3. Results 

 Six eigen-modes of the silicon cantilever were determined using Comsol, a finite 

element analysis program.  

 

Figure 9: A sketch of the geometry of the silicon cantilever (left). A Comsol model of a bending 

mode of oscillation (right). The relative displacement is indicated by the color in the legend.  

 

A time series of a decaying oscillation was extracted with a data acquisition system and 

inputted into Matlab. At consecutive instances of the time series, the sinusoidal data was 

inputted into the pwelch function in Matlab which produced a power spectral density 

(PSD) for the resonant mode of interest. The power value of the resonant peak was 

extracted at each instant and plotted separately. The resonant peaks decayed exponentially 

with time (since the power is proportional to the amplitude squared of the oscillation), 

thus, the extracted values were subsequently fitted with equation 13 (Figure 10).  The 

characteristic ring-down time,𝜏, was inputted into equation 14 to determine the quality 

factor and mechanical loss. The main contribution to the loss was expected to originate 
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from the thermoelastic loss. For the special case of pure bending modes in crystalline 

silicon, the equation for the thermoelastic loss is given by: 

                                                                 𝜙𝑇𝐸 =
𝛼2𝑌𝑇

𝜌𝐶𝑝

𝜔𝜏

1+𝜔2𝜏2                                                                   (16) 

 

Where 𝛼 is the thermal expansion coefficient, 𝑌 is Young’s modulus, and 𝜏 is a relaxation 

time. Note that the internal loss is related to the sample dimension through the relaxation 

time: 

                                                                         𝜏 =
𝜌𝐶𝑝𝑡2

𝜋𝜅
                                                                            (17) 

 

Where 𝑡 is the thickness of the sample.  

 

Figure 10: PSD of the first bending mode displaying a peaked intensity at the resonant frequency 

and peaks at various harmonics (left). Decaying power of the first resonant frequency oscillation 

fitted to an exponential curve (right).  

Figure 11 represents the measured and expected mechanical loss at resonant modes of 

70.5 Hz, 536 Hz, 960.4 Hz, 1484.8 Hz, 2910.13 Hz, and 4804 Hz.  
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Figure 11: Expected and measured thermoelastic loss plotted for various resonant frequencies 

70.5 Hz, 536 Hz, 960.4 Hz, 1484.8 Hz, 2910.13 Hz, and 4804 Hz. 

 

 The second mode appears to show excessive loss which may have been due to a 

misalignment of the laser. The third mode is a torsional mode which is inaccurately 

modeled by the thermoelastic equation for loss, thus, its expected loss is a rough 

approximation. This is due to the fact that the heat flux established in a torsional mode is 

across the width of the cantilever. Nevertheless, the relaxation time is larger and the 

approximation for the torsional thermoelastic loss is smaller.  The first mode shows the 

lowest mechanical loss with a value of  3.52 ∙ 10−6 while the highest loss is seen in the 

highest resonant frequency with a value of 7.56 ∙ 10−5. Overall, a systematic error is 

apparent since all of the measured loss values overestimate the expected loss. This may be 

associated with energy losses to the clamp and the mount upon which it was attached to.  
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Most likely it originates from surface losses which must be investigated in the future along 

with how etching techniques may alleviate it.  

4. Summary 

 The mechanical quality factor of a silicon cantilever was measured at room 

temperature for various resonant frequencies. The measurements confirm that silicon is a 

high-Q material and is well suited to be used as an optical substrate for future gravitational 

detectors. Q-factors up to 2.84 ∙ 105 were measured at 300 K. Further work must be done 

to measure the Q factor at cryogenic temperatures. In addition, it will be necessary to 

investigate the effect of cantilever dimensions, crystal direction, and etching techniques on 

the measured Q-factor.  

 The future of gravitational wave detectors is a bright one, as all the noise sources 

mentioned above are being addressed by scientists around the world. The noise 

contribution will continue to be pushed down and it will only be a matter of time before 

LIGO detects a gravitational wave. This will hopefully spark a new field in physics that will 

probe the universe through a different lens. Astronomers have always observed the 

universe through electromagnetic radiation but now, we will be able to see a completely 

new signature of the world around us.  
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