Using Hadoop to Identify False Positives in
Bacterial Strain Typing from DNA Fingerprints

Colin C. Adams
Department of Computer Science
California Polytechnic State University
San Luis Obispo, CA 93407
Email: ccadams@calpoly.edu

Abstract—Pyroprinting is a novel technique used by the
Department of Biological Sciences to obtain ‘“fingerprints” from
the DNA of E. coli isolates in order to categorize them into
strains. To determine the number of false positives that occur
in the pyroprinting process, isolates with the same pyroprints
needed to be sequenced to see if their underlying alleles match.
If they do match, this shows they are indeed the same strain and
are a true positive. If the alleles don’t match, they are different
strains and are a false positive. To do this 100 isolates with
nucleotide identifiers were sequenced. Over five million sequences
were then analyzed using a program implemented on Hadoop.
This program provided a general indicator of the efficacy of
pyroprinting by grouping the sequences into their respective
isolate buckets and analyzing them to determine which were false
positives. The Hadoop implementation proved to be reliable and
highly scalable. This method of analysis is generally applicable
to many areas within bioinformatics, as well as potential uses in
other industries. The results from the experiment are still being
analyzed to determine the frequency of false positives, and how
this can inform the use of pyroprinting.

Keywords—Hadoop, Distributed Computing, Pyroprinting, Bac-
terial Strain Typing, E. coli, DNA

I. INTRODUCTION

Pyroprinting is a method of strain typing for bacteria. It
was developed by the Department of Biological Sciences at
Cal Poly, and uses fingerprints from each bacterium’s genetic
material to organize them into strains. The DNA fingerprint
for the bacterium is called its pyroprint. This technique was
developed as a cheaper, faster alternative to other bacterial
strain typing techniques. Bacterial strain typing is important
as a means of identifying the sources of water contamination.
First the bacteria, namely E. coli, in a body of water is analyzed
to identify the strain. Then, the host species can be inferred
from information on which species are likely to host that
particular strain. This is used to determine which species are
contributing most to water contamination [1].

To develop pyroprinting as a strain typing method, the De-
partment of Biological Sciences has collected E. coli samples,
referred to as isolates, from known host species and obtained
the pyroprints (discussed in Section II-B). These pyroprints
have been compared to each other to determine which isolates
are a part of the same strain [1]. However, thus far there has
been no way to identify if this method creates false positives,
where isolates have the same pyroprints and are deemed the
same strain but in the underlying DNA of the isolates are
different. The objective of this experiment is to measure the

frequency of false positives which would indicate the efficacy
of this method, and the objective of this paper is to explain
how Hadoop was used within the experiment [4].

The rest of this paper is organized as follows: Section II
explains pyroprinting in depth and the overall structure of the
experiment, Section III summarizes the algorithm for analysis
using Hadoop, and Section IV analyzes the performance of
our implementation.

II. BACKGROUND
A. E. coli DNA Structure

Escherichia coli DNA consists of a single circular chro-
mosome. As seen in Figure 1, there are seven rRNA operons
within the chromosome [1]. Each copy of the operon contains
the 168, 23S, and 5S genes. Between each pair of genes is an
internal transcribed spacer (ITS) region, with the ITS region
between /6S and 23S being identified as the ITS-1 region, and
the ITS region between 23S and 5S being identified as the
ITS-2 region.

ITS1 ITS2
A A

N 4 N
= 16S —Y 23S }—Y 55 }=>»
~ ’f
= rRNA .
~ ie
b d
>~ gpsion.

Fig. 1. A simplified diagram of the E. coli chromosome, displaying the seven
copies of the ITS-1 and I7S-2 regions [1].

While these ITS regions are repeated seven times through-
out the chromosome, each individual copy is not necessarily
identical to the other copies. Each unique sequence that
appears is identified as an allele, and an allele ratio can be
obtained based on the number of unique alleles and the number
of times each allele appears. If all seven copies of the ITS-1
region within a particular isolate are identical, then this is an
allele ratio of 7, as there is only one allele and it appears
seven times. Whereas if there are four copies of one allele



and three copies of another allele, this is denoted as an allele
ratio of 4: 3. If all copies are unique, this is an allele ratio of
1:1:1:1:1:1:1. The full list of possible allele ratios can
be seen in Table L.

TABLE 1. LIST OF ALL POSSIBLE ALLELE RATIOS

Allele Ratio Number of Alleles

NN B R R W W W NN

IBEHBHNI

B. Pyroprinting

From each E. coli isolate two pyroprints can be obtained,
one from the ITS-1 alleles and one from the I7S-2 alleles.
The pyroprint is obtained by simultaneously pyrosequencing
all seven copies at once [1]. The product of this process is a
vector of real values, and while the original alleles and allele
ratio cannot be reproduced from it, it is a “fingerprint” of them,
shown in Figure 2. Changes in alleles themselves, or in the
ratio of alleles, are reflected in the resulting pyroprint.

These pyroprints are then used for strain typing. Two
isolates are deemed to be the same strain if both their ITS-
I pyroprints are similar enough to each other, and their
ITS-2 pyroprints are similar enough to each other, where
similar enough is determined based on Pearson correlation,
as explained in [1].

Seven copies of ITS2 (4:3 ratio)

ITS2-1 GCCGAAGATGTTTT...
ITS2-2 GCCGAAGATGTTTT...
ITS2-3 GCCGAAGATGTTTT...
ITS2-4 GCCGAAGATGTTTT...
ITS2-5 GCCGAAGGTGTTTT...
ITS2-6 GCCGAAGGTGTTTT...
ITS2-7 GCCGAAGGTGTTTT...

ITS2 Pyroprint
7,14,7,14,10,4,7,7, 28, ...

Fig. 2. A simplified diagram of the inputs to the pyroprinting process and
the result from the process [1].

In this context, a false positive occurs when two isolates
have matching pyroprints, but have different alleles or allele ra-
tios. This would cause the two isolates to be falsely concluded
to be the same strain, when in fact the underlying DNA is
different.

C. Experiment Overview

In order to identify false positives, and obtain a general
frequency rate, a series of steps were taken. First, multiple
E. coli strains were chosen as being of particular interest,
and 100 E. coli isolates from those strains were identified for
use in the research. Next, a PCR was run on each isolate to
amplify its I7S regions, including a region primer identifying
which region it came from. This PCR also attached a barcode,
identifying which isolate the sequence originated from, and
a known adapter to the beginning of each sequence. The
resulting DNA was mixed together to form one sample, which
was then sequenced using an Illumina process. The sequences
from the Illumina process were then processed and analyzed
by a program built on top of Hadoop, which identified the
alleles and allele ratio for both ITS regions for every isolate.
Then the identified alleles and allele ratios for each isolate
within each strain could be used to calculate the frequency of
false positives within the pyroprinting process.

This paper is primarily interested in the computational
analysis that was completed using Hadoop.

III. IMPLEMENTATION

The core analysis program is implemented on the dis-
tributed computing framework Hadoop. hadoop is itself an
implementation of the MapReduce, a programming model for
processing large data sets [2]. The input to the program is a
set of DNA sequences with a size on the order of millions,
and the desired output is the set of isolates along with their
allele ratio and alleles for each ITS region.

The analysis is broken up into two separate Hadoop jobs.
The first identifies which isolate and ITS region each input
sequence originated from, finds the allele within the sequence,
and counts the frequency of that allele within that particular
isolate and I7TS region. The second job groups all alleles from
the same isolate and ITS region together, and performs a
statistical test to determine the proper allele ratio, based on
the raw frequency of each allele.

A. First Job

First, the mapping function runs on each input sequence.
This mapper attempts to parse the sequence to get three im-
portant pieces of information: the barcode, the region primer,
and the allele. The first step in the parsing process looks for
the known adapter and uses this as a reference point to find the
other information. Next, it looks for the barcode, to identify the
isolate, and then the region primer to identify which ITS region
it came from. The allele starts immediately after the primer,
however the length varies and is defined based on the pyroprint
process. To find the end of the allele a theoretical pyroprint is
run, using the dispensation sequence for the particular region
defined in [1], and the last nucleotide used in the pyroprint is
the last nucleotide of the allele.

A number of issues can occur during this parsing process.
First, the adapter may not have existed in the input sequence.
Other possibilities are that the read started partway through the
barcode, the barcode that was read was not a barcode used in
the experiment, neither region primer existed in the sequence,
or the read was not long enough to finish the pyroprint. If any



of these issues occurred then the appropriate validity code,
other than “Valid”, is assigned to the sequence. The properties
that were unable to be parsed are left empty.

After parsing, the mapper outputs the key as the validity,
barcode, region, and allele. The value is simply the original
sequence. This setup ensures that all inputs with the same
barcode, region, and allele are grouped into the same reducer,
allowing the frequency of that allele can be summed.

The reducer receives the validity, barcode, region, and al-
lele as the key, and a list of original input sequences associated
with that key. If the validity code is anything other than
“Valid”, then the reducer will output all of this information
as an object to a “Trash” output, so that the sequences are
available for investigation later and are separate from the valid
reads. Otherwise, if the validity code is “Valid”, then the
number of input sequences is summed. For these valid reads,
the reducer will output the key as the barcode and region, and
the value as the allele and count. This allows all of the alleles
with the same barcode and region to be grouped together in
the second Hadoop job.

B. Second Job

The second job takes as input all of the “Valid” output from
the first job, but not the “Trash” output. As the input already
has the key defined to group the alleles based on the barcode,
or isolate, and ITS region, the map step does not need to make
any modifications. Thus an identity mapper is used.

Once in the reducer, the frequencies of all alleles are
summed to get the total number of reads from the particular
isolate and region. Any allele with a frequency less than a
certain portion of the whole will be deemed “Mutated”. This
cutoff portion is configurable, but is usually set to between 1%
and 4%. An allele that only appears once in the chromosome
should still maintain 1/7th of the total reads, therefore any
allele with a frequency significantly less than that must not
be a true allele from the chromosome. A likely possibility is
that a mutation occurred somewhere in the process, either in
the amplification PCR or in the Illumina sequencing process,
that caused this allele to appear. These “Mutated” alleles are
written to their own output, separate from the results.

For all remaining alleles, those that are not deemed “Mu-
tated”, further analysis is performed to determine the proper
allele ratio. Any allele ratio with the same number of alleles as
are present could potentially be correct. For example, if there
are two non-mutated alleles present, the possible allele ratios
are 6:1, 5:2, and 4: 3, as seen in Table L.

For each potential ratio, a Chi-square test for independence
is used with the observed and expected counts to determine if
it is plausible to be the correct ratio. The alleles are sorted in
descending order by count, and each allele is then assigned a
value from the potential ratio. The expected counts are then
calculated using the value from the potential ratio and taking
that portion of the summed allele frequency. The test is then
run with a significance level of 0.05. If the null hypothesis is
rejected, then it is known with 95% confidence that this is not
the correct allele ratio. The desired outcome is that the null
hypothesis is rejected for all of the potential ratios except for
one, which would then become the presumed ratio. In the case

that there is only one allele, and therefore the only possible
ratio is 7, this is presumed to be the correct ratio without
running a statistical test, as this would have zero degrees of
freedom. If the null hypothesis was rejected for all possible
ratios, or it was not rejected for multiple ratios, then the allele
ratio cannot be determined.

After the allele ratio is found, the results are output
containing the catalog number, barcode, region, allele ratio,
and the list of alleles. The list of alleles also includes the count
and part of the ratio associated with each allele. The catalog
number identifies which strain the isolate is a part of. This
mapping is defined in a configuration file which is loaded into
Hadoop using a Distributed Cache. Each reduce only
outputs a single result, but the total output from the system
will contain a result object for each ITS region of every isolate.

The alleles and allele ratios can then be compared for
isolates within the same strain (with the same catalog number),
to determine whether or not a false positive exists within that
strain.

IV. PERFORMANCE

At the beginning of the project, the expected input size
was 500 thousand sequences. This led to the exploration of
an in-memory, sequential version as a potential viable option.
This version was implemented using Java, with heavy reliance
on the Stream API. Using the Stream API allowed the general
processing pipeline of MapReduce to be replicated in a single
machine implementation [3][2]. With the Stream API two
versions were implemented, sequential and parallel, where the
parallel version used a parallel stream to distribute the process
between multiple cores. A machine with a four core Intel i7
processor and 8GB of RAM was used to run performance
metrics for these two implementations, and these can be seen
below in Figure 3. Each data point is an average execution
time from three trials. Both versions were run with the Java
Virtual Machine configured with 2GB of maximum heap space,
and completed successfully with input sizes up to 1.5 million
sequences, but ran out of memory with 1.75 million. As seen
in the graph, the parallel version performs better with all input
sizes except 1.5 million, where being close to the memory
limit creates a bigger slow down.

Execution Time [secs)
P
5]

Number of Input Sequences

Sequential Parallel

Fig. 3. A graph showing the execution time of the sequential and parallel
single machine implementations on input sets of varying sizes.



Later in the project, the decision was made to use a
more extensive sequencing process that would yield a much
higher number of sequences, between 10 and 20 million. From
preliminary testing with the sequential version it was clear it
could not handle input sizes of that scale, and this led us to the
MapReduce implementation using Hadoop, discussed in detail
in Section III. The real sequences that were received from
the sequencing process only contained 5 million sequences,
instead of the estimated 10 to 20 million. The performance
for this implementation can be compared to that of the single
machine implementations in Figure 4, with execution times
for the Hadoop implementation on input sizes up to 5 million.
The Hadoop implementation was run with a cluster in Google
Cloud Compute Engine and made up of one master node and
three worker nodes. Each node has 2 vCPUs and 8GB of
memory. The input data was stored in Google Cloud Storage,
as opposed to the typical use of the Hadoop Distributed File
System. The results show that with this cluster configuration
the Hadoop implementation is significantly slower for the
small input sizes that the single machine implementations
could also analyze. However, the Hadoop implementation con-
tinues to perform even with much larger input sizes, running 5
million sequences in 3 minutes and 42.7 seconds on average.
It was also found that 20 million sequences could be analyzed
in 7 minutes and 10.2 seconds on average, and it is likely that
significantly larger data sets could be handled easily even with
the current cluster configuration.

Exeaution Time [secs)

Number of Input Sequences

—e— Sequential Parallel Hadoo

Fig. 4. A graph showing the execution time of both the Hadoop and single
machine implementations on input sets of varying sizes.

V. CONCLUSION

Our method allows for the analysis of pyroprinting as a
process in a reliable, scalable manner. It results in a detailed
summary from which further analysis can be performed in
various directions for many potential findings. This method is
generally applicable to the finding of false positives in any
DNA fingerprinting process, but can be applied to many areas
within bioinformatics.

The largest benefit from this project for our research is
insight into the general occurrence of false positives within
pyroprinting. The data is still under analysis, but this will
inform how we use the pyroprinting process in the future, and
potentially help us discover how the process can be improved.

VI. ACKNOWLEDGEMENTS

First and foremost, I would like to thank Skyler Gordon,
the lead on the project as a whole. He was my main re-
source for understanding the problem domain and coordinating
my contributions with the general project. The project never
would’ve happened without him. I would also like to thank
Dr. Alex Dekhtyar, my advisor, for all the assistance he gave
in helping me find the project and work through the problem.
Thanks are also due to Dr. Michael Black, Dr. Christopher
Kitts, and Dr. Jennifer VanderKelen. Finally, I would like
to acknowledge Zach Zhang, for allowing me to adapt his
theoretical pyroprinting code for use in this project.

REFERENCES

[1] Michael W. Black, Jennifer VanderKelen, Aldrin Montana, Alexander
Dekhtyar, Emily Neal, Anya Goodman, and Christopher L. Kitts. Pyro-
printing: A rapid and flexible genotypic fingerprinting method for typing
bacterial strains. Journal of Microbiological Methods, 105:121 — 129,
2014.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10-10, Berkeley, CA, USA, 2004. USENIX Association.

[3] Kishori Sharan. Beginning Java 8 Language Features: Lambda Expres-
sions, Inner Classes, Threads, I/O, Collections, and Streams. Apress,
Berkely, CA, USA, Ist edition, 2014.

[4] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., Ist
edition, 2009.



