
The Theory of Interval Probabilistic Logic
Programs

Alex Dekhtyar �, Michael I. Dekhtyar ��

Abstract Two approaches to logic programming with probabilities emerged
over time: Bayesian reasoning and probabilistic satisfiability (PSAT). The
attractiveness of the former is in tying the logic programming research to
the body of work on Bayes networks. The second approach ties, from the
point of view of computation, reasoning about probabilities to linear pro-
gramming, and allows for natural expression of imprecision in probabilities
via the use of intervals.

In this paper we construct precise semantics for one PSAT-based formal-
ism for reasoning with interval probabilities: disjunctive probabilistic logic
programs (dp-programs). It has two origins: (1) disjunctive logic programs,
a powerful language for knowledge representation, first proposed by Minker
in the early eighties [20] and (2) a logic programming language with in-
terval probabilities originally considered by Ng and Subrahmanian [21,22].
We show that the probability ranges of atoms and formulas in dp-programs
cannot be expressed as single intervals. We construct the precise description
of the set of models for the class of dp-programs and study the computa-
tional complexity of this problem, as well as the problem of consistency
of a dp-program. We also study the conditions under which our seman-
tics coincides with the single-interval semantics originally proposed by Ng
and Subrahmanian. Our work sheds light on the complexity of constructing
reasoning formalisms for imprecise probabilities and suggests that interval
probabilities alone are inadequate to support such reasoning.

� Work partially supported by NSF grant ITR-0325063.
�� Work partially supported by Russian Foundation for Basic Research grant
07-01-00637.

1 Introduction

Reasoning with probabilistic information, in the context of logic program-
ming, has two distinct origins: Bayesian reasoning and probabilistic satis-
fiability. Logic programming frameworks based on the Bayesian reasoning
paradigm interpret statements about conditional probability of event A:
P (A|B) = p, as an implication of a special kind,

A : p←− B.

This implication is usually read as follows: "if B then the probability
of A is equal to p". Among the logic programming frameworks follow-
ing this idea are the work of Poole[27], Ngo and Haddawy [24], and more
recently, and in the context of answer set programming, of Baral, Gelfond
and Rushton [2].

Probabilistic Satisfiability (PSAT) inspires the alternative approaches
to probabilistic logic programming frameworks. PSAT traces its origins to
the work of Boole on probability theory [1]. In his work, Boole considered
a finite collection of propositional (boolean) formulas F1, . . . , Fm over some
finite collection of propopositions A1, . . . An. He then assumed that instead
of knowing whether each formula is true, he is given a set of probability
assignments to these formulas of the form

Prob(Fi) = pi, 1 ≤ i ≤ m.

The question Boole had asked was whether it is possible to assign proba-
bilities Prob(Aj) = qj , 1 ≤ j ≤ n to propositional atoms so that all the
statements about the probabilities of F1, . . . , Fm were true1.

Unlike his work in logic, Boole’s work on probability theory has been
criticized by his colleagues and had not achieved the same prominence. How-
ever the PSAT problem, as formulated by Boole has been resurrected by
Hailperin [12] more than a century later and has been ”modernized” by
Georgakopoulos, Kavvadis and Papadimitriou [11] in 1988. Nilsson’s proba-
bilistic logic [25] is based on PSAT and uses the semantics of possible worlds
(world probability functions) to model probabilities of events. In [11] it is
shown that PSAT is NP-complete.

The attractiveness of building logic programming frameworks based on
Bayesian reasoning lies in direct relationship to the large body of work on

1 An interesting historical note is that to solve this problem Boole has discovered
linear programming or at least, a special case of the general problem. He suggested,
albeit without proof, that solutions to his system should be sought at the extreme
points of the region described by the system — almost inventing the simplex
algorithm [1].

Bayesian networks and Markov Decision Processes. The attractiveness of
PSAT-based logic programs is in the fact that PSAT has a natural ex-
tension to the case of imprecise probabilities. The importance of imprecise
probabilities has been observed by numerous researchers in the past two
decades [29,3]. It has led to the establishment of the Imprecise Probabili-
ties Project [14] and has generated an interest in interval probabilistic logic
programming frameworks [21,8,16].

Interval PSAT is a reformulation of PSAT, in which probability assign-
ments of the form P (F) = pF are replaced with inequalities of the form
lF ≤ P (F) ≤ uF . The underlying semantics and the methodology for solv-
ing Interval PSAT is the same as for PSAT. Logic programming frame-
works inspired by PSAT consider rules of the form ”P (F) = μ if P (F1) =
μ1 and . . . and P (Fn) = μn”. Unlike in bayesian-inspired frameworks, here
”if” is the classical logical implication. Logic programming formalisms stem-
ming from PSAT, in which probabilities of events are expressed as intervals,
have been considered by Ng and Subrahmanian[21,22] and by Dekhtyar and
Subrahmanian[8]. In these frameworks, the fixpoint semantics of formulas,
i.e., the set of possible probability assignments for them, had been repre-
sented using a single interval.

Our more recent work [6,7] extended the semantics of interval probabilis-
tic logic programming languages based on Interval PSAT, in particular, the
languages considered by Ng and Subrahmanian in [21,22]. When possible
world semantics of Nilsson [25] is used, it turns out that the set of possible
probability values for a formula in a probabilistic program may no longer be
a single closed interval - and thus, the previously used fixpoint procedures
are no longer adequate for explicit description of the set of models of the
probabilistic programs. In [6] we have described the new semantics for the
class of probabilistic programs that involved only atomic formulas in the
heads of clauses. We provided the exact mathematical description of the
set of models for an interval probabilistic program and also, have presented
procedures for building this set explicitly. In [7] we considered the seman-
tics of a broader class of programs, equivalent to those studied by Ng and
Subrahmanian in [22]2.

This paper extends our prior results to a larger class of programs: dis-
junctive interval probabilistic programs (dp-programs). These programs,
based on disjunctive logic programs introduced by Minker [20] are inter-
val probabilistic programs where heads of rules can contain disjunctions of
formulas. An example of a rule in our logic programming language is given
below:

a : [0.3, 0.4]∨ (b ∧ c) : [0.4, 0.6]←− d : [0.3, 0.5], (a ∨ f) : [0.3, 0.6].

This rule is interpreted (rather verbosely) as follows: ”If the probability
of event d is between 30% and 50% and the probability that at least one of
a or f holds is between 30% and 60% then conclude that at least one of the

2 Without variable annotations for probabilities.

following is true: the probability of a is between 30% and 40% or the probability
of both b and c happening together is between 40% and 60%.”.

The main contributions of the paper are:

– Mathematical description of the set of models for dp-programs.
– Study of consistency problem for dp-programs. We show that deciding

whether a dp-program has a model is NP-complete.
– Procedure for explicit model construction for a subclass of dp-programs.

We show that for a significant subclass of dp-programs, it is possible to
construct the description of the set of models explicitly and in the form
of a union of disjoint subsets.

– Conditions for existence of a simple set of models. Under some conditions
the set of models for a dp-program can coincide with the result of the
fixpoint procedure of [21,22]3. We present some such conditions.

The rest of the paper is organized as follows. Section 2 introduces the
syntax of dp-programs, their model-theoretic semantics (possible worlds
probability density functions and probabilistic interpretations) and stud-
ies the problem of consistency of dp-programs, i.e., the problem of deter-
mining if a given program has a model. Section 3 describes the fixpoint
procedure for dp-programs and shows the circumstances under which the
fixpoint procedure does not yield the exact description of the set of models
for a dp-program. In Section 4 we provide the exact characterization of the
set of models for the class of dp-programs. We also discuss the simplified
characterization for a subclass called simple dp-programs: programs with
only atomic formulas in the heads of clauses. In Section 5 we describe con-
ditions which allow dp-programs to have semantics that coincides with the
fixpoint semantics of [22].

2 Interval Probabilistic Logic Programs

2.1 Syntax

In this section we describe the syntax of the interval probabilistic logic
programming language that we study in this paper. Our earlier work [6,7]
used the syntax of probabilistic logic programs of Ng and Subrahmanian
[21,22] with constant probability annotations. In present work, we extend
the class of programs we study to the case of disjunctive logic programs.

Let BL = {A1, . . . , AN} be a finite set of propositional atoms4. A ba-
sic formula is either an atom from BL or a conjunction or disjunction of
two or more atoms. The set of all basic formulas is denoted bf(BL). For-
mulas of the form (B1 ∧ . . . ∧ Bn) : μ and (B′

1 ∨ . . . ∨ B′
m) : μ′, where

B1, . . . , Bn, B′
1, . . . , B

′
m ∈ BL and μ = [l, u], μ′ = [l′, u′] ⊆ [0, 1] are called

p-annotated conjunctions and p-annotated disjunctions respectively.
3 Extended naturally to incorporate disjunctive rules.
4 We use BL to be consistent in our notation with [21].

P-annotated conjunctions and disjunctions represent probabilistic infor-
mation. Every atom in BL is assumed to represent an (uncertain) event or
statement. A p-annotated conjunction A1 ∧ . . . ∧ An : [l, u] is read as ”the
probability of the joint occurrence of the events corresponding to A1, . . . , An

lies in the interval [l, u]”. Similarly, A1 ∨ . . . ∨ An : [l, u] is read as ”the
probability of the occurrence of at least one of the events corresponding to
A1, . . . , An lies in the interval [l, u]”.

Disjunctive Probabilistic Logic Programs (dp-programs) are constructed
from p-annotated formulas as follows.

Definition 1 Let G1, . . . , Gk, F1, . . . , Fn be some basic formulas and ν1, . . . ,
νk, μ1, . . . , μn be closed subintervals of [0, 1] (also called annotations). Then,
a disjunctive p-clause is an expression of the form

G1 : ν1 ∨ . . . ∨Gk : νk ←− F1 : μ1 ∧ . . . ∧ Fn : μn.

where k ≥ 0 and n ≥ 0.
The head of the clause is its left side G1 : ν1 ∨ . . . ∨ Gk : νk and the

body of the clause is its right side F1 : μ1 ∧ . . . ∧ Fn : μn.
If k = 1, the p-clause G1 : ν1 ←− F1 : μ1 ∧ . . . ∧ Fn : μn is non-

disjunctive. Our earlier work [7] considered only such clauses, as did [21,
22].

If k > 0, n = 0, as usual, the p-clause G1 : ν1 ∨ . . . ∨ Gk : νk ←− . is
referred to as a fact.

If k = 0, n > 0, as usual, the p-clause ←− F1 : μ1 ∧ . . . ∧ Fn : μn. is
referred to as an integrity constraint.

If k = 0 and n = 0 then empty clause ←− . denotes a contradiction.

Definition 2 A Disjunctive Probabilistic Logic Program (dp-program) is
a finite collection of disjunctive p-clauses.

A dp-program in which all clauses are non-disjunctive is called a non-
disjunctive p-program or simply a p-program.

A (d)p-program in which all basic formulas in all clauses are atoms from
BL only is called a simple (d)p-program.

A (d)p-program in which the heads of all clauses are atoms or disjunc-
tions of atoms from BL is called a factored (d)p-program.

Example 1 Consider a dp-program P consisting of the following p-clauses
(defined over the Herbrand base {smoke, hot, dry, alarm, robbery, intrusion,
fire}):

smoke : [0.2, 0.4] ←− .
←− smoke : [1, 1] ∧ (hot ∧ dry) : [0, 0].

alarm : [0.3, 0.6] ←− smoke : [0.6, 1] ∧ (hot ∧ dry) : [0.4, 0.7].
alarm : [0.7, 0.9] ←− smoke : [0.6, 1] ∧ (hot ∧ dry) : [0.8, 1].
fire : [0.4, 1] ∨ robbery : [0.1, 0.2] ←− alarm : [0.4, 0.7], smoke : [0.8, 1].
(robbery ∨ intrusion) : [0.6, 1]

∨fire : [0.1, 0.3] ←− alarm : [0.8, 1] ∧ smoke : [0, 0.3]∧
(hot ∧ dry) : [0.2, 0.7].

P describes a portion of a knowledge base about the work of a home alarm
system. The first p-clause of P is a states that at present time the probability
of smoke on the premises guarded by the alarm system is between 20%
and 40%. The second p-clause is an integrity constraint that states, that
confirmed smoke (i.e., smoke with probability of 100%) cannot happen when
there is no chance (probability of 0%) for hot and dry weather. The third and
fourth clauses specify the probability of an alarm given different probability
estimates for the hot and dry weather when the probability of smoke is
judged to be above 60%. The alarm has a higher chance of being triggered
if the probability of hot and dry weather is in a higher range. The last two
clauses contain disjunctions in the heads. These clauses identify the reasons
for the alarm under different conditions. The first of the two clauses states
that in the situation when the probability of an alarm is between 40% and
70% while the probability of smoke is judged to be above 80%, there is over
40% chance that there is a fire or a 10% to 20% chance that a robbery is
in progress. The second clause states that if the probability of the alarm is
judged to be above 80%, while the probability of smoke is less than 30%
and the probability that the weather is hot and dry is between 20% and
70%, we have to conclude that there is a high — over 60% chance that we
are dealing with either a robbery or an intrusion, or that there is a 10% to
30% chance that there is a fire. We note that the disjuncts in the heads of
the p-clauses are not disjoint.

A p-program P whose clauses are all facts can be viewed as an instance
of interval PSAT (although, due to the specificity of formulas in BL, not
every interval PSAT instance can be described this way). Notice, however,
that while Horn clause logic programs are instances of SAT, the same is
not true for p-programs. A (d)p-program containing non-trivial rules, in
general, is not an instance of interval PSAT, as a generic (d)p-clause cannot
be reduced to a p-annotated conjunction or disjunction. Below we show that
a dp-program can be represented by a (possibly large) collection of interval
PSAT instances.

In [21] Ng and Subrahmanian considered factored p-programs. In [23]
they considered a framework, in which variables were allowed in the prob-
ability annotations. An example of a variable annotation is a rule:

alarm : [α, max(0.9 · β, α)]←− smoke : [α, β] ∧ (hot ∧ dry) : [0.7, 1].

This rule states, that if the probability of the weather being hot and dry
is above 70%, then the alarm will sound with the probability in the inter-
val that depends on the probability interval of smoke. If the probability
interval for smoke is, for example, [0.4, 0.5], then the alarm will sound with
probability [0.4, max(0.9 ∗ 0.5, 0.4)] = [0.4, 0.45].

Our definition of dp-programs introduces disjunctions in the heads and
allows arbitrary heads of p-clauses, but does not consider variable annota-
tions for probabilities.

2.2 Model Theory

The model theory assumes that in the real world each atom from BL, and
therefore each basic formula, is either true or false. However, exact infor-
mation about the real world is not known. The uncertainty about the world
is represented in a form of a probability distribution over the set of 2N

possible worlds. In addition, p-programs introduce uncertainty about the
probability distribution itself.

More formally, the model theory is defined as follows.

Definition 3 Let BL be the Herbrand base of the language L described in
Section 2.1. A world probability density function WP is defined as
WP : 2BL → [0, 1],∑

W⊆BL
WP (W) = 1.

Each subset W of BL is considered to be a possible world and WP
associates a point probability with it. Next we define the satisfaction relation
on basic formulas.

Definition 4 Let A, A1, . . . An ∈ BL, and let W ⊆ BL be a possible world.
W |= A iff A ∈W ;

W |= A1 ∧ . . . ∧An iff (∀1 ≤ i ≤ n)W |= Ai;

W |= A1 ∨ . . . ∨An iff (∃1 ≤ i ≤ n)W |= Ai.

To simplify notation, in the remainder of the paper we fix an enumeration
W1, . . .WM , M = 2N of the possible worlds and denote WP (Wi) as pi.

World probability density functions represent the ”base” of the pos-
sible worlds semantics. However, due to their size and granularity, they
are not convenient to reason with. Below we introduce atomic probabilis-
tic interpretations (ap-interpretations) and probabilistic interpretations (p-
interpretations): functions whose domains are atoms or basic formulas re-
spectively, rather than possible worlds. Given a formula and a world prob-
ability density function, the probability of the formula is established in a
straighforward way: it is the sum of probabilities on all possible worlds that
satisfy the formula.

Definition 5 An atomic probabilistic interpretation (ap-interpretation) Ia

is a function Ia : BL → [0, 1].
A probabilistic interpretation (p-interpretation) I is a function I :

bf(BL)→ [0, 1].

Definition 6 Let WP be a world probability density function. A p-interpretation
IWP is defined as follows: IWP (F) =

∑
W |=F WP (W).

Note that each world probability density function WP has a unique p-
interpretation IWP associated with it. However, in general, a p-interpretation

I can be induced by more than one world probability density function. Also,
some p-interpretations can have no world probability density functions as-
sociated with them. We call the latter p-interpretations inconsistent, and,
in general, do not consider them in this paper.

Example 2 Consider the Herbrand universe BL = {a, b}. Let the world prob-
ability density function WP be defined as follows:

WP (∅) = p1 = 0.2 WP ({a, b}) = p4 = 0.3
WP ({a}) = p2 = 0.4 WP ({b}) = p3 = 0.1

Then, WP induces the following p-interpretation I = IWP :
I(a) = p2 + p4 = 0.7;
I(b) = p3 + p4 = 0.4;
I(a ∧ b) = p4 = 0.3;
I(a ∨ b) = p2 + p3 + p4 = 0.8

Example 3 Consider the following p-interpretation I: I(a) = 1, I(b) = 1,
I(a ∧ b) = 0, I(a ∨ b) = 1. We can show that this p-interpretation is incon-
sistent, i.e., there is no world probability density function WP correspond-
ing to I. Using the notation from the previous example, we can form the
following equations:
I(a) = p2 + p4 = 1;
I(b) = p3 + p4 = 1;
I(a ∧ b) = p4 = 0;
I(a ∨ b) = p2 + p3 + p4 = 1,
to which we must add the p1 + p2 + p3 + p4 = 1 equation, which is part of
the definition of a world probability density function and pi ≥ 0 inequalities
for i = 1, 2, 3, 4, which specify that pis are probabilities, and thus are non-
negative.

The third equation above, p4 = 0, entails immediately (substituting into
the first and the second equations), that p2 = 1 and p3 = 1, which in turn
means that p1 + p2 + p3 + p4 > 1, i.e., the above system of equations and
inequalities does not have a solution. Thus, no world probability density
function corresponding to the given p-interpretation can be found.

Given a p-interpretation I the corresponting ap-interpretation Ia is
obtained by restricting the domain of I to BL. In the other direction,
given an ap-interpretation Ia, there is a nonempty set of p-interpretations
I : bf(BL)→ [0, 1] such that I(A) = Ia(A) for each atom A ∈ BL.

While Example 3 shows that not every p-interpretation has a corre-
sponding world probability density function, it is, in fact, the case that
every ap-interpretation has one.

Proposition 1 For each ap-interpretation Ia there is a world probability
density function WP such that IWP (A) = Ia(A) for each atom A ∈ BL.

We can now define the model-theoretic semantics of dp-programs.

Definition 7 Let G1, . . . , Gk, F1, . . . , Fn be some basic formulas and ν1, . . . ,
νk, μ1, . . . , μn be closed subintervals of [0, 1], and let I be a p-interpretation
over bf(BL).

– I |= F1 : μ1 iff I(F1) ∈ μ1;

– I |= F1 : μ1 ∧ . . . ∧ Fn : μn iff (∀1 ≤ i ≤ n)(I |= Fi : μi);

– I |= G1 : ν1 ∨ . . . ∨Gk : νk iff (∃1 ≤ i ≤ k)(I |= Gi : νi);

– I |= G1 : ν1 ∨ . . . ∨ Gk : νk ←− F1 : μ1 ∧ . . . ∧ Fn : μn iff either
I |= G1 : ν1 ∨ . . . ∨Gk : νk or I �|= F1 : μ1 ∧ . . . ∧ Fn : μn.
In particular,
I |= ←− F1 : μ1 ∧ . . . ∧ Fn : μn iff I �|= F1 : μ1 ∧ . . . ∧ Fn : μn,
and always I �|= ←− .

Definition 8 Given a dp-program P , and a p-interpretation I, I |= P (I
is a model of P) iff there exists a world probability function WP , such that
I = IWP , and for all p-clauses C ∈ P , I |= C.

Given a simple dp-program P and an ap-interpretation Ia, Ia |= P iff
for all p-clauses C ∈ P , Ia |= C.

Definition 9 Let P be a dp-program. As Mod(P) we denote the set of all
models of P . This set is uniquely defined by the corresponding set of world
probability functions

WMod(P) = {WP | IWP = I for some I ∈Mod(P)}.

We refer to a function WP from WMod(P) as a w-model of P and write
WP |=w P .

P is called consistent iff Mod(P) �= ∅ (or, which is equivalent, iff
WMod(P) = ∅), otherwise P is called inconsistent.

It is convenient to view a single world probability function WP as a
point (WP (W1), . . . , WP (WM)) in the M = 2N -dimensional unit cube EM .
Then, WMod(P) can be viewed as a subset of EM .

2.3 Consistency of dp-programs

In this section we consider briefly the problem of consistency, i.e., of exis-
tence of a model for the class of dp-programs. The consistency problem for
dp-programs is defined as follows: given a dp-program P , check whether P
has a model, i. e. Mod(P) �= ∅ or, similarly, WMod(P) �= ∅. Let CONS-
P= {P |Mod(P) �= ∅}.

Theorem 1 The set CONS-P is NP-complete.

Proof. Upper bound. Let P be a dp-program, B1, . . . , Br be all basic for-
mulas of P Then WMod(P) �= ∅ iff there exist such probabilities b1, . . . , br

of B1, . . . , Br that the system of linear equations and inequalities EQ(P):

–
∑

Wj |=Bi
pj = bi, for i = 1, . . . , r,

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

has a solution WP = {p′1. . . . , p′M} ∈WMod(P).
In general, WP is exponential in the size of the dp-program P , and

therefore, we cannot simply guess any solution WP of EQ(P). However, it
turns out that if a good solution exists, then, there is also a good solution of
polynomial size. In particular, we use the following lemma from [9] (which,
in turn, cites [4]. A similar statement is also found in [11]).

Lemma 1 If a system of r linear equations and/or inequalities with integer
coefficients each of length at most l has a nonnegative solution, then it has
a nonnegative solution with at most r entries positive, and where the size of
each member of the solution is O(rl + r log r).

Based on this lemma we obtain the following ”small model” theorem.

Lemma 2 A dp-program P including r different basic formulas is consistent
iff there exists a probability distribution WP on possible worlds with no more
than r + 1 nonzero probabilities such that WP |=w P .

Let the longest number in annotations of P have length l. Then the fol-
lowing nondeterministic procedure allows us to check whether WMod(P) �=
∅.
1) Guess for each Bi(i = 1, . . . , r) its probability bi ∈ [0, 1] of the length
O(rl + r log r).
2) Guess a probability distribution WP with no more than r + 1 positive
probabilities pi1 , . . . , pir+1 of the length O(rl + r log r) and check that WP
is a solution of the system EQ(P).
3) If WP |=w P return ”Yes”.

From the lemmas above it follows that this algorithm runs in nondeter-
ministic time bounded by a polynomial of |P |.

Lower bound. We prove the lower bound for a subclass of simple p-
programs with clause bodies of size 3 or less. We show that 3-CNF ≤P

CONS-P. Let Φ = C1 ∧ . . . Cm be a 3-CNF over the set of boolean variables
V ar = {x1, . . . , xn}. Let each clause Cj , j = 1, . . . , m, include 3 literals
l1j , l

2
j , l

3
j . Define for each literal l an annotated atom α(l) as follows: if l =

x ∈ V ar then α(l) = x : [0.5, 1], if l = ¬x then α(l) = x : [0, 0.5]. Let
BL = V ar ∪ {Cj | j = 1, . . . , m} ∪ {Φ}. We include in p-program P (Φ) the
following p-clauses. (f1) : Φ : [1, 1]← .
(fcj) : Cj : [0, 0.1]← . (j = 1, . . . , m)
(fxi) : xi : [0, 1]← . (i = 1, . . . , n)
(rcj) : Cj : [0.9, 1]← α(l1j) ∧ α(l2j) ∧ α(l3j). (j = 1, . . . , m).
(rfi) : Φ : [0, 0]← xi : [0.5, 0.5]. (i = 1, . . . , n)

It is easy to see that P (Φ) can be constructed from Φ in polynomial
time. Now the theorem follows from the following proposition.

Proposition 2 Φ ∈ 3-CNF ⇐⇒ P (Φ) ∈ CONS-P.

Proof. Suppose that Φ ∈ 3-CNF and σ : V ar → {T, F} is a truth sub-
stitution such that σ(Φ) = T . Then for each j = 1, . . . , m there is such
kj , 1 ≤ kj ≤ 3, that σ(lkj

j) = T . Define an ap-interpretation Ia as fol-
lows: Ia(Φ) = 1, Ia(Cj) = 0 for j = 1, . . . , m, I(xi) = 0 if σ(xi) = T and
Ia(xi) = 1 if σ(xi) = F, i = 1, . . . , n. Then it is easy to see that all facts
(f1), (fcj), (fxi) and all rules (rfi) are valid on Ia. Consider now any rule
(rcj). Its body includes the annotated atom α(lkj

j). If l
kj

j = x ∈ V ar then

α(lkj

j) = x : [0.5, 1]. By the choice of l
kj

j we have that σ(x) = T, I(x) = 0

and therefore Ia �|= α(lkj

j). If l
kj

j = ¬x then α(lkj

j) = x : [0, 0.5]. Again,

by the choice of l
kj

j we have that σ(x) = F and Ia(x) = 1 and therefore

Ia �|= α(lkj

j). We see that in the both cases Ia �|= Body(rcj) and hence,
Ia |= (rcj). Therefore, Ia |= P (Φ).

Now suppose that there is model Ia of P (Φ). Then fact (f1) implies
Ia(Φ) = 1, and it follows due to rules (rfi) that I(xi) �= 0.5 for i = 1, . . . , n.
For x ∈ Var we define σ(x) = T if I(x) < 0.5 and σ(x) = F if Ia(x) > 0.5.

Show now that each clause Cj , j = 1, . . . , m, includes such literal l
kj

j

that σ(lkj

j) = T. Let us fix any j. The fact (fcj) implies that inequality
Ia(Cj) ≤ 0.1 holds. Then the head Cj : [0.9, 1] of the rule (rcj) is not valid
on Ia. Hence, there is an annotated atom in the body of (rcj) which does
not hold on Ia. Let it be atom α(lkj

j). If l
kj

j = x for some x ∈ Var then

α(lkj

j) = x : [0.5, 1]. Since Ia �|= x : [0.5, 1], we get that Ia(x) < 0.5 and

σ(lkj

j) = σ(x) = T . If l
kj

j = ¬x for some x ∈ Var then α(lkj

j) = x : [0, 0.5].

Since Ia �|= x : [0, 0.5], we get that I(x) > 0.5. Then σ(x) = F and σ(lkj

j) =
¬σ(x) = T .

Definition 10 A consistent dp-program P entails a formula F : [l, u] if for
each I ∈Mod(P) I |= F : [l, u]. The entailment problem is, thus, expressed
as follows: given a consistent P and a formula F : [l, u], decide if P entails
F : [l, u].

Let EQ1(P, F) = EQ(P)∪{∑Wj |=F pj < l} and EQ2(P, F) = EQ(P)∪
{∑Wj |=F pj > u}. Here, P does not entail F : [l, u] iff EQ1(P, F) is solvable
or EQ2(P, F) is solvable. Therefore we get the following complexity bounds
for the entailment problem.

Proposition 3 The entailment problem for dp-programs is co-NP-complete.

We note, in fact, that in Theorem 1 and Proposition 3 lower bounds
hold for the class of simple p-programs.

3 Interval fixpoint and why it is not enough

The main goal of our study is to provide a precise mathematical description
of the set Mod(P) of the models, given a dp-program P . In this section, we
discuss the fixpoint procedure for non-disjunctive p-programs, and establish
its shortcomings with respect to the model theory outlined above.

Prior work on p-programs used a straightforward fixpoint procedure,
which we reproduce below to find the probability intervals for each atom/basic
formula of a p-program P . We noticed that in some cases the fixpoint pro-
cedure does not result in the exact description of Mod(P) when the model-
theoretic semantics of Section 2.2 is considered.

To simplify discussion and provide better intuition, this section mainly
discusses p-programs (i.e., non-disjunctive programs), and, in fact, simple
p-programs and follows [7,6] in the presentation. In the end of the section
we generalize the definition of fixpoint to dp-programs. In all the cases, the
structure of Mod(P) turns out to be more complex than what the fixpoint
procedure can compute.

The fixpoint semantics is defined on atomic functions and formula func-
tions.

Definition 11 Let C[0, 1] denote the set of all subintervals of the interval
[0, 1]. An atomic function is a mapping f : BL → C[0, 1].

A formula function h is a mapping h : bf(BL)→ C[0, 1].
Given a set F ⊆ bf(BL) a restricted formula function is a mapping

fF : F → C[0, 1].

Intuitively atomic and formula functions assign probability intervals to
atoms and basic formulas: h(F) = [l, u] can be interpreted as the statement
"probability of formula F lies in the interval [l, u]".

Definition 12 Each formula function hF induces a set LL(hF) of linear
inequalities on the probabilities p1, . . . , pM of possible worlds. LL(hF) con-
sists of the following inequalities:

– lF ≤
∑

Wj |=F pj ≤ uF , for all F ∈ F , hF(F) = [lF , uF];

–
∑M

j=1 pj = 1;
– pj ≥ 0, for all 1 ≤ j ≤M .

Note that
∑

Wj |=F pj is the probability of F . Therefore, the first group
of inequalities specifies, in terms of probabilities pj of possible worlds, the
fact that the probability of F must be between lF and uF . The equality∑M

j=1 pj = 1 simply states that the sum of probabilities of all possible
worlds adds up to 1, while inequalities of the form pj ≥ 0 specify that
probabilities of possible worlds are nonnegative.

Given a p-program P , two operators, SP and TP are defined. They map
formula functions to formula functions in the following manner.

P :
C1 : (a ∧ b) : [0.5, 1]←− .
C2 : (a ∧ b) : [0, 0.5]←− .
C3 : (a ∧ c) : [0.5, 0.5]←− .
C4 : (b ∧ c) : [0.5, 0.5]←− .
C5 : (a ∧ b ∧ c) : [0.1, 0.2]←− .

p1 + p2 = 0.5
p1 + p3 = 0.5
p1 + p4 = 0.5
0.1 ≤ p1 ≤ 0.2∑8

i=1
pi = 1

p1, p2, p3, p4, p5, p6, p7, p8 ≥ 0

Fig. 1 Sample p-program P , and the set of inequalities LL(SP) it induces.

Definition 13 Given a basic formula F ,

SP (h)(F) = ∩MF ,

where MF = {μ|F : μ ←− F1 : μ1 ∧ . . . ∧ Fn : μn ∈ P, and (∀1 ≤ i ≤
n)(h(Fi) ⊆ μi)}. If MF = ∅ then SP (h)(F) = [0, 1].

The TP operator is defined as follows:

TP (h)(F) = [lF , uF],

where lF = min
(∑

Wj |=F pj

)
, subject to LL(SP (h)) and

uF = max
(∑

Wj |=F pj

)
, subject to LL(SP (h)).

Intuitively, SP computes the intervals of formulas based on the p-clauses
that fired. If the heads of all p-clauses are atoms, i.e., for simple p-programs,
this computation is enough. However, for basic formulas some tightening is
required.

Example 4 Consider a p-program P which has p-clauses
(a ∧ b) : [0.6, 0.9]← .
(a ∧ c) : [0.8, 0.9]← .
The SP operator will produce SP (a ∧ b) = [0.6, 0.9], SP (a ∧ c) = [0.8, 0.9],
but SP (a) = SP (b) = SP (c) = [0, 1], because no p-clauses in P have heads
a, b or c.

At the same time, it is clear that [0, 1] is not a tight interval for probabil-
ity of a, b, or c. In, particular if Prob(a) = 0, then Prob(a∧b) = 0 �∈ [0.6, 0.9].
Such observations, however, are not captured by the SP operator.

To propagate the information obtained from the clauses that fired to all
other clauses, the TP operator is employed. The work of these operators is
illustrated on the following example.

Example 5 Consider the p-program P shown in Figure 1. Let h(F) = [0, 1]
for all F ∈ bf(BL). SP (h)(a∧b) = [0, 0.5]∩[0.5, 1] = [0.5, 0.5]. SP (h)(a∧c) =
[0.5, 0.5]; SP (h)(b∧c) = [0.5, 0.5] and SP (h)(a∧b∧c) = [0.1, 0.2]. To compute
TP (h) we first construct LL(SP (h). Let W1 = {a, b, c}, W2 = {a, b}, W3 =
{a, c} and W4 = {b, c}. The set of inequalities LL(SP)(h) is shown in Figure
1 (for simplicity we replace constraints of the form a ≤ X ≤ a with X = a).

a : [0.2, 0.4]←− . (1)
b : [0.2, 0.5]←− . (2)
b : [0.2, 0.3]←− a : [0.2, 0.3]. (3)
b : [0.4, 0.5]←− a : [0.3, 0.4]. (4)

Program P1

a : [0.2, 0.4]←− . (1)
b : [0.3, 0.5]←− . (2)
b : [0.6, 0.7]←− a : [0.2, 0.3]. (3)
b : [0.6, 0.7]←− a : [0.3, 0.4]. (4)

Program P2

Fig. 2 Sample P-programs.

Combining the first three constraints with the fifth we get 2p1 − 0.5 =
p5 +p6 +p7 +p8 or p1 = 0.25+p5+p6 +p7 +p8. Because all pi ≥ 0, min(p1)
subject to the latter constraint is 0.25 (when all p5,p6,p7,p8 = 0). However,
this contradicts the fourth constraint above which says, in particular p1 ≤
0.2. Thus, LL(h)(SP) has no solutions.

Example 6 Consider the p-program P ′ = P − {C5}. The computation of
SP ′(h) will be the same as in the previous example, except SP ′(h)(a∧b∧c) =
[0, 1]. Now, TP ′(h)(a ∧ b ∧ c) is defined: min(p1) subject to LL(SP ′)(h) is
0.25 (see previous example for derivation). max(p1) = 0.5 and it is reached
when p2 = p3 = p4 = 0. Thus, TP ′(h)(a ∧ b ∧ c) = [0.25, 0.5].

From [21] we know that the set of all formula functions over bf(BL)
forms a complete lattice FF w.r.t. the subset inclusion: h1 ≤ h2 iff (∀F ∈
bf(BL))(h1(F) ⊇ h2(F)). The bottom element ⊥ of this lattice is the func-
tion that assigns [0, 1] interval to all formulas, and the top element � is the
atomic function that assigns ∅ to all formulas. Ng and Subrahmanian show
that TP is monotonic [21] w.r.t. FF .

The iterations of TP are defined in a standard way:

1. T 0
P = ⊥;

2. T α+1
P = TP (T α

P), where α + 1 is the successor ordinal whose immediate
predecessor is α;

3. T λ
P = �{T α

P |α ≤ λ}, where λ is a limit ordinal.

To connect model theory and fixpoint, we need to give the definition of
satisfaction of a formula function by a p-interpretation.

Definition 14 Let I be a p-interpretation over some Herbrand base BL and
h be a formula function over bf(BL). Then, I |= h iff for all F ∈ bf(BL),
I(F) ∈ h(F) and there exists WP , s.t., WP satisfies LL(h) and I = IWP .

Ng and Subrahmanian show that, the least fixpoint lfp(TP) of the TP

operator is reachable after a finite number of iterations ([21], Theorem 2).
They also show that if a p-program P is consistent, then I(lfp(TP)), the set
of all p-interpretations satisfying lfp(TP) contains Mod(P) ([21,22] Corol-
lary 3). For simple p-programs TP = SP and therefore can be computed in
polynomial time.

At the same time, the inverse of the last statement, is not true, as ev-
idenced by the following examples. First, consider a simple p-program P1

shown in Figure 2.

Proposition 4 There exists a p-interpretation I s. t. I ∈ I(lfp(TP1)) but
I �|= P1.

Proof. It is easy to see that neither rule (3) nor rule (4) will fire dur-
ing the computation of the least fixpoint. Indeed, T 1

P1
(a) = [0.2, 0.4] and

T 1
P1

(b) = [0.2, 0.5] based on clauses (1) and (2). However, at the next step,
as [0.2, 0.4] �⊆ [0.2, 0.3], rule (3) will not fire and as [0.2, 0.4] �⊆ [0.3, 0.4], rule
(4) will not fire. Therefore, lfp(TP1) = T 1

P1
.

Now, consider p-interpretation I, such that I(a) = 0.2 and I(b) = 0.35.
Clearly, I ∈ I(lfp(TP1)). However, I �|= P1. Indeed, as I(a) = 0.2 ∈ [0.2, 0.3],
I satisfies the body of rule (3). Then I must satisfy its head, i.e., I(b) ∈
[0.2, 0.3]. However, I(b) = 0.35 �∈ [0.4, 0.5], and therefore rule (3) is not
satisfied by I.

We note that the fixpoint of P1 is defined but it is not tight enough
to represent exactly the set of satisfying p-interpretations. It turns out,
that it is possible for a p-program to have a well-defined fixpoint but be
inconsistent. Indeed, consider p-program P2 from Figure 2.

Proposition 5 1. lfp(TP2) = T 1
P2

. In particular, lfp(TP2)(a) = [0.2, 0.4]
and lfp(TP2)(b) = [0.3, 0.5].

2. Mod(P2) = ∅
Proof. The first part is similar to the proof of Proposition 4. To show
that Mod(P2) = ∅ consider some p-interpretation I such that I |= P2.
Let I(a) = p. As p ∈ lfp(TP2)(a) = [0.2, 0.4] then p ∈ [0.2, 0.3], or p ∈
[0.3, 0.4]. In either case, the body of at least one of the rules (3),(4) will
be satisfied by I and therefore, I(b) ∈ [0.6, 0.7]. However, we know that
I(b) ∈ lfp(TP2)(b) = [0.3, 0.5], which leads to a contradiction.

Note that in this case lfp(TP) specifies the semantics of a simple p-
program as the set of ap-interpretations inside a single N-dimensional par-
allelotope5 (or, N-parallelotope, for short) whose borders are defined by
lfp(TP)(A1), . . . , lfp(TP)(AN). Unfortunately, this is not always the case,
i.e., Mod(P) need not be a single N -parallelotope, as evidenced by the
following proposition.

Proposition 6 If the atoms in BL for P1 (Figure 2) are ordered as a, b,
then Mod(P1) = [0.2, 0.3)× [0.2, 0.3] ∪ (0.3, 0.4]× [0.4, 0.5].

Proof. First, we show that Mod(P1) ⊆ [0.2, 0.3) × [0.2, 0.3] ∪ (0.3, 0.4] ×
[0.4, 0.5].

Consider an ap-interpretation I such that I |= P1. As lfp(TP (P1))(a) =
[0.2, 0.4] (by rule (1)), three cases are possible.

1. I(a) ∈ [0.2, 0.3). Consider rules (3) and (4). As I(a) ∈ [0.2, 0.3), the
body of rule (3) will be true, and the body of rule (4) will be false.
Thus, I must satisfy the head of (3), i.e., I(B) ∈ [0.2, 0.3]. Therefore
I ∈ [0.2, 0.3)× [0.2, 0.3].

5 The extension of the 3D parallelepiped to N dimensions.

2. I(a) = 0.3. In this case, the bodies of both rule (3) and rule (4) are
satisfied, and therefore I must satisfy both heads of these rules, i.e.,
I(b) ∈ [0.2, 0.3] and I(b) ∈ [0.4, 0.5]. But as [0.2, 0.3] ∩ [0.4, 0.5] = ∅, we
arrive to a contradiction. Therefore, for any p-interpretation I |= P1,
I(a) �= 0.3.

3. I(a) ∈ (0.3, 0.4]. Here, the body of rule (3) will not be true, but the
body of rule (4) will, therefore, I must satisfy the head of rule (4), i.e.,
I(b) ∈ [0.4, 0.5]. Then, I ∈ (0.3, 0.4]× [0.4, 0.5].

Combining the results of all three cases together we get I ∈ [0.2, 0.3)×
[0.2, 0.3]∪(0.3, 0.4]× [0.4, 0.5], which proves the inclusion. It is easy to verify
that any I ∈ [0.2, 0.3)× [0.2, 0.3]∪ (0.3, 0.4]× [0.4, 0.5], is the model of P1.

Looking at the proofs of the propositions above we see that the reason for
the ”bad” behavior of lfp(TP) lies in the computation of the SP operator,
namely, in the determination when p-clauses fire. By definition of SP , a p-
clause C fires if current valuation for each basic formula in the body of the
clause is a subinterval of its annotation in the clause. Consider, for example
a clause C : F : μ←− G : μ′ and some formula function (valuation) h, such
that h(G) �⊆ μ′ but h(G) ∩ μ′ �= ∅. This clause will not fire. However, any
p-interpretation I |= C such that I(G) ∈ h(G)∩μ′, satisfies the body of the
clause, and thus, must satisfy its head, i.e., we must have I(F) ∈ μ. This
extra restriction on the probability range of F is not captured by the SP

computation.
The definitions of operators SP and TP and fixpoint lfp(TP) can be

generalized naturally to dp-programs. Only operator SP should be changed
slightly. Let P be a dp-program and h be a formula function.

Definition 15 Given a basic formula G,

SP (h)(G) = ∩MG,

where MG = {νj | G1 : ν1∨ . . .∨Gj : νj∨ . . .∨Gk : νk ←− F1 : μ1∧ . . .∧Fn :
μn ∈ P, Gj = G, (∀1 ≤ r ≤ k)(if r �= j then h(Gr) ∩ νr = ∅) and (∀1 ≤ i ≤
n)(h(Fi) ⊆ μi)}.

If MG = ∅ then SP (h)(G) = [0, 1].

Informally, a member G : ν of a disjunction in a head of a clause takes
part in the computation of probability bounds for G when all other members
of the disjunction are inconsistent with h. The definitions of the operator
TP and fixpoint lfp(TP) do not change.

The results of Ng and Subrahmanian ([21,22]) on fixpoint remain valid
for dp-programs. In particular, the least fixpoint lfp(TP) of the TP operator
is reachable after a finite number of iterations and Mod(P) ⊆ I(lfp(TP)).
For simple dp-programs fixpoint lfp(TP) can be computed in polynomial
time.

Example 7 Consider a simple dp-program P which has clauses
C1 = a : [0.3, 0.5] ∨ b : [0.6, 0.8]← .

C2 = a : [0.5, 0.7] ∨ b : [0.8, 0.9]← c : [0.3, 0.5].
C3 = a : [0.1, 0.4]← .
C4 = c : [0.2, 0.4]← .

Then the first application of TP (= SP) to the bottom ⊥ gives TP (a) =
[0.1, 0.4], TP (b) = [0, 1] and TP (c) = [0.2, 0.4]. Since [0.5, 0.7] ∩ [0.1, 0.4] = ∅
and [0.2, 0.4] ⊆ [0.3, 0.5] the clause C2 is fired on the next step and we get
T 2

P (a) = [0.1, 0.4], T 2
P (b) = [0.8, 0.9] and T 2

P (c) = [0.2, 0.4]. Clause C1 is
never fired, so fixpoint lfp(TP) = T 2

P (⊥) = [0.1, 0.4]× [0.8, 0.9]× [0.2, 0.4].
Let Ia be a model of P . Since Ia |= C1 then Ia(a) ∈ [0.3, 0.5]∩[0.1, 0.4] =

[0.3, 0.4] or Ia(b) ∈ [0.6, 0.8] ∩ [0.8, 0.9] = [0.8, 0.8]. Therefore, Mod(P) =
[0.3, 0.4]× (0.8, 0.9]× [0.2, 0.4]∪ [0.1, 0.4]× [0.8, 0.8]× [0.2, 0.4] �= lfp(TP).

Based on the negative examples presented above we observe the follow-
ing. The fixpoint procedure described in this section always returns a single
interval as the set of possible probabilities for a basic formula. At the same
time, model-theoretic semantics of dp-programs (and even p-programs) de-
mands that in some cases this set be a more complex object — a union of
closed, open and/or semi-open subintervals of [0,1]. In [6] and [7] we have
described Mod(P) for simple p-programs and p-programs respectively. In
this paper, we extend the class of programs for which similar mathematical
descriptions of Mod(P) are possible to dp-programs.

4 Possible Worlds Semantics

We ask ourselves: given a p-program P , how do we give an exact description
of Mod(P)? In this section we first answer this question for the general case
of dp-programs. Then we show how in the case of simple p-programs we can
obtain a simplified description of Mod(P).

4.1 Semantics of dp-programs

Let us revisit the observations we made in Section 3 about the reasons why
fixpoint computation has failed to produce the exact description of Mod(P).
Recall that lfp(TP) for a p-program P is a formula function, which specifies
a single closed probability interval for each basic formula. Geometrically,
it corresponds to an M -parallelotope (M = |bf(BL)|). As seen from the
examples in Section 3, the bodies of p-programs can be used to ”pluck”
points, or even intervals from Mod(P) for a specific basic formula. This
means that Mod(P) is no longer a solid M -parallelotope, rather, it can
have various portions missing. Thus, formula functions are inadequate as
exact descriptors of Mod(P).

Let us now construct Mod(P) for a dp-program P . Remember, that
the key reason why fixpoint procedure deviated from model theory in our
examples in Section 3 was the fact that certain p-clauses could not be

fired, whereas, there were p-interpretations which satisfied the bodies. The
fixpoint procedure established the satisfaction of each p-clause in the p-
program, but it did not track the the reasons why each p-clause was satis-
fied.

Recall that we have defined two sets of models for a dp-program P :
Mod(P) – models in the p-interpretation space and WMod(P) – models
in the probability density function space. In this section, we concentrate on
building WMod(P) given a dp-program P . Our first step is to capture the
reasons for the satisfaction of clauses in a dp-program. To that end, given
a dp-program P we define a set of systems of inequalities called INEQ(P)
as follows.

Definition 16 Let P be a dp-program over the Herbrand base BL = {A1, . . . ,
AN}, and letW = (W1, . . . , WM), M = 2N be an enumeration of all subsets
of BL. With each Wj, 1 ≤ j ≤ M we associate a variable pj with domain
[0, 1]. Let C be a disjunctive p-clause in P of the form

G1 : [L1, U1] ∨ . . . ∨Gk : [Lk, Uk]←− F1 : [l1, u1] ∧ . . . ∧ Fn : [ln, un].
where k ≥ 0, n ≥ 0 and k + n > 0.

The family of systems of inequalities induced by C, denoted INEQ(C)
is defined as follows:
INEQ(C) = T (C) ∪ F (C), where
T (C) =

{
{Li ≤

∑
Wj |=Gi

pj ≤ Ui}|1 ≤ i ≤ k
}

If k=0 then T (C) = ∅.
F (C) =

{{∑
Wj |=Fi

pj < li

}
|1 ≤ i ≤ n

}
∪
{{∑

Wj |=Fi
pj > ui

}
|1 ≤ i ≤ n

}
.

If n=0 then F (C) = ∅.
Let P = {C1, . . . , Cs} and α0 = {∑M

j=1 pj = 1}. Then, INEQ(P) is defined
as follows:
INEQ(P) = {α0 ∪ α1 ∪ . . . ∪ αs | αi ∈ INEQ(Ci), 1 ≤ i ≤ s}.

For a system of inequalities α ∈ INEQ(P) let Sol(α) denote the set of
all solutions of α.

Informally, INEQ(P) is constructed as follows: for each p-clause C in
the program we select the reason why it is true. The reason/evidence is
either the statement that the head of the clause is satisfied, or that one of
the conjuncts in the body is not. The former is captured in the systems from
T (C) which specify that one of the disjuncts in the head must be true, while
the latter is captured in the systems from F (C), which specify that one of the
conjuncts is false. The set INEQ(P) represents all possible systems of such
evidence/restrictions on probabilities of basic formulas. Solutions of any
system of inequalities in INEQ(P) satisfy every clause of P . Of course, not
all individual systems of inequalities have solutions, but INEQ(P) captures
all the systems that do, as shown in the following lemma and theorem.

Lemma 3 Consider a p-clause C = (G1 : [L1, U1] ∨ . . . ∨Gk : [Lk, Uk] ←−
F1 : [l1, u1] ∧ . . . ∧ Fn : [ln, un]).

A world probability function WP ∈ WMod(C) iff there is a system
of inequalities α ∈ INEQ(C) such that PC = {pj = WP (Wj)|j = 1,
. . . , M} ∈ Sol(α).

Proof. ⇒ Let WP ∈ WMod(C) and PC = {pj = WP (Wj), 1 ≤ j ≤ M}.
Then IWP ∈ Mod(C), i.e. IWP |= C. By Definition 7 at least one of two
following assertions holds: (i) IWP |= G1 : [L1, U1] ∨ . . . ∨ Gk : [Lk, Uk] or
(ii) IWP �|= F1 : [l1, u1] ∧ . . . ∧ Fn : [ln, un].

In case (i) IWP |= Gi : νi for some i ∈ [1, k] and Li ≤ IWP (Gi) ≤ Ui.
Since IWP (Gi) =

∑
Wj |=Gi

WP (Wj), then the system of two inequalities
α = {Li ≤

∑
Wj |=Gi

pj ≤ Ui} ∈ T (C) hold and PC ∈ Sol(α).
In case (ii) IWP �|= Fi : [li, ui] for some i ∈ [1, n]. Hence IWP (Fi) < li or

IWP (Fi) > ui. Then PC ∈ Sol(α) for α = {∑Wj |=Fi
pj < li} ∈ F (C) or for

α = {∑Wj |=Fi
pj > ui} ∈ F (C), respectively.

So, in all the cases there is a system of inequalities α ∈ INEQ(C) such
that PC ∈ Sol(α ∪ {∑M

j=1 pj = 1}).
⇐ Let WP be a world probability function, P = {pj = WP (Wj), 1 ≤

j ≤ M} and let P be a solution of a system inequlities α ∈ INEQ(C ∪
{∑M

j=1 pj = 1}). Since INEQ(C) = T (C) ∪ F (C) then (i) P is a solution
of some α ∈ T (C) or (ii) P be a solution of some α ∈ F (C).

In case (i) α = {Li ≤
∑

Wj |=Gi
pj ≤ Ui} for some i ∈ [1, k]. Since

IWP (Gi) =
∑

Wj |=Gi
pj , the two inequalities Li ≤ IWP (Gi) ≤ Ui} hold.

Then IWP |= Gi : [Li, Ui] and by the definition 7 IWP |= C.
In case (ii) α has a form of {∑Wj |=Fi

pj < li} or {∑Wj |=Fi
pj > ui} for

some i ∈ [1, n]. The sum in the left sides of the both inequalities is equal to
IWP (Fi). Hence we get IWP (Fi) < li or IWP (Fi) > ui. In the both cases
IWP �|= Fi : [li, ui]. Then by the definition 7 IWP �|= F1 : [l1, u1] ∧ . . . ∧ Fi :
[li, ui] ∧ . . . Fn : [ln, un] and IWP |= C.

Therefore, in all the cases WP ∈ WMod(C).

Theorem 2 A world probability function WP is a w-model of a dp-program
P iff there exists a system of inequalities α ∈ INEQ(P) such that P =
{pj = WP (Wj)|j = 1, . . . , M} ∈ Sol(α).

Proof follows from Lemma 3. Indeed, let WP |=w P . Then for each
clause C ∈ P , WP |=w C. Then by Lemma 3, there exists αC ∈ INEQ(C)
such that P is a solution of αC . Consider the following system of inequalities
α = ∪C∈P αC . Then, α ∈ INEQ(P) by definition of the latter and P is its
solution.

Conversely, let P be a solution for some α ∈ INEQ(P). By definition
of INEQ(P), there exist systems of inequalities αC for each C ∈ P such
that α = ∪C∈P αC . Then for each αC , P ∈ Sol(αC). But then by Lemma 3
WP ∈WMod(C) for each clause C of P . Therefore, WP ∈WMod(P).

This leads to the following description of WMod(P):

Corollary 1 WMod(P) =
⋃

α∈INEQ(P) Sol(α)

Let r(P) be a number of clauses of P and k(P) and n(P) be the
maximum number of basic formulas in a head and in a body of a rule
in P , respectively. Then for every clause C ∈ P the number of systems
of inequalities in INEQ(C) is bounded by (k(P) + 2n(P)). Therefore,
|INEQ(P)| ≤ (k(P) + 2n(P))r(P).

The solution of each system α ∈ INEQ(P) is a convex M−1-dimensional6

(in the general case) polyhedron. Given a solution WP of some α ∈ INEQ(P),
IWP is obtained via a linear transformation. Because linear transformations
preserve convexity of regions, we can make the following statement about
the geometry of the set Mod(P).

Corollary 2 Given a dp-program P over the Herbrand base BL = {A1, . . . , AN},
Mod(P) is a union of S ≤ (k(P)+2n(P))r(P), not necessarily disjoint, con-
vex polyhedra.

This corollary provides an exponential, in the size of the p-program,
upper bound on the number of possibly disjoint components of Mod(P).
Below we show that even for simple p-programs this exponential bound
cannot be substantially decreased.

4.2 Semantics of Simple Disjunctive P-programs: Characterization of
Models

In the general case INEQ(P) is a complex construct, and using it to ex-
plicitly build WMod(P) is difficult. However, when we consider the class
of simple dp-programs, it turns out that it is possible to use it to define
Mod(P) directly, rather than the WMod(P), which simplifies the descrip-
tion of the set of models of a program significantly.

Let P be a simple dp-program over the Herbrand base BL = {A1, . . . , AN}.
Informally, P defines some restrictions on possible probabilities of the atoms
of BL. So, it is natural to use in the definition the semantics of P proba-
bilities of atoms only. Recall that we defined an ap-interpretation Ia as a
function Ia : BL → [0, 1] and Mod(P) = {Ia|Ia |= P}. Using this, we can
simplify the definition of INEQ(P) for simple dp-programs.

Definition 17 Let P be a simple dp-program over the Herbrand base BL =
{A1, . . . , AN}. With each atom A ∈ BL we will associate a real variable xA

with domain [0,1]. Let C ≡ D1 : [L1, U1] ∨ . . . ∨ Dk : [Lk, Uk] ←− B1 :
[l1, u1] ∧ . . . ∧Bn : [ln, un], k ≥ 0, n ≥ 0, k + n > 0, be a clause of P .

The family of systems of inequalities induced by C, denoted INEQ(C)
is defined as follows:
INEQ(C) = T (C) ∪ F (C);
T (C) = {{Lj ≤ xDj ≤ Uj | 1 ≤ j ≤ k}} (if k=0 then T (C) = ∅);

6 Because p1+. . .+pM = 1 is present in every α ∈ INEQ(P), the dimensionality
of Sol(α) cannot be more than M − 1.

F (C) = {{xBi < li}|1 ≤ i ≤ n} ∪ {{xBi > ui}|1 ≤ i ≤ n} (if n=0 then
F (C) = ∅).
Let P = {C1, . . . , Cs}. The family INEQ(P) of systems of inequalities is
defined as INEQ(P) = {α1 ∪ . . . ∪ αs|αi ∈ INEQ(Ci), 1 ≤ i ≤ s} .

The key difference between Definition 16 of INEQ(P) in general case
and Definition 17 is that for simple dp-programs we can directly use vari-
ables encoding probabilities of atoms in BL rather than probabilities of
possible worlds in a world probability density function. Thus, INEQ(P) for
simple dp-programs is built in terms of (a)p-interpretations rather than in
terms of underlying world probability density functions. Another important
observation is that now, all inequalities in all systems from the definition
above involve only one variable.

As above, given a system α of such inequalities, we denote the set of its
solutions as Sol(α). For A ∈ BL let lαA = max{0 ∪ {l|(xA ≤ l) ∈ α}} and
uα

A = min{1 ∪ {u|xA ≥ u ∈ α}}. Then we observe that

Sol(α) =
{ ∅ if for some A, lαA > uα

A;
[lαA1

, uα
A1

]× . . .× [lαAN
, uα

AN
] otherwise.

As with the general case, the set INEQ(P) represents all possible sys-
tems of restrictions on probabilities of atoms of BL whose solutions satisfy
every clause of P . Not all individual systems of inequalities need to have so-
lutions, but similarly to the general case, we show that INEQ(P) captures
all the systems that do.

Lemma 4 Let C = D1 : [L1, U1]∨ . . .∨Dk : [Lk, Uk]←− B1 : [l1, u1]∧ . . .∧
Bn : [ln, un], be a disjunctive p-clause of P and Ia be a ap− interpretation
(both over the same Herbrand Base BL). Then Ia |= C iff {xA = Ia(A)} ∈
Sol(α) for some α ∈ INEQ(C).

Proof. ⇒ Let I |= C. Two cases need to be considered.
1. Ia |= D1 : [L1, U1]∨ . . .∨Dk : [Lk, Uk]. Then, by definition of satisfaction,
Ia |= Dj : [Lj , Uj] for some j ∈ [1, k]. This means that [Lj ≤ Ia(Dj) ≤ Uj .
Notice that the following systems of inequalities: α = {Lj ≤ xDj ≤ Uj} is
contained in T (C) and thus α ∈ INEQ(C). But then {xA = Ia(A)|A ∈ BL}
is a solution of α since xDj = Ia(Dj).
2. Ia �|= B1 : [l1, u1] ∧ . . . ∧ Bk : [lk, uk]. Then, there exists such 1 ≤ j ≤ k
that Ia(Bj) �∈ [lj , uj], i.e., either Ia(Bj) < lj or Ia(Bj) > uj . In the first
case, {xA = Ia(A), xi = Ia(Bi)|1 ≤ i ≤ k} is a solution of the system
α′ = {xBj ≤ lj} ∈ F (C), and in the second case, it will be a solution of
the system α′′ = {xBj ≥ uj} ∈ F (C) (note that both systems consist of
a single inequality, limiting the value of xBj only). As F (C) ⊆ INEQ(C),
the statement of the lemma is true.
⇐ Let α ∈ INEQ(C) and let U = {xAi = pAi |Ai ∈ BL} be a solution of α.
Consider a ap-interpretation Ia, s.t., Ia(Ai) = pAi . We show that Ia |= C.

Since INEQ(C) = T (C) ∪ F (C) then either α ∈ T (C) or α ∈ F (C).

Let α ∈ T (C). Then α = {Lj ≤ xDj ≤ Uj} for some j ∈ [1, k]. As U is
a solution of α, Lj ≤ pA ≤ Uj. Therefore, Ia(Dj) ∈ [Lj , Uj] and Ia |= C.

Consider now the last remaining case, namely, α ∈ F (C). Then α has
a form of {xBj < lj} or {xBj > uj}. Without loss of generality, consider
the former case. As U is the solution of α, xBj < lj and therefore Ia(Bj) �∈
[lj , uj]. But then, Ia �|= B1 : [l1, u1] ∧ . . . ∧ Bk : [lk, uk], which means that
Ia |= C.

Theorem 3 A ap-interpretation Ia is a model of a simple dp-program P iff
there exists a system of inequalities α ∈ INEQ(P) such that X = {xA =
Ia(A)} ∈ Sol(α).

Proof follows from Lemma 4. Indeed, let Ia |= P . Then for each clause
C ∈ P , Ia |= C. Then by Lemma 4, there exists αC ∈ INEQ(C) such
that X is a solution of αC . Consider the following system of inequalities
α = ∪C∈P αC . Then, α ∈ INEQ(P) by definition of the latter and X is its
solution.

Conversely, let X = {xA = bA|A ∈ BL} be a solution for some α ∈
INEQ(P). By definition of INEQ(P), there exist systems of inequalities αC

for each C ∈ P such that α = ∪C∈P αC . Then for each αC , X ∈ Sol(αC).
But then ap-interpretation Ia defined as Ia(A) = xA for all A ∈ BL satisfies
every clause C of P . Therefore, Ia is a model of P .

This leads to the following description of Mod(P):

Corollary 3 Mod(P) =
⋃

α∈INEQ(P) Sol(α)

Let r(P) be the number of clauses of P and k(P) and n(P) be the
maximum number of basic formulas in a head and in a body of a rule
in P , respectively. Then for every clause C ∈ P the number of systems
of inequalities in INEQ(C) is bounded by (k(P) + 2n(P)). Therefore,
|INEQ(P)| ≤ (k(P) + 2n(P))r(P).

The solution of each system α ∈ INEQ(P) is a convex N -dimensional
(in the general case) parallelotope.

Corollary 4 For a simple dp-program P , Mod(P) is a union of at most
M(P) (not necessarily disjoint) N-parallelotope, where M(P) = (k(P) +
2n(P))r(P).

This Corollary provides an exponential, in the size of the p-program,
upper bound on the number of parallelotopes in the set Mod(P).

Consider as the simplest example the subclass of simple dp-programs
consisting of facts only, i.e. of clauses with empty bodies. Let P be such
a program consisting of clauses C1, . . . , Cs and let Ci = Di

1 : [Li
1, U

i
1] ∨

. . . ∨ Di
ki

: [Li
ki

, U i
ki

] ←− . Then Mod(P) can be defined by the following
procedure GenModFacts.
1) Fix the set of indices J = {(j1, . . . , js) | 1 ≤ jr ≤ kr for all r ∈ [1, s]}.
2) For each α = (j1, . . . , js) ∈ J and Ai ∈ BL choose the subset of clause
indices Jα(Ai) = {k | Dk

jk
= Ai},

3) If Jα(Ai) �= ∅ then let να(Ai) = [Li, Ui] where Li = max{Lk
jk
| k ∈

Jα(Ai)} and Ui = min{Uk
jk
| k ∈ Jα(Ai)}.

If Jα(Ai) = ∅ then let να(Ai) = [0, 1].
4) If for all i ∈ [1, N] the interval να(Ai) is nonempty, i.e. Li ≤ Ui, then let
Modα(P) = ×N

i=1να(Ai), otherwise Modα(P) = ∅.
5) Return Mod(P) =

⋃
α∈J Modα(P).

The procedure GenModFacts analyzes |J | = ∏s
i=1 ki possible choices

of α and sets of models (parallelotopes) Modα(P). The relationships of
equality, inclusion and nonempty intersection are possible among these par-
allelotopes.

The following example shows that Mod(P) for simple dp-programs with
empty bodies of clauses can include an exponential number of disjoint par-
allelotopes.

Example 8 Let P consist of s = N clauses of the form Ci = A1 : [Li
1, U

i
1] ∨

. . . ∨ AN : [Li
N , U i

N] ←− . and [Li
r, U

i
r] = [(i − 1)/N, (2(i − 1) + 1)/2N] for

all i ∈ [1, N] and r ∈ [1, N]. Then for any two permutations α1 and α2 of
(1, 2, . . . , N) the sets of models Modα1(P) and Modα2(P) do not intersect,
while for each α which is not a permutation Modα = ∅. So, Mod(P) consists
of N ! disjoint parallotope.

We can show that an exponential bound on the number of disjoint
parallelotopes in Mod(P) cannot be substantially decreased even for non-
disjunctive simple p-programs.

Example 9 Consider p-program P ′ over the set of atoms {a, b1, . . . , bn}:
a : [1, 1]←− . (1)
bi : [0, 1]←− . i = 1, . . . , n (2i)
a : [0, 0]←− bi : [0.2, 0.3]. i = 1, . . . , n (3i)

Here, INEQ(1) consists of a single equality xa = 1; each of INEQ(2i)
includes trivial inequalities 0 ≤ xbi ≤ 1, and each of INEQ(3i) consists of
three systems of inequalities: α1

i = {0 ≤ xbi < 0.2}, α2
i = {0.3 < xbi ≤ 1},

and α3
i = {0.2 ≤ xbi < 0.3; xa = 0}. Since α3

i is inconsistent with INEQ(1),
each consistent set of inequalities in INEQ(P ′) can be represented as {xa =
1}∪⋃n

i=1 αji

i for some ji ∈ {1, 2}, i = 1, . . . , n. It is easy to see that for any
two different α and α′ of such form in INEQ(P ′) sets Sol(α) and Sol(α′) are
disjoint. So, Mod(P ′) consists of 2n disjoint n-parallelotopes. At the same
time f(P ′) = n + 1, r(P ′) = n, k(P ′) = 1 and a bitwise representation of
P3 takes only O(n log n) bits.

4.3 Semantics of Simple dp-programs: Explicit Computation of Models

In this section we will address the following problem: given a simple dp-
program P , output the description of the set Mod(P) as a union of disjoint
N-parallelotopes.

The construction from the previous section gives one algorithm for com-
puting Mod(P): given a program P , construct explicitly the set of systems

of inequalities INEQ(P) and then solve each system from this set. This
algorithm has exponential worst case complexity in the size of the program
and as Example 9 illustrates the worst case cannot be avoided. However, it
is not hard to see that the algorithm based on solving individual systems
of inequalities from INEQ(P) can be quite inefficient in its work. Indeed,
as the solution sets of individual systems of inequalities are not necessarily
disjoint, this algorithm may wind up computing parts of the final solution
over and over. In this section, we propose a different approach to direct com-
putation of the set of models of a simple dp-program. This approach breaks
the solution space into disjoint components and individually computes each
such component.

Consider a simple dp-program P over the Herbrand base BL = {A1, . . .
AN}. As AT (P) we denote the multiset of all p-annotated atoms found in all
heads and bodies of clauses in P . Given A ∈ BL let AT (P)[A] be the set of
all p-annotated atoms of the form A : μ from AT (P). Define for each A ∈ BL

a set PrbP (Ai) of all possible bounds of probability intervals used in P for
A as follows PrbP (A) = {〈l,−〉|A : [l, u] ∈ AT (P)[A]} ∪ {〈u, +〉|A : [l, u] ∈
AT (P)[A]} ∪ {〈0,−〉, 〈1, +〉}. Thus with each occurrence of a probability
bound for A in P , we are also storing (encoded as ”−” or ”+”) whether it
is a lower or upper bound.

We order the elements of PrbP (A) as follows. 〈a, ∗〉 < 〈b, ∗〉 whenever
a < b, and 〈a,−〉 < 〈a, +〉. Consider now PrbP (A) = {β1 = 〈0,−〉, β2, . . . , βm =
〈1, +〉} where the sequence β1, . . . , βm is in ascending order. Using the set
PrbP (A) we now construct the set of segments SEGP (A) as follows.

Let βi = 〈ai, λi〉 and βi+1 = 〈ai+1, λi+1〉, 1 ≤ i ≤ m− 1. We define the
segment si associated with the pair βi, βi+1 as shown in Table 1.

Table 1 Determination of segments in SEG(A)

λi λi+1 si

− − [ai, ai+1)
− + [ai, ai+1]
+ − (ai, ai+1)
+ + (ai, ai+1]

Now, SEGP (A) = {s1, s2, . . . , sm−1}. Notice that if ai = ai+1 then, λi is
a ”−” and λi+1 is a ”+” (it follows from our order on βis) and the interval
[ai, ai+i] = [ai, ai] will be added to SEGP (A). The following proposition
establishes basic properties of the segment sets.

Proposition 7 Let P be a simple dp-program, A ∈ BL and
SEGP (A) = {s1, . . . , sm−1}.
(1) SEGP (A) is a partition of [0, 1], in particular, if i �= j then si ∩ sj = ∅.
(2) Consider some 1 ≤ i ≤ m − 1. Let x, y ∈ si and let I1 and I2 be ap-
interpretations such that I1(A) = x and I2(A) = y. Then for all A : μ ∈
AT (P)[A], I1 |= A : μ iff I2 |= A : μ.

Proof (1) The definition of segmentation SEGP (A) ensures that that any
interval with an open end of the form [ai, ai+1) or (ai, ai+1) always is
followed by some interval with a closed begin of the form [ai+1, ai+2] or
[ai+1, ai+2) (note, that the last interval in SEGP (A) always has a closed
end, so intervals with an open must have a successor interval). Therefore all
the points of [0, 1] are included in SEGP (A). By the same reason any in-
terval with a closed end of the form [ai, ai+1] or (ai, ai+1] always is followed
by some interval with an open begin of the form (ai+1, ai+2] or (ai+1, ai+2).
Therefore, no point of [0, 1] can be included into two segments of SEGP (A).
(2) Suppose that for some A : [l, u] ∈ AT (P)[A] ap-interpretations I1 and
I2 behave differently: I1 |= A : [l, u] and I2 �|= A : [l, u]. Then l ≤ x ≤ u and
y < l or y > u. It follows by the definition of SEGP (A) that x is included
in a segment s with lower bound ls and upper bound us such that l ≤ ls
and us ≤ u, while y is included in a segment s′ with lower bound ls′ and
upper bound us′ that ls′ < l or us′ < u. Therefore s �= s′ which contradicts
the condition of (2).

Given a simple dp-program P over the Herbrand base BL = {A1, . . . , AN},
the segmentation of P , denoted SEG(P) is defined as follows

SEG(P) = {s1 × s2 × . . .× sN | sj ∈ SEGP (Aj), 1 ≤ j ≤ N}.
Basically, SEG(P) is a segmentation of the N-dimensional unit hy-

percube into a number of ”bricks”. Recall that each point inside the N-
dimensional unit hypercube represents an ap-interpretation. The following
theorem shows that the set of all ap-interpretations satisfying P can be
constructed from some ”bricks” of SEG(P).

Theorem 4
(1) Any two different parallelotopes of SEG(P) do not intersect.
(2) For any parallelotope J ∈ SEG(P) either J ⊆Mod(P), or
J ∩Mod(P) = ∅.
(3) There exists a subset S ⊆ SEG(P) such that Mod(P) =

⋃
J∈S J .

Proof follows directly from proposition 7.

Example 10 Consider again program P1 shown in Figure 2:
a : [0.2, 0.4]←− .
b : [0.2, 0.5]←− .
b : [0.2, 0.3]←− a : [0.2, 0.3].
b : [0.4, 0.5]←− a : [0.3, 0.4].
Atom a has the set of probability bounds PrbP1(a) = {〈0,−〉, 〈0.2,−〉,
〈0.3,−〉, 〈0.3, +〉, 〈0.4, +〉, 〈1, +〉} and atom b has the set of bounds PrbP1(b) =
{〈0,−〉, 〈0.2,−〉, 〈0.3, +〉, 〈0.4,−〉, 〈0.5, +〉, 〈1, +〉}.
The corresponding sets of the segments are
SEGP1(a) = {[0, 0.2), [0.2, 0.3), [0.3, 0.3], (0.3, 0.4], (0.4, 1]} and
SEGP1(b) = {[0, 0.2), [0.2, 0.3], (0.3, 0.4), [0.4, 0.5], (0.5, 1]}.
Then SEG(P1) consists of 25 rectangles of the form s1 × s2 where s1 ∈
SEGP3(a) and s2 ∈ SEGP1(b) (in fact, 5 of them with s1 = [0.3, 0.3] are

linear segments). As is shown in Proposition 6 only 2 of them consist of
models of P3: Mod(P1) = [0.2, 0.3)× [0.2, 0.3] ∪ (0.3, 0.4]× [0.4, 0.5].

(1) Compute SEG(P).
(2) for each J ∈ SEG(P) do
(3) Choose some interpretation (point) I ∈ J ;
(4) if I |= P then add J to Mod(P) end if
(5) end do

Fig. 3 Algorithm GenMod for computing Mod(P).

Theorem 4 suggests that Mod(P) can be constructed using the algo-
rithm GenMod described in Figure 3. We note that steps (3) and (4) of this
algorithm can be processed efficiently. In particular, if J = s1 × . . . × sN

and each si is a segment with the lower bound li and the upper bound ui,
i = 1, . . . , N, then for each i the value I(Ai) on step (3) can be chosen to
be equal to (li + ui)/2 — this point is guaranteed to belong to the interval
regardless of which ends of the interval are open or closed. So, the runtime
of GenMod is bounded by a polynomial of the size of SEG(P). The size of
SEG(P) is, in its turn, exponential in the size of the set BL of all atoms
of P . Of course, it is possible that some ”bricks” in SEG(P) can be united
into one larger ”brick”, so that Mod(P) is represented by a smaller num-
ber of bricks than SEG(P). But the program P3 shows that in the general
case even the minimal number of ”non-unitable” bricks in Mod(P) can be
exponential in |BL|. Therefore, the worst case running time of algorithm
GenMod can not be improved. For the same reason, in the worst case, ex-
ponential space is needed to store the output of GenMod. At the same time,
the size of all PrbP (A) does not exceed the size of P itself (as, all values in
PrbP (A) are explicitly found in P). Because of this, algorithm GenMod can
work using only linear working or internal memory, requiring exponential
memory only to write out the output.

At the same time, we can improve on GenMod, by being more careful
at how the N-dimensional ”bricks” are considered.

We fix an ordering A1, . . . , AN of BL. Given a simple dp-program P ,
let lfp(TP (Ai)) = sgi and NS(P) = ×N

i=1sgi. From [21] (Lemma 9) we
know that Mod(P) ∈ NS(P). We observe, that it is sufficient, to segment
NS(P) rather than the unit N-dimensional hypercube to compute Mod(P).
For a set of segments S and a segment μ let us denote by S ∩ μ the set
{s|s ∈ S and s ⊆ μ}. We now define the notion of a reduct.

Definition 18 Given a simple dp-program P , an atom A ∈ BL and an
interval ν = 〈l, u〉 ⊆ [0, 1], which can be open or closed on either end7,

7 I.e., 〈∈ {[, (}, 〉 ∈ {],)},.

we denote by Reduct(P, A : ν) a reduced program which results from P as
follows:

(i) Delete from P any clause C whose head includes an atom A : μ such
that ν ⊆ μ.

(ii) Delete from P any clause C whose body includes an atom A : μ such
that μ ∩ ν = ∅.

(iii) Delete from the body of any other rule each atom A : μ such that ν ⊆ μ.
(iv) Delete from the head of any other rule each atom A : μ such that μ∩ν =
∅.
The following assertion relates the set of models of the original program

P and the sets of models of its reducts.

Proposition 8
(1) Let BL = {A1, . . . , AN} and 1 ≤ j ≤ N . Then
Mod(Reduct(P, Aj : νj) ∪ {Aj : νj ← .}) = Mod(P ∪ {Aj : νj ← .}) =
Mod(P) ∩ [0, 1]j−1 × νj × [0, 1]N−j.
(2) For each s ∈ SEGP (A) program Reduct(P, A : ν) does not include any
atom of the form A : μ.

Proof. (1) It is straightforward to check that each transformation (i)–(iv)
preserves the set of models of (P ∪ {A : ν ← .}). (2) follows from the
following fact: for each s ∈ SEGP (A) and A : μ ∈ AT (P)[A] either s ⊆ μ
or s ∩ μ = ∅.

We extend now the reduction of P with respect to one atom A : ν to
the reduction with respect to an atomic formula function h : BL → C[0, 1].

Definition 19 Let P be a simple dp-program and let h be an atomic formula
function. The reduct of program P w.r.t. h, denoted Reduct(P, h) is
Reduct(P, h) = Reduct(Reduct(. . .Reduct(Reduct(P, A1 : h(A1)), A2 : h(A2)) . . .), AN :
h(AN))

Consider the algorithm ComputeReduct described below.

Algorithm ComputeReduct(P, h)

(1) for each A ∈ BL do P := Reduct(P, A : h(A));
(2) return P .

The following assertion follows straightforward from Proposition 8.

Proposition 9
(1) The result of Algorithm ComputeReduct does not depend on the order
of atoms of BL in line (1).
(2) Algorithm ComputeReduct(P ,h) computes Reduct(P, h).
(3) Let BL = {A1, . . . , AN} be some ordering of BL. Then

Mod(Reduct(P, h)∪
N⋃

j=1

{Aj : h(Aj)← .}) = Mod(P∪
N⋃

j=1

{Aj : h(Aj)← .}) =

Algorithm GenModT(P :program, {A1, . . . , AN}:atoms)
if P includes contradictory clause ← . then return(∅)
else

Sol := ∅;
S := NS(P); // compute fixpoint of Ng-Subrahmanian TP operator

if S = ∅ then return(∅)
else // if NS(P) is not empty, proceed with computations

P := Reduct(P, S);
Seg := SEG(P, A1) ∩ sg1; // the segmentation of A1 inside

// the fixpoint of operator TP

// (recall, sg1 = lfp(TP)(A1))
// main loop

for each s = 〈a, b〉 ∈ Seg do
P ′ := Reduct(P, A1 : s);

if P ′ is empty then Sol := Sol ∪
(
s× (×N

i=2[0, 1])
)

else// find the solution for the reduct

RSol := GenModT (P ′, {A2, . . . , AN});
if RSol = ∅ then Sol := Sol ∪ (s×RSol) end if

end if end do
end if end if
return Sol;

Fig. 4 Algorithm GenModT for computing Mod(P).

Mod(P) ∩ (h(A1)× . . .× h(AN)).

Figure 4 contains the pseudocode for the algorithm GenModT, designed
to intelligently execute all steps of the algorithm GenMod. The algorithm
works as follows. On the first step, we compute NS(P), reduce P wrt NS(P)
and construct segmentation of A1. Then for each segment, we construct a re-
duced program P ′ and recursively run GenModT on P ′ and set {A2, . . . , An}
of atoms, and combine the solution returned by the recursive call with the
segment of A1 for which it was obtained. The union of solutions computed
this way is returned at the end of each call to GenModT. The stopping con-
ditions are either an empty reduct program, meaning that the segmentation
leading to this reduct yields a part of the final solution, or a contradiction
during the computation of NS(P), meaning that current segmentation does
not yield models of P . The theorem below states that Algorithm GenModT
is correct.

Theorem 5 Given a simple p-program P and an ordering A1, . . . , AN of
BL, algorithm GenModT returns the set Mod(P) .

Proof The result follows in a straightforward way from Propositions 8 and
9.

Apart from using NS(.) as starting points for segmentation on every
step, Algorithm GenModT improves over a naive implementation of Gen-
Mod in two ways. First, it may turn out that one of the stopping conditions

for GenModT holds before the recursion has exhausted all atoms from P .
In this case, it means that either an entire sub-space is part of the solution
or is not part of the solution, but we no longer need to check each ”brick”
inside that sub-space. Second, on each step of the recursion after the first
one, segmentation of the current atom occurs with respect to the current
program, which is a reduct of P w.r.t. all previously considered atoms. This
reduct has a simpler structure, and, in many cases, would have fewer and
shorter rules. This means that the segmentation of the current atom w.r.t.
the reduct may contain fewer segments than the segmentation w.r.t. origi-
nal program P . Another convenient feature ofGenModT is that it structures
Mod(P) in a form of a tree, corresponding to the way it recursively enu-
merates the solutions.

The advantages of GenModT over the näıve implementation of GenMod
are demonstrated in the example of program P1 (Fig. 2). In Example 10 we
showed that NS(P1) = [0.2, 0.4]× [0.2, 0.5] and that
SEGP1(a) = {[0, 0.2], [0.2, 0.3), [0.3, 0.3], (0.3, 0.4], (0.4, 1]} and
SEGP1(b) = {[0, 0.2), [0.2, 0.3], (0.3, 0.4), [0.4, 0.5], (0.5, 1]}.
So, at the first step of GenModT Seg = SEGP1(a)∩(0.2, 0.4] = {[0.2, 0.3), [0.3, 0.3],
(0.3, 0.4]} and the main loop will proceed three times as follows:
1) s = [0.2, 0.3), P ′ = {b : [0.2, 0.3]←− .}, Sol = {[0.2, 0.3)× [0.2, 0.3]};
2) s = [0.3, 0.3], P ′ = {b : [0.2, 0.3]←− .; b : [0.4, 0.5]←− .}, Sol := Sol∪∅;
3) s = (0.3, 0.4], P ′ = { b : [0.4, 0.5] ←− .}, Sol := Sol ∪ {(0.3, 0.4] ×
[0.4, 0.5]}.
The result will be Sol = [0.2, 0.3)× [0.2, 0.3]∪ (0.3, 0.4]× [0.4, 0.5] which is
equal to Mod(P1) (see Proposition 6). Thus, GenModT tries only 3 bricks
while GenMod will check all 25 bricks.

5 When Fixpoint is Enough

In this section we study subclasses of p-programs for which simpler proce-
dures for determining Mod(P) exist. In particular, we study when Mod(P),
as defined here, and lfp(TP), as defined for p-programs in [22] and for sim-
ple dp-programs in Section 3 coincide. We then address the problem of
complexity of detecting that Mod(P) = I(lfp(TP)).

It turns out that it is possible to specify a necessary and sufficient condi-
tion for equivalence of Mod(P) and I(lfp(TP)) for a general case of simple
dp-programs.

To simplify the discussion, we assume that a simple dp-program P under
consideration does not contain trivial clauses C which are satisfied by any
ap-interpretation, i.e. with Mod(C) = EN . In addition, we assume that for
each clause C ∈ P the following simple syntactic conditions hold:

1. each atom A occurs in the body of C at most once (multiple occurrences
A : μ1, . . . , A : μr can be replaced with one occurrence A : μ where
μ = μ1 ∩ . . . ∩ μr);

2. for each two occurrences A : ν1 and A : ν2 in the head of C their
intervals do not intersect: ν1 ∩ ν2 = ∅ (otherwise they can be replaced
with A : (ν1 ∪ ν2));

3. if the head of C includes A : ν and the body of C includes A : μ then
ν ⊆ μ and μ − ν �= ∅ (otherwise A : ν can be changed to A : ν ∩ μ, if
ν ∩ μ = ∅ then this atom can be deleted from the head of C).

In the previous section the reduction Reduct(P, A : ν) of a simple dp-
program P w.r.t. atom A : ν was defined (see Definition 18). We strengthen
this reduct and define a new reduct, Reduct1(P, A : ν) by adding to the
transformations (i)–(iv) of Reduct(P, A : ν) from Definition 18 two new
transformations:

(v) Change each atom A : μ in the bodies of clauses of P to the atom
A : (μ ∩ ν);

(vi) Delete from P any clause C such that the head of C contains an atom
A : μ, the body of C contains an atom A : μ1 and μ1 ⊆ μ.

The reduction Reduct1(P, h) of a simple dp-program P w.r.t. atomic
formula function h is defined in the same way as Reduct(P, h).

New transformations sometimes allow to decrease the size of the reduced
program but do not change the set of its models. Because of this, the fol-
lowing proposition holds.

Proposition 10
(1) Let BL = {A1, . . . , AN} and 1 ≤ j ≤ N . Then
Mod(Reduct1(P, Aj : νj) ∪ {Aj : νj ← .}) = Mod(P ∪ {Aj : νj ← .}) =
Mod(P) ∩ [0, 1]j−1 × νj × [0, 1]n−j.
(2) Let BL = {A1, . . . , AN} be some ordering of BL. Then
Mod(Reduct1(P, h) ∪ ⋃N

j=1{Aj : h(Aj) ← .}) = Mod(P ∪ ⋃N
j=1{Aj :

h(Aj)← .}) = Mod(P) ∩ (h(A1)× . . .× h(AN)).

We use Reduct1(P, h) to define the subclass of strict simple dp-programs.

Definition 20 A simple dp-program P is called strict if Reduct1(P, lfp(TP)) =
∅.

For p-programs strictness can be defined as follows.

Definition 21 Let P be a p-program and let P ′ be the result of removing
from P all p-clauses whose heads are satisfied by lfp(TP). A p-program P
is called strict if the following condition holds: for each clause C : F : μ←−
F1 : μ1 ∧ . . . Fn : μn in P ′, there exists an index 1 ≤ i ≤ n, such that
lfp(TP)(Fi) ∩ μi = ∅.

For the class of simple dp-programs, strictness can be efficiently checked
and is a sufficient and necessary condition. This leads to polynomial-time
upper bounds on entailment and consistency.

Theorem 6
(1) For a simple dp-program P deciding whether it is strict can be performed
in polynomial time.
(2) For a simple dp-program P , Mod(P) = I(lfp(TP)) iff P is strict.

Proof of (1) follows from the fact that the fixpoint lfp(TP) and
Reduct1(P, lfp(TP)) are computable in polynomial time of the size of P .

(2) Suppose that Reduct1(P, lfp(TP)) = ∅. Then from this equality
and from proposition 10 (2) it follows that Mod(Reduct1(P, lfp(TP)) ∪⋃N

j=1{Aj : lfp(TP)(Aj) ← .}) = Mod(
⋃N

j=1{Aj : lfp(TP)(Aj) ← .}) =
(lfp(TP)(A1) × . . . × lfp(TP)(AN)) = Mod(P) ∩ (lfp(TP)(A1) × . . . ×
lfp(TP)(AN)). As Mod(P) ⊆ (lfp(TP)(A1)×. . .×lfp(TP)(AN)) = I(lfp(TP)),
we conclude that Mod(P) = (lfp(TP)(A1)×. . .×lfp(TP)(AN)) = I(lfp(TP)).

Now suppose that Reduct1(P, lfp(TP)) �= ∅. Then Reduct1(P, lfp(TP))
includes some clause C of the form D1 : ν1 ∨ . . .∨Dk : νk ← B1 : μ1 ∧ . . .∧
Bn : μn. From the definition of Reduct1(P, lfp(TP)) it follows that for each
1 ≤ j ≤ k, the set αj = lfp(Tp)(Dj) − νj �= ∅ and for each 1 ≤ i ≤ n, the
set βi = μi ∩ lfp(Tp)(Bi) �= ∅. Besides, each atom A ∈ BL can occur in the
head of C at most twice and in the body of C at most once.

Now define for every A ∈ BL an ap-interpretation Ia(A) as follows. Let
lfp(TP)(A) = [L, U].
Let A : [l1, u1], A : [l2, u2], . . . , A : [lr, ur] (r ≥ 0) be all occurrences of A in
the head of C ordered from the left to right, i.e. l1 < u1 < l2 < u2 < . . . <
lr < ur.

(1) If r ≥ 2 we choose two leftmost occurrences A : [l1, u1] and A :
[l2, u2], l1 ≤ u1 < l2 ≤ u2, and put Ia(A) = (u1 + l2)/2. From the conditions
on the considered intervals it follows that Ia(A) ∈ [L, U] = lfp(TP)(A)
and for each occurrence A : [li, ui] (1 ≤ i ≤ r) in the head of C the value
Ia(A) /∈ [li, ui]. Hence, Ia(A) �|= A : [l1, u1] ∨A : [l2, u2] ∨ . . . A : [lr, ur]. On
the other hand, if A : [l, u] is the (only!) occurrence of A in the body of C
then l1 ≤ l ≤ u1 < l2 ≤ u and Ia(A) ∈ [l, u]. Therefore, Ia(A) |= A : [l, u].
(2) If r = 1 and A : [l1, u1] is the only occurrence of A in the head of C and
A : [l, u] is the occurrence of A in the body of C then the points (v) and
(vi) of the definition of Reduct1(P, A : [L, U]) ensure that ([L, U]∩ [l, u]) �⊆
[l1, u1], so we can choose a point Ia(A) in the interval ([L, U]∩[l, u])−[l1, u1].
(3) If A : [l1, u1] = Dj : νj is the only occurrence of A in the head of C and
the body of C does not include A, then choose Ia(A) to be the middle of
the interval αj .
(4) If A : [l, u] = Bi : μi is the only occurrence of A in the body of C and
the head of C does not include A, then choose Ia(A) to be the middle of
the interval βi.
(5) If C does not contain atom A then put Ia(A) = (L + U)/2.

It follows from the definition of Ia that for each A ∈ BL Ia(A) ∈
lfp(TP)(A). Besides, in all the cases above Ia(Bi) ∈ μi, so Ia |= Bi : μi

for all 1 ≤ i ≤ n. On the other hand, for every 1 ≤ j ≤ k the value

Ia(Dj) /∈ νj , hence Ia �|= Dj : νj . Therefore, Ia �|= C. On the other hand,
Ia ∈ I(lfp(TP)). Hence, I(lfp(TP)) �= Mod(P).

From Theorem 6 we can obtain the following corollary.

Corollary 5 Consistency and entailment problems are solvable in polyno-
mial time for strict simple dp-programs.

For the class of p-programs, strictness is a sufficient condition.

Theorem 7 If a p-program P is strict, then Mod(P) = I(lfp(TP)).

Proof. We know that Mod(P) ⊆ I(lfp(TP)). Suppose now, I ∈ I(lfp(TP)).
We show that for every dp-clause C ∈ P of the form F : μ ←− F1 :
μ1 ∧ . . . Fn : μn, I |= C. If C ∈ P − P ′, then I(F) ∈ lfp(TP)(F) ⊆ μ,
and therefore, I |= F : μ. If C ∈ P ′, then, because C is strict, there exists
an index i, that lfp(TP)(Fi) ∩ μi = ∅. Then I �|= Fi : μi, and therefore
I �|= F : μ←− F1 : μ1 ∧ . . . Fn : μn and I |= C.

The following example shows that strictness is not a necessary condition
for non-simple programs.

Example 11 Consider the following p-program P7:
a : [0.6, 0.8]←−. b : [0.6, 0.7]←−. d : [0.2, 0.3]←− .
c : [0.4, 0.5]←− (a ∧ b) : [0.65, 0.7]∧ (b ∨ d) : [0.5, 0.6].
lfp(TP) assigns intervals [0.2, 0.7] and [0.6, 1] to a∧ b and b∨d respectively,
and therefore, P7 is not strict. However, there exists no p-interpretation I
which satisfies the first three rules and the body of the fourth rule: I(b∨d) ∈
[0.5, 0.6] implies, I(b ∨ d) = 0.6 and I(b) = 0.6, while I(a ∧ b) ∈ [0.65, 0.7]
implies that I(b) ≥ 0.65. Therefore, Mod(P) coincides with I(lfp(TP)).

6 Related Work and Conclusions

Surverys. A survey of different approaches to probabilistic logic program-
ming can be found in [8] and in [5]. Logic for reasoning with probabilistic
data is described in [25] and [9]. A good introduction to imprecise probabil-
ities is the book by Walley [29]. The possible worlds semantics for interval
probabilities can be found in [3].

Annotated Logic Programs and PSAT-based logic programming. Kifer and
Subrahmanian first considered generalized annotated logic programs (GAPs),
i.e., logic programs with rules over F : μ clauses in [13]. In that work, μ
were assumed to take their values from a semilattice of truth values. Theis
language has been extended to explicitly treat μ values as interval proba-
bilities by Ng and Subrahmanian[22,21,23]. As discussed in Section 1 the
latter work is also a natural extension of Interval Probabilistic Satisfiability
problem PSAT [11]: an instance of Interval PSAT is a p-program, in which
all rules have no bodies.

The language we consider in this paper is a natural extension of the
syntax of Ng and Subrahmanian (as well as Kifer and Subrahmanian) to

allow for disjunctions in the heads of clauses. We show that for this, rela-
tively simple language, the class of satisfying models (probabilistic interpre-
tations) has a complex description: it is a union of a number of (closed, open,
semi-open) intervals, obtained, solving an array of Interval PSAT problems.
On the positive side, our results show how to compute the set of models
of a p-program precisely. On the negative side, the complexity of the de-
scription and the computational complexity of the problem itself suggest
that intervals may be inadequate as the means for specifying imprecision in
probabilistic assessments.

Interval Probabilistic Logic Programs: other semantics. Lukasiewicz [17–
19] and Lakshmanan and Sadri [15,16] have studied alternative sematnics
for interval probabilistic logic programs.

The work of Lukasiewicz originated, in part, in the desire to simplify the
semantical framework of Ng and Subrahmanian [22], while extending the
functionality of the logic programming formalism. Instead of possible world
semantics, Lukasiewicz in [17,18] extends the semantics of multi-valued logic
to reasoning with probability intervals. In fact, [18] discusses a probabilistic
disjunctive logic programming formalism. The key difference between [18]
and this work lies in the semantics ascribed to probabilistic rules in the
program and the means of manipulation of interval probabilities. In [18],
probabilities of conjunction and disjunction are computed using the meet
(min) and join (max) operations on the probability lattice described in [17].
By comparison, [21] and this work, specify the semantics of conjunction
and disjunction via a linear optimization problem which follows from the
possible-world semantics.

In [15,16], Lakshmanan and Sadri represented uncertainty as a pair of
intervals measuring confidence and doubt independently, associated with the
probabilistic clause, rather than with formulas in the clause. The key simi-
larity of this framework with GAP-based approaches (including our work)
is in the treatment of the ⇐= symbol in the clauses as a reversed modus po-
nens. The key difference between the semantics of [16] and that of [21] and
this paper is in how the probability intervals for the same formulas derived
from different rules are combined. The posible world semantics considered
in [21] and in this paper obliges the model of a (d)p-program P to satisfy
every rule in the program. At the same time, the framework for [16] allows
for the models of their program to satisfy some, but not all clauses.

Bayesian approaches to logic programming. As discussed in Section 1,
Bayesian approaches to logic programming treat ⇐= as an indicator of
conditional probability. First such formalisms are due to Poole [27] and Ngo
and Haddawy [24]. Both proposed frameworks are equivalent to Bayesian
networks [26] in expressive power.

Baral, Gelfond and Rushton [2] create an elegant framework (P-log)
which combines answer set programming [10] and bayesian reasoning. In
their framework, (point) probabilities are associated with some of the propo-

sitional atoms of the langauge. The rule base is constructed using A-Prolog
syntax [28], and does not include uncertainty. Each truth assignment to the
propositional atoms yields has a probability of occurring: the answer sets of
a P-log program are all the assignments (sets) with non-zero probability.

While previously mentioned Bayesian frameworks work with point prob-
abilities, Lukasiewicz has also studied the use of interval probabilities in the
context of bayesian inference in logic programming [19]. Just like [22] and
this work, [19] uses possible world semantics, however, it is adapted for a
logic programming formalism with distinctly different properties.

Conclusions. This work provides the description of the possible-world se-
mantics for a disjunctive probabilistic logic programming langauge which
naturally extends the Interval Probabilistic Satisfiability [11]. The results
presented in this paper highlight the price one has to pay for reasoning with
interval probabilities. On one hand, interval probabilities is the simplest and
the most easy-to-understand form of imprecise probabilities. On the other
hand, the results presented in this paper show that reasoning formalisms
combining possible world semantics and interval probabilities are not closed.
Dp-programs, described in the paper use only probability intervals to spec-
ify the conditions which probability assignments to propositional formulas
must obey. However, in this framework, a single interval is not a precise
description of the set of all possible probability assignments to a proposi-
tional formula. We hope that these observations lead to the study of more
complex forms of imprecise probabilities and their incorporation into logic
programming frameworks.

References

1. G. Boole. (1854) The Laws of Thought, Macmillan, London.
2. Chitta Baral, Michael Gelfond, J. Nelson Rushton. (2004) Probabilistic Rea-

soning With Answer Sets, in Proc. LPNMR-2004, pp. 21-33.
3. Luis M. de Campos, Juan F. Huete, Serafin Moral (1994). Probability Inter-

vals: A Tool for Uncertain Reasoning, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems (IJUFKS), Vol. 2(2), pp. 167 – 196.

4. V.Chvátal. (1983) Linear Programming. W. Freeman and Co., San Fancisco,
CA.

5. A. Dekhtyar. (2000) Reasoning with Uncertainty and Time, Ph. D. Thesis,
University of Maryland, College Parge, August 2000.

6. A. Dekhtyar, M.I. Dekhtyar. (2004) Possible Worlds Semantics for Proba-
bilistic Logic Programs, in Proc., International Conference on Logic Pro-
gramming (ICLP)’2004, LNCS, Vol. 3132, pp. 137-148.

7. A. Dekhtyar, M.I. Dekhtyar. (2005) Revisiting the Semantics of Interval
Probabilistic Logic Programs, in Proc. 8th International Conference on
Logic Programming and Non-Monotonic Reasoning (LPNMR’05), LNAI,
Vol. 3662, pp. 330-342.

8. A. Dekhtyar and V.S. Subrahmanian (2000) Hybrid Probabilistic Programs.
Journal of Logic Programming, Volume 43, Issue 3, pp. 187 – 250 .

9. R. Fagin J. Halpern, and N. Megiddo. (1990) A logic for reasoning about
probabilities, Information and Computation, vol. 87, no. 1,2, pp. 78-128.

10. M. Gelfond, V. Lifschitz (1988) The Stable Model Semantics for Logic Pro-
gramming. In Proceedings, ICLP/SLP 1988, pp. 1070–1080

11. G.Georgakopoulos, D. Kavvadias, C.H. Papadimitriou. (1988) Probabilistic
Satisfiability, Journal of Complexity, Vol. 4, pp. 1-11.

12. T. Hailperin. (1965) Best Possible Inequalities for the Probability of a Logical
Function of Events, American Mathematical Monthly, Vol. 72, pp. 343–359.

13. M. Kifer, V.S. Subrahmanian (1992) Theory of Generalized Annotated Logic
Programming and its Applications, Journal of Logic Programming, Vol. 12,
No. 4, pp. 335–368.

14. H.E. Kyburg Jr. (1998) Interval-valued Probabilities, in G. de Cooman,
P. Walley and F.G. Cozman (Eds.), Imprecise Probabilities Project,
http://ippserv.rug.ac.be/documentation/interval prob/interval prob.html.

15. L.V.S. Lakshmanan, F. Sadri. (1994) Modeling Uncertainty in Deduc-
tive Databases. In Proceedings, DEXA’94, September 1994, Athens, Grees,
LNCS, Vol 856, pp. 724–733, Springer.

16. L. V. S. Lakshmanan, F. Sadri. (1994) Probabilistic Deductive Databases. in
Proc. International Symposium on Logic Programming (SLP), pp. 254-268

17. T. Lukasiewicz. (1998) Probabilistic Logic Programming. In Proceedings 13th
European Confrence on Artificial Intelligence (ECAI’98), pp. 388–392, J.
Wiley & Sons.

18. T. Lukasiewicz. (1999) Many-Valued Disjunctive Logic Programs with Prob-
abilistic Semantics. In Proceedings, 5th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR), LNAI, Vol. 1730,
pp. 277-289, Springer.

19. T. Lukasiewicz. (2001) Probabilistic Logic Programming under Inheritance
with Overriding. In Proceedings, UAI 2001, pp. 329-336.

20. J. Minker (1982) On Indefinite Data Bases and the Closed World Assump-
tion. In Loveland, D., ed.: Proceedings 6th Conference on Automated Deduc-
tion (CADE ’82). Volume 138 of Lecture Notes in Computer Science., New
York, Springer, pp. 292-308.

21. R. Ng and V.S. Subrahmanian. (1993) Probabilistic Logic Programming,
Information and Computation, 101, 2, pps 150–201, 1993.

22. R. Ng and V.S. Subrahmanian. A Semantical Framework for Supporting
Subjective and Conditional Probabilities in Deductive Databases, Journal
of Automated Reasoning, 10, 2, pps 191–235, 1993.

23. R. Ng and V.S. Subrahmanian. (1995) Stable Semantics for Probabilistic
Deductive Databases, Information and Computation, 110, 1, pps 42-83.

24. L. Ngo, P. Haddawy (1995) Probabilistic Logic Programming and Bayesian
Networks, in Proc. ASIAN-1995, pp. 286-300.

25. N. Nilsson. (1986) Probabilistic Logic, AI Journal 28, pp 71–87.
26. J. Pearl. (1988) Probabilistic Reasoning in Intelligent Systems: Netoworks of

Plausible Inference, Morgan Kaufmann Publishers, 1988.
27. D. Poole (1993). Probabilistic Horn Abduction and Bayesian Networks. Ar-

tificial Intelligence, Vol. 64(1), pp. 81-129.
28. P. Simons, I. Niemelä, T. Soininen (2002) Extending and Implementing the

Stable Model Semantics. Artificial Intelligence Journal, Vol. 138, pp. 181–
234.

29. Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chap-
man and Hall, 1991.

