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Introduction 

The science of physics is defined as the study of matter and energy. The coexisting 

relation between the two is in the definition of states of matter. Each separate matter state 

represents a different and important landmark in the ordering of the molecules that make up 

any substance. All of us know of the main three observed states of matter that exist in our 

immediate world; Solid, Liquid, and Gas. Solids, as we know, are comprised of well ordered 

molecules in crystalline lattice structures, held together by bonds formed between the 

molecules. Once the particles gain enough energy (normally heat) to break out of the bonds, 

they slip past one another with ease and lose their positional order. Thus producing the flowing 

motion.  

  The line that separates these two phases from each other is not a thin one, but rather a 

broad spectrum of different states. Within this spectrum lies the fundamental idea behind 

Liquid Crystals. These special substances are an example of a well ordered liquid that exists 

between the solid and liquid phases. They are made up of small rod like molecules that are fluid 

like liquids but also exhibit an overall order about them. 

Their order comes from their unique shape. They have a 

long axis that gives them the appearance of an elongated 

ellipse with small loose end chains. These molecules may 

exhibit different liquid crystal phases that change with 

temperature just as the more well known phases do. The main phases we will examine within 

the liquid crystal phases are denoted as Nematic and Smectic. Within the Nematic phase, liquid 

crystal molecules are in random motion and are fluid with no positional order, throughout the 



substance. Although they are in random positional placements, they still all tend to point in a 

general direction known as the director. Their positional randomness is obviously more 

reminiscent of a liquid rather than a solid, which is why they occur at higher temperatures (i.e. 

closer to the liquid phase). The Smectic phase occurs at lower temperatures than the Nematic 

and this is evident by its key feature. The fluid Smectic phases are ordered into distinct layers of 

liquid crystal molecules. As before in the nematic phase, the liquid crystals still poses their 

orientational order but gain positional order in one dimension, creating layers in which ordering 

is fluid. The smectic A (SmA) phase is the phase closest to the nematic (see Figure 1A). The 

liquid crystal molecules in the SmA phase on average point in the direction of the director 

which points perpendicular to the layers of the substance.  The smectic C (SmC) phase is 

observed as we lower the temperature farther and 

the director, that was previously normal to the layers, 

tilts away from the normal by the tilt angle alpha (see 

Figure 1A). This process of tilting to the side makes an 

effective shrinking in the layer of molecules, Δd, as shown in Figure 1. This layer shrinkage is 

given by cos(α(      )) where T is the temperature of the sample and     is the transition 

temperature at which the sample goes from smectic A to smectic C. This layer shrinkage can be as high 

as 11% in some crystals. (Yoon et al.) 

The liquid crystals we used in our experiments, were of a special type known as De Vries 

liquid crystals, which exhibit a different behavior when transitioning from SmA to SmC. In the 

De Vries model, the layer shrinkage from SmA to 

SmC is less that 1%. This astounding result may be 



described by the diffuse cone model described in figure 1B. In the SmA phase, the molecules 

start out with an average tilt already, but are randomly oriented along the tilt cone. This 

randomness leads to an overall degeneracy of their azimuthal directors so that the average 

director n points parallel to the layer normal in the Z direction. As the De Vries liquid crystal 

cools and transitions to the SmC phase, it loses its azimuthal degeneracy. The loss of 

degeneracy aligns the molecules along a specific azimuthal direction, thus, generating a director 

tilt without having layer shrinkage.(Yoon et al.). This lack of layer shrinkage makes De Vries 

liquid crystals a practical choice in manufacturing products. It allows us to put them into 

screens and eliminate defects due to layer shrinkage of regular smectic liquid crystals as the 

liquid crystals reorient. Because of this practicality, De Vries crystals have been a major topic of 

study in the scientific world.  

Due to the differences in the size of the molecules axis, light traveling through them is 

altered. As light passes through the molecule in the direction of the smaller axis it is almost 

unaltered because the thickness is so small, whereas when light passes through on the longer 

axis, the light takes more time to get through the thicker material than the shorter side. 

Because the longer axis slows down the light passing through more than the shorter axis we call 

the long axis the slow axis and the small axis the fast axis. Because these different orientations 

produce different effects on the light we can view the different axis as different indices of 

refraction     , and      . The differences of these indices of refraction is known as the 

Birefringence. The birefringence makes the molecules refract light rays differently depending 

on the direction of oscillation of the light and the direction of incidence onto the molecules. We 



can use the phenomenon of birefringence as a helpful tool in determining the orientation and 

order of the crystals in the substance. This idea is elaborated on further in the analysis. 

Experimental Design 

 The main goal of our experiment was to measure the 

optical properties of the liquid crystal as a function of 

temperature stimulus in a polarized microscope.  

 First we examined how the Liquid Crystals 

orientational order changed as we varied the temperature. 

As stated above, the order of Liquid Crystals is 

proportional to the birefringence of the substance. As the 

director tilts in the SmC phase, the light intensity changes 

in the polarized microscope. We measured the light 

intensity as a function of the temperature. The 

experimental setup (see Figure 2),  used a small electric oven 

placed on a microscope. We then placed samples of liquid 

crystal material into the microscope slides and placed the slide 

in the oven (see Figure 3), which had a small hole in the top for viewing. The birefringent 

response of the liquid crystals happens when linearly polarized light enters the material and is 

split between the fast axis and the slow axis. To achieve the linear polarization we placed a 

polarizer over the microscope lamp below the sample. We also placed a polarizer above the 

sample below the eyepiece to act as an analyzer. By setting the polarizer and analyzer to 



different respective angles to each other, we observed how the liquid crystals effected the 

transmitted light, and altered the polarization of different incident polarized angles (Figure 

4).The process used is taken from an article published in a liquid crystal journal about high 

resolution temperature scanning techniques for optical studies of liquid crystal phase 

transitions.(Saipa) 

 This setup allowed us to physically view the liquid crystals as they changed with 

temperature as well as find the light intensity of the specific area being measured. To find the 

light intensity, we used a camera to measure 

grayscale intensity. So using this camera, we 

measured the intensities of four different 

combinations of polarizer angles and sample angles 

(see Figure 5). Two measurements came from an 

orientation with the bottom polarizer parallel to the 

smectic layer normal of the sample. One with the 

analyzer(upper polarizer) parallel to the polarizer 

and one with analyzer normal to the polarizer. We then changed the orientation of the liquid 

crystal smectic layer normal to be at a forty five degree angle with respect to the polarizer and 

measured the intensity for the analyzer being again parallel and then perpendicular to the 

polarizer.  



 The changing orientations of the polarizer 

with respect to the analyzer required a degree of 

repeatability to be able to have consistent 

measurements. This was reliant on our ability to 

orient the polarizer and analyzer in the exact 

same way for each measurement we took. 

Previous experiments done with this setup had 

proven to have less acceptable data due to this 

inaccuracy. If the angle of the polarizer to 

analyzer was off, we would get an incorrect 

intensity reading that would throw off our 

calculations later on. Our solution was to use 

analyzer fashioned in such a way that it fit snugly into one orientation in the microscope. In 

previous experiments, this meant that we would have to adjust the lower polarizer by hand and 

adjust it to where we thought it should go. In our new design, we machined a new orientation 

into our analyzer so that we could place it into the microscope at two different distinct angles 

normal to each other. This small addition to the experiment helped us achieve a higher level of 

accuracy by ensuring that the polarizer and analyzer were set at exactly the angles normal and 

parallel to each other, when needed. It also eliminated the guesswork of trying to figure out 

where the lower polarizer was supposed to be.    

 We then combined the four measured intensity equations and used a relation from the 

article (Saipa)  (shown in the analysis) to find the birefringence of the molecules within the 



sample as a function of temperature. From the birefringence graph, we could then determine 

the order of the molecules.  

Analysis and Results 

 The research we were conducting on the liquid crystals, was to examine the 

birefringence due to temperature of the De Vries liquid crystal known as 8422. Our experiment 

was to heat the samples of liquid crystals in an oven and then slowly cool them over time while 

recording changes in intensities. We then use the relation for the Intensity of light as a function 

of tilt angle, and polarizer/analyzer angle. From the (Saipa) article we have: 
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 For our experiments, we read the intensity data from the camera in the microscope into 

a Mat Lab program that first interpolated the intensity data as a function of time into intensity 

data as a function of temperature. 

We did this by recording the 

temperature of the samples 

alongside the intensity 

measurements. By interpolating 

these two datasets, we obtained 

our Intensities as a function of 

Temperature as shown in Figure 6. 

Due to temperature inaccuracies, 

the horizontal position of data was 

shifted such that the phase transition occurred at the same measured temperature in all 

experiments. Our results were a bit interesting in that around the transition temperature we 

observed a large shift in the Intensities in all of the curves. 

 From these Intensity functions of temperature, we are able to back calculate the 

birefingence   and the tilt angle θ, as a function of temperature. To do this, we must relate the 

intensities in the following way: 
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then taking the ratio of  
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we obtain our tilt angle as  
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giving us the birefringence as a function of the intensities 
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 From our equations, we are able to solve for the tilt angle in radians as a function of 

temperature in degrees Celsius as shown in figure 7. From our predicted theory, the tilt angle 

and the intensity I1 in SmA phase should be zero. Due to the unexpected minimum in the I1 

intensity at the phase transition, the SmA tilt angle was nonzero. From our second equation, we 

can graph the birefingence as a function of temperature as well (Figure 8).  We fit the 

birefringence graph above and below the phase transition and found the transition 



temperature at the intersection of the two curves at 41.4°C. We then apply this to the Tilt angle 

graph to get the tilt angle as a function of the reduced temperature:  

  
(     )

   
. 

using this equation for reduced 

temperature where t is the 

reduced temperature, T is the 

temperature in degrees 

Celsius, and     is the 

transition temperature, we 

reduce our tilt angle and 

center it on the transition 

temperature given in figure 9. We 

then expect, from the article 

published by Dr. Fernsler(Fernsler 

et al.), the tilt angle as a function 

of reduced temperature can be 

shown to be  

θ =      
  

Where  is defined as a critical 

exponent. This function only describes the left hand of the graph in the SmC phase. Thus we 



examined a small portion just after the transition from t = -5.64      or about zero to t = -

.0069. This corresponded to a theta difference from about .01 to .0629. The phase transition 

theory describes the tilt behavior near the transition temperature, hence our evaluation of a 

restricted temperature range. We then exploit the fact that this equation is a power law and 

take the natural logarithm of both sides. The equation then transforms into the linear equation 

   ( )     (  )      (   ). 

We then plotted the log log plot of ln(  |) vs 

ln( ) shown in figure 10. Once we had the log 

log plot of reduced temperature vs Tilt angle 

on that small interval, we applied a linear fit to 

find the exponent   as shown in the equation 

above. Our linear fit gave us an equation of 

        (   )       which would give us a 

critical exponent of .4912 ± .0238. This result is 

consistent with the theory provided in 

(Fernsler et al.)of an expected critical exponent 

of around .5 for a second-order, continuous 

mean field phase transition. This critical 

exponent is a common way to express the 

order of a phase transition. 



 

Conclusion 

 Our experiment was clearly indicative of the theory provided in the Fernsler article. 

Given that our calculated value of the critical exponent followed the theory so closely, I would 

say that our modifications seemed to strengthen our results. The change of the polarizer to a 

multi-fixed position rather than physically adjusting the angles by hand produced a higher 

resolution data set. This data set, as stated, was consistent with the theory, with the exception 

of the expectation  that the tilt angle be before the SmA SmC transition be flat. This was quite 

surprising to see such a large reduction in the tilt angle just before the transition. This obviously 

stems from the dips in the intensity curves I1, I2, I3, and I4. The reasons for the dips in intensity 

could be due to sample degradation over time. Nevertheless, the data still yielded acceptable 

values for the second-order phase transition, and birefringence. Although our theory suggested 

a value for beta as .25, which varied from our experiment, we were still able to find the 

birefringence of these materials quite accurately. Future investigations might be warranted as 

to the nature of the intensity dips at the transition temperature, but overall the mean field 

theory was upheld.  
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