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This projects attempts to simulate accurately the thermal conductivity of honeycomb 

panels in the normal direction. Due to the large empty space of the honeycomb core, the 

thermal radiation mode of heat transfer was modeled along with conduction. Using 

Newton’s Method to solve for a steady state model of heat moving through the honeycomb 

panel, the theoretical effective thermal conduction of the honeycomb panel was found, 

ranging from 1.03 to 1.07 Q/m/K for a heat input of 2.5 W to 11.8 W. An experimental model 

was designed to test the theoretical results, using a cold plate and a heat plate to find the 

effective conductance of six samples, each with different colored face sheets or core 

thicknesses. The experimental data revealed that the analytical results underestimated the 

conductance, showing a range of difference from 0.31% to 90%. Further analysis regarding 

the radiation effects is needed to reproduce accurately the effective thermal conductance of 

the honeycomb panel. 

I. Introduction 

or spacecraft and aircraft design, the mass is one of the biggest factors. Engineers find ways to reduce the mass 

in as many components as possible. One of the heaviest components is the structure. Engineers, in order to 

reduce mass, have used sandwiched composite structures, or more specifically honeycomb panels, to save weight 

while keeping the spacecraft structurally intact. Honeycomb panels consist of three parts: two face sheets and a 

honeycomb core. The honeycomb core is an arrangement of thin connected cells, usually hexagons, which are 

sandwiched between the two face sheets. An example is shown in Fig. 1. The core provides normal strength of the 

structure, and the face sheets provide tensile strength. This light-weight composite allows for large loading while 

keeping mass low. However, thermally the honeycomb panel is not as efficient. 

 In a spacecraft, electronic components are unable to 

get rid of heat by themselves because the vacuum 

environment disallows any convection or conduction 

into the environment. The only ways for the heat to 

move around away from the components are conducting 

to other parts of the spacecraft and radiating out of the 

spacecraft. The reasons honeycomb panels are 

structurally attractive also make it thermally inefficient. 

Because of the core, the honeycomb panel is mostly 

empty space. As such, when heat travels through the 

core, most of it is conducted through the thin walls of the 

cells, which have a very low area of conductance. This 

requires a large temperature difference between the two 

face sheets to move the heat through the core. Also, 

because of the empty space, radiation heat transfer is 

also a factor. Compared to conduction, radiation is a very poor way to move heat around. Also, view factors are 

needed to determine how much heat is radiated. If the heat transfer is too poor, components will overheat themselves 

and be unusable. Hence, knowing how much heat can be move through the panel is a necessary piece of information 

when designing thermal subsystems.  

 The purpose of this experiment is to determine a way to find the effective conductivity of an aluminum 

honeycomb panel when heat is moving through it. It is also determines how much heat is moved by radiation rather 
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Figure 1. A Piece of Honeycomb Panel 
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than conduction. This project uses a theoretical model using thermodynamics principles and numerical methods to 

determine the theoretical effective conductivity. The theoretical model is validated by using an experiment to find 

the practical effective conductivity. The theoretical model uses a method similar to the Swan and Pittman method to 

determine the theoretical effective conductance.
1
 For this experiment, the effective conductance across the 

honeycomb panel is not considered, as it is unpractical. 

II. Analysis 

Determining the effective thermal conductance is a complicated process. Because the core consists of hexagonal 

cells, radiation and conduction are the two modes which heat uses to move through the plate. Also, the view factor 

within the cells themselves determines how effective the radiative heat transfer is. To simplify the process, the 

following assumptions are used. First, the face sheets of the panel are extremely thin, so that the temperature 

difference through them is neglible. Second, there is no convection heat transfer inside the panel, as the experiment 

will take place inside a still environment. Third, the cell walls of the core are thin so that the temperature gradient 

across them is neglible.
1
 Fourth, the thermal properties of the materials used do not change with the temperature.
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Fifth, the thermal effects of the bonding agent between the core and the face sheets are considered neglible. Sixth, 

the heat transfer functions are nonlinear due to the thermal radiation mode. With these assumptions, a one-

dimensional analysis can be used to determine the effective thermal conductivity.  

To consider the effects of the radiation and view factors, a finite difference method is used. The panel is divided 

into seven layers. The first and last layers are top and bottom of the panel and encompasses the face sheets, while the 

layers in between are purely honeycomb core. Also, for view factor calculations, it is assumed that the hexagonal 

cells are cylinders for simplifications. 

Between each layer, conduction is possible. If there are m layers, then the heat transfer through conduction from 

layer m to layer m-1 can be calculated by, 
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where Qcond is the heat transferred through conduction, k is the conductivity of the material, Ahc is the touching 

surface area between the two layers, l is the heat path distance between two adjacent layers, and T is the temperature 

of the respective layer. The heat path between each layer is from the center to center of each layer. For the face 

sheets, however, this path is half of the length between the intermediate layers. This comes from the assumption that 

the heat conduction through face sheet is negligible because of the large area to path length ratio from the center of 

the face sheet to the surface of the face sheet. Also, the area of the heat conduction is calculated by multiplying the 

total area of the honey comb and the ratio of the honeycomb core to the bulk material. In the presence of air, another 

term is needed to find the heat transfer into the layer of air. This is calculated by, 
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where la is the length from the one face sheet to the other, Aa is the area of the hexagon cell, and ka is the 

conductivity of air. The heat conduction through the air compared to the conduction through the cell walls is small, 

but not neglible. However, since air has an effective transmission of one, radiation heat transfer can be done inside 

the honeycomb core. 

 In the honeycomb core, radiation is coupled with the conduction as a heat path. However, radiation is not a linear 

function of temperature difference like conduction, which makes the heat transfer between each layer to be a 

nonlinear function. To find how much heat is transferred through radiation, a single cell is analyzed. Assuming that 

the cell is a gray body, the heat transfer from surface m to surface n is, 
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where Qrad is the heat transferred through radiation, ε is the emissivity of the respective surface area, A is the surface 

area of the respective layer, σ is the Boltzmann-Stefan constant, F is the view factor from surface m to surface n, 

and T is temperature of the surface.
3
 The equation is applied from one layer to all the other layers, as each layer is 

visible to each other. Each radiation term is multiplied by the number cells in the honeycomb panel to calculate the 
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total heat transferred through radiation. Since the material used for the core is aluminum, the assumed emissivity is 

.09. However, since some of the samples have face sheets covered in black binder paint, the emissivity for those is .9 

instead. The view factor is how much the each surface is visible to each other.  Calculating the view factor requires 

the surface areas, the distance between them, and the angle between the two. These variables make each view factor 

calculated between each layer to be unique. The calculation of the view factor between two surface area can be 

calculated as, 

 

𝐹1−2 =
 cos 𝜃1 cos 𝜃2𝑑𝐴1𝑑𝐴2

𝜋𝑟2              (4) 

 

where θ1 and θ1 are the angles between the their respective surface normal and the ray between the two surface area, 

dA1 and dA2 is the differential area of the their respective surface area, and r is the distance between the center of the 

two surface areas. However, assumption of a cylindrical cell allows a simpler calculation, which has been calculated 

by Buschman and Pittman.
4
 Since the cylinders are separated into layers, three types of view factors needs to be 

calculated: the view factor between the top and bottom layers, which are disks, the view factor between the top or 

bottom layer with the sides of the cylinders at different layers, and the view factor between the sides of cylinders at 

different layers. The view factor from top or bottom to the other layers, it can be calculated as, 
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where H1 is the ratio of the distance between the top or bottom layer and the closest edge of the cylinder section to 

the radius of the cylinder, and H2 is the ratio of the distance between the closest edge of the cylinder section and the 

farthest edge to the radius of the cylinder. The view factor between each cylindrical section is calculated as, 
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where L1 is ratio of the height of one section to the radius of the cylinder, L2 is the ratio of the distance between the 

bottom of the one section and the bottom of the other section to the radius of the cylinder, and L3 is the ratio of the 

distance between the bottom of one section and the top of the other section to the ratio of the cylinder. For the 

radiation transfer between face sheets, the view factor is calculated as two parallel disks of the same radius, which 

is, 
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where R is the ratio of the radius of the disks to the distance between the disks. By combining the total heat transfer 

from radiation and conduction, the total heat transfer can be obtained. The following equations represent the total 

heat transfer for each layer: 
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where N is the total number of honeycomb cells inside the core, TC is the temperature of the cold plate, and Qin is the 

heat applied onto the face sheet. The last equation has a term which represents that cold plate absorbing all the heat 

from the lower layer without changing temperature or needing a large temperature difference. The resulting Jacobian 

matrix for the system of equations above can be found in the appendix. The equations are similar to one found in 

Swanson and Pittman paper.
1 

 Equation 7, 8, and 9 represents a nonlinear system of equation that can be used to solve numerically for a steady 

state. By setting the system to zero, the steady state temperature can be found. The system can then be solved using 

the Newton Method, where 

)()( 1

1 TfTJTT kk



             (11) 

 

where T is a matrix of the temperatures of the layers, k is the iterative step, J(T) is the Jacobian matrix of the system 

of equations, and f(T) is the system of equations. The Newton Method is a numerical method that finds 

approximations of the roots of the equations. The method finds the roots by approximating the function with a 

tangent line, then finding the x-intercept of that tangent. By doing the same thing over and over again until the 

solution converges, a close approximation of the roots can be found. So when the system of equation converges, the 

steady state temperatures are found, and the effective conductivity can be found. However, for a system of non-

linear functions, a Jacobian matrix is needed, which is the first order partial derivative of the system of equations. 

The theoretical effective thermal conductance can then be found with, 
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where t is the thickness of the honeycomb panel, T1, ss is the steady state temperature of the top layer, T1, ss is the 

steady state temperature of the bottom layer, and A is the area of the honeycomb panel. A code written in Matlab 

was used to solve the system of equations, using Matlab’s inbuilt Newton’s Method solver, fsolve. With this 

theoretical model, an experimental model is needed to verify it. 

III. Apparatus and Procedures 

To confirm the theoretical model, the following experiment was run. Six honeycomb samples were used, with 

the dimensions and configuration shown in Table 1. The samples were constructed from cores and face sheets 

obtained from AASC’s scrap materials. Only two properties were set as variables: height and whether the face 

sheets were bare or painted black. The areas of the cores slightly differ from each other, but are within acceptable 

bounds. The cores and face sheets were bonded together with Aeropoxy PR2032 laminating resin and PH3660 

hardener, and were pressed for about 24 hours. For the purpose of simplicity, the emissivity of the black paint is 

assumed to be .9, while the emissivity of the bare aluminum face sheets and the honeycomb core is .09. The material 

of the core is assumed to be 5056 aluminum alloy. 

Table 1. Configuration and Measurements of the Honeycomb Panel Samples. 

 
Measurements Uncertainty 

Samples Length (in) Width (in) Thickness (in) Length (in) Width (in) Thickness (in) 

Tall Bare 3.036 3.034 2.01 0.0000254 0.0000254 0.0000254 

Tall Black 2.79 2.999 2.01 0.0000254 0.0000254 0.0000254 

Med Bare 2.906 2.988 1.513 0.0000254 0.0000254 0.0000254 

Med Black 3.0162 2.97 1.51 0.0000254 0.0000254 0.0000254 

Short Bare 2.774 2.959 0.885 0.0000254 0.0000254 0.0000254 

Short Black 2.906 2.693 0.883 0.0000254 0.0000254 0.0000254 
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The samples were placed between a hot plate 

and a cold plate. The configuration can be seen 

in Fig. 2, with a picture of with Fig. 3. A hot 

plate was constructed by adhesively bonding a 

110 Vac 90 W flexible heater from McMaster-

Carr to a 58.06 cm
2
 piece of 0.3175 cm thick 

6061 aluminum sheet metal. The heater has a 

resistance of 138.1 Ω. The heater was powered 

by Powerstat Variable Autotransformer Type 

116B, where the output voltage could be change. 

The output voltage was tracked by a Fluke 17B 

multimeter. To find the current power output of 

the heater, the voltage output squared was 

divided by the resistance of the heater. The cold 

plate consists of a 0.3175 cm thick 6061 aluminum sheet metal with 15.24 cm long 6061 aluminum rods with 1.27 

diameters attached to it by screws. The plate was then inserted inside a Styrofoam box filled with ice water. Since 

ice does not change temperature as it melts, the ice keeps the plate’s temperature relatively the same. The box also 

makes sure that the samples do not lose heat due to convection from any cross winds. To reduce the amount of heat 

radiated out from the samples into the environment, MLI was constructed by using household aluminum foil. Four 

sheets of foil were bounded together on two edges, Four such piece were made, and arranged into a box. To measure 

the temperature, K-type thermocouples were used, one attached to the top of the hot plate, and another attached 

underneath the cold plate where the sample was placed. They were attached using electrical tape. The temperature 

was found using an Omega Model HH23 Microprocessor Thermostat. With these materials, testing can begin. 

The sample was placed inside the Styrofoam 

box in the middle of the cold plate. The MLI was 

place around the sample. The hot plate is then 

place on top of the sample. The box is then close 

with a lid. The power is then turned on to about 20 

Vac, and left on until the temperatures reading do 

not change over time. The temperatures of top and 

bottom were then recorded. Then the voltage is 

increased to 30 Vac, then to 40 Vac with the same 

process. The process was then repeated with each 

sample. To obtain the effective thermal 

conductivity, a similar equation to Eq. 12 can be 

used, 
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where Pin,exp is the heat input of the heater going through the core, tsamp is the thickness of the sample, Ttop is the 

temperature at the top of the heater, Tbot is the temperature at the bottom of cold plate, Ahc,samp is the area of the 

honeycomb core. For this experiment, the binding agent is ignored due to the relative thinness to the core. The heat 

input can be found by dividing the power of the heater by the area of the heater plate to obtain the power density, 

Pden, and multiplying that by the area of honeycomb core sample. The temperature difference between the 

thermocouples and the sample through the plates is small also, so it is neglected. It is also assumed that the 

honeycomb itself is insulating the middle of the panel so that only a neglible amount of heat is lost through the 

atmosphere. 

 

 

 

 

 

 
Figure 2. A Schematic of the Experimental Model 

 

 
Figure 3. An picture of the experimental configuration 
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IV. Results 

Once the experiment provided the data, they were compared to the effective conductance given by the theoretical 

model. The results of both are shown in Table 2, with Fig. 4 and Fig. 5 comparing the results of the theoretical 

model and the experimental results together. Table 3 shows the error calculated, using the analysis found in the 

appendix. 

 

 

V. Discussion 

For the theoretical model’s results to be compared 

to the experimental data, observations of the trends 

and numbers are needed. As can be seen in Fig. 4, the 

theoretical effective thermal conductance of the panel 

increases as the heat input increases. With the shorter 

panels, the increase is not as noticeable. The change in 

conductance is due to the radiative effect, because as 

the greater heat input means that a higher temperature 

difference is needed between the face sheets. 

However, with the higher temperature, the radiation 

mode will have a higher effect on the overall heat 

path. The radiation allows the heat to transfer to the 

other side of the panel more easily than would 

Table 2. The Effective Thermal Conduction of both the Theoretical Model and the Experimental Data 

 
Heat Input (W) keff,exp (Q/m/K) keff,th (Q/m/K) % Difference 

Samples 1 2 3 1 2 3 1 2 3 1 2 3 

Tall Bare 2.95 7.25 11.80 1.491 1.826 2.036 1.058 1.064 1.071 40.92 71.70 90.21 

Tall Black 2.69 6.16 10.62 1.470 1.611 1.877 1.062 1.067 1.074 38.44 50.99 74.72 

Med Bare 2.77 6.13 10.96 1.132 1.384 1.614 1.045 1.046 1.048 8.42 32.35 54.00 

Med Black 2.91 6.48 11.37 1.171 1.430 1.542 1.049 1.051 1.054 11.72 36.10 46.40 

Short Bare 2.68 5.80 10.31 0.861 1.030 1.040 1.036 1.036 1.036 -16.94 -0.63 0.31 

Short Black 2.51 5.67 9.78 0.852 1.028 1.100 1.041 1.041 1.042 -18.17 -1.22 5.59 

 

Table 3. Error of the Experimental Effective 

Conductance 

 
keff (W/m/K) 

Samples 1 2 3 

Tall Bare 0.143354 0.132086 0.161651 

Tall Black 0.140037 0.114791 0.148073 

Med Bare 0.109373 0.103241 0.1291 

Med Black 0.114278 0.106912 0.122728 

Short Bare 0.096467 0.08341 0.084258 

Short Black 0.096015 0.08253 0.089993 

 

 
Figure 4. Theoretical Effective Conductance with Increasing Heat Input 
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conduction, due to the increase in thickness. It is also noticeable that as the panel gets taller, the higher the general 

effective conductance, as well as the increase in conduction due to greater heat input. The increases are due to the 

increase in the surface which radiation can flow to. Since the general shape of the cells do not change and the cell 

walls are thin, radiation becomes more of factor as conduction become less effective in moving heat as if as there 

was no honeycomb core. Since the surface area which is conducted through the honeycomb core remains the same, 

the greater core thickness allows more heat to exchange due to radiation rather than conduction. With the black face 

sheets, however, the increase in emissivity of the face sheet has a small but noticeable effect on the conductivity, 

with about a .32-.54% increase. The highest increase comes from when the heat travelling through the panel is the 

greatest. This small difference indicates that changing the emissivity of the face sheets does not change the effects of 

radiation heat path except for the thicker cores. With these observations of the theoretical model, comparison with 

the experimental data is possible.  

When compared to the experimental model, the theoretical results do not quite match. Although the effective 

conductivity does increase with higher heat input, the increase in thickness causes a greater increase than what the 

theoretical analysis expected. In fact, experimental data shows that, for the medium and tall samples, the effective 

thermal conductivity ranges 8-90% more than the theoretical results. The short samples, however, were within a 

20% difference, sometimes being lower than the theoretical model. This larger difference indicates that thermal 

radiation is a bigger part of the effective thermal conductivity than initially thought. Also, the theoretical model 

needs to place a bigger emphasis on the role of the radiation heat path. However, simply just amplifying the 

radiation effect does will not have the desired effect, as that would just increase the conductivity of the short 

samples also. Possibly the best change would be calculating the view factors without using the assumption that the 

hexagonal cells can be modeled as cylinders. The more accurate view factor might be able to adjust the radiation 

factor enough to simulate accurately the effective thermal conductance. 

When comparing the bare and black face sheet samples, the trends found in the analytic model do not seem to 

match. For the most part, the black samples show a lower conductivity than the bare face. However, the difference is 

so small that they are within the errors found in Table 3. Higher precision temperature sensors might be needed to 

find the effective conductivity, but for practical purposes, there seems to be only a neglible difference between using 

bare face sheets and black face sheets. However, the thicker black face sheets diverge from this trend, showing a 

noticeably lower conductivity than the bare face sheets. The deviation might be due to human error, as these were 

the first samples to be tested, so the steady state temperatures might not have been properly recorded. 

VI. Conclusion 

The theoretical model did not accurately simulate the effective thermal conductivity of honeycomb panels. The 

model underestimated the effects radiation has on the conductivity, and requires a higher understanding of the 

process of calculating the view factors. However, the model did predict the general trends of the honeycomb panels. 

Higher heat input increases the effective thermal conductivity, though not enough to reduce the temperature 

difference. Thickening the core also increases the conductivity, much more than the using black paint on the face 

sheets. Also, painting black paint on the face sheets shows no practical effects on the conductivity. If the theoretical 

model were more accurate, then it could be use as a simple way to find the conductivity of the honeycomb panel by 

 
Figure 5. Experimental Effective Conductance with Increasing Heat Input 
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implementing it into a simple GUI program, asking for certain inputs like cell size, core density, and other variables. 

This program could be useful to students working on projects that require the knowledge of the temperature 

difference between two sides of a honeycomb panel, like on a spacecraft that uses honeycomb panels for structure. 
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Appendix 
Raw Data 

 

 
 

 
 

Absolute Errors 

 

 
 

 
 

Sample Calculations 

Givens: 

Vac=20.25 Vac, Ttop=22.7 C, Tbot=5.7, L=3.036 in=0.07711 m, W=3.034 in=0.0771 m, t=2.01 in =0.0511 m, 

Rheater=138.1 Ω, Aheater=9.269 in=0.00598 m 

 

𝑃 =
𝑉2

𝑅
= 2.969 𝑊 

Samples Vac Ttop [C] Tbot [C] dT [C] Vac Ttop [C] Tbot [C] dT [C] Vac Ttop [C] Tbot [C] dT [C]

Tall Bare 20.25 22.7 5.7 17 31.74 42.1 8 34.1 40.5 59.5 9.7 49.8

Tall Black 20.28 23.9 6.6 17.3 30.71 41.3 5.1 36.2 40.3 60.5 7 53.5

Med Bare 20.22 20.3 3.5 16.8 30.07 35.3 4.9 30.4 40.2 52.8 6.2 46.6

Med Black 20.4 20.1 3.6 16.5 30.44 34.8 4.7 30.1 40.3 55.6 6.7 48.9

Short Bare 20.43 16.7 3.5 13.2 30.07 28.4 4.5 23.9 40.1 49.7 7.6 42.1

Short Black 20.27 17 3.9 13.1 30.46 30 5.5 24.5 40 47.5 8 39.5

31 2

Rheater 138.1 olms (+/-) 0.9905

thplate 0.1205 in (+/-) 0.001

thheater 0.12625 in (+/-) 0.001

Lheater 3.041 in (+/-) 0.001

Wheater 3.048 in (+/-) 0.001

Aheater 9.268968 in2
(+/-) 0.0004645

Samples Area (m2) 1 2 3 1 2 3 1 2 3

Tall Bare 2.76912E-06 0.188166 0.454506 0.89267 31.48131 76.04294 149.328 0.187089 0.451914 0.88743

Tall Black 2.64265E-06 0.188711 0.425917 0.88474 31.57249 71.25954 148.0007 0.170439 0.384684 0.79895

Med Bare 2.68909E-06 0.187622 0.40862 0.88078 31.39026 68.36558 147.3393 0.175853 0.382996 0.82541

Med Black 2.73097E-06 0.190899 0.418576 0.88474 31.93852 70.03134 148.0007 0.184591 0.404752 0.85537

Short Bare 2.61674E-06 0.191448 0.40862 0.87684 32.03036 68.36558 146.6793 0.169627 0.362051 0.77678

Short Black 2.55609E-06 0.188529 0.419117 0.8729 31.54208 70.12195 146.0207 0.159259 0.354052 0.73727

Power (W) Power Density (W/m2) Heat Input (W)

Samples 1 2 3 1 2 3

Tall Bare 0.142990884 0.14553 0.147764 0.143354 0.132086 0.161651

Tall Black 0.130111519 0.131807 0.134049 0.140037 0.114791 0.148073

Med Bare 0.178400355 0.180804 0.183581 0.109373 0.103241 0.1291

Med Black 0.184400234 0.186794 0.190274 0.114278 0.106912 0.122728

Short Bare 0.287463292 0.290468 0.296409 0.096467 0.08341 0.084258

Short Black 0.274849175 0.278151 0.282812 0.096015 0.08253 0.089993

A*dT/t keff (W/m/K)
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𝑃𝑑𝑒𝑛 =
𝑃

𝐴ℎ𝑒𝑎𝑡𝑒𝑟
= 496.54 𝑊/𝑚2 

𝑃𝑖𝑛𝑝𝑢𝑡 = 𝑃𝑑𝑒𝑛 ∗ 𝑊 ∗ 𝐿 = 2.951 𝑊 

𝑘𝑒𝑓𝑓 =
𝑃𝑖𝑛𝑝𝑢𝑡

𝑊𝐿 𝑇𝑡𝑜𝑝 − 𝑇𝑏𝑜𝑡  
∗ 𝑡 = 1.491 

𝑄

𝑚𝐶
 

 

 

Error Analysis 

 

𝛥𝐴 =   𝛥𝑊𝐿 2 +  𝛥𝐿𝑊 2 

𝛥𝑃 =   
2𝛥𝑉𝑎𝑐 ∗ 𝑉𝑎𝑐
𝑅ℎ𝑒𝑎𝑡𝑒𝑟

 
2

+  
𝛥𝑅ℎ𝑒𝑎𝑡 𝑒𝑟 ∗ 𝑉𝑎𝑐

2

𝑅ℎ𝑒𝑎𝑡𝑒𝑟
2  

2

 

 

𝛥𝑃𝑑𝑒𝑛 = 𝑃𝑑𝑒𝑛  
𝛥𝐴ℎ𝑒𝑎𝑡𝑒𝑟
𝐴ℎ𝑒𝑎𝑡𝑒𝑟

 
2

+  
𝛥𝑃

𝑃
 

2

 

𝛥𝑃𝑖𝑛 ,𝑒𝑥𝑝 = 𝑃𝑖𝑛 ,𝑒𝑥𝑝  
𝛥𝑃𝑑𝑒𝑛
𝑃𝑑𝑒𝑛

 
2

+  
𝛥𝐴ℎ𝑐
𝐴ℎ𝑐

 
2

 

𝛥𝑘𝑒𝑓𝑓 ,𝑒𝑥𝑝 = 𝑘𝑒𝑓𝑓 ,𝑒𝑥𝑝  
𝛥𝑡𝑠𝑎𝑚𝑝

𝑡𝑠𝑎𝑚𝑝
 

2

+  
𝛥𝐴ℎ𝑐
𝐴ℎ𝑐

 
2

+  
𝛥𝑇𝑡𝑜𝑝

𝑇𝑡𝑜𝑝
 

2

+  
𝛥𝑇𝑏𝑜𝑡
𝑇𝑏𝑜𝑡

 
2

+  
𝛥𝑃𝑖𝑛 ,𝑒𝑥𝑝

𝑃𝑖𝑛 ,𝑒𝑥𝑝

 

2

 

 

Matlab Code 

 

main.m 
clc; clear; close all 

  

%Daniel Nguyen 

%Senior Project Code 

%Analysis and Testing of Heat Transfer through Honeycomb Panels 

  

  

intm=.0254; %Conversion from inches to meters 

  

CS=1/4*intm; %Cell Size (m) 

H=[2 1.5 3/4]*intm; %Core thickness (m) 

  

RHO_HC=1.6*16.01846; %Core density (kg/m^3) 

  

for z=1:length(CS) 

    for v=1:length(H); 

  

        khc=138;            %Core Bulk Material Thermal Conductivity (Q/m/K) 

        cs=CS(z);           %Input Cell size 

        h=H(v);             %Input Thickness 

        th_f=.0070*intm;    %Thickness of Cell Walls (m) 

        th_fs=.015*intm;    %Thickness of Face Sheets (m) 

        rho_hc_m=2700;      %Density of Honeycomb Core Bulk Material (m) 

        rho_hc=RHO_HC(z);   %Input Core Density 

        totA=(3*intm)^2;    %Area simulated (m^3) 

  

        %Length of hexagon side 

        l=cs/sqrt(3); 

        %maximal diameter of a hexgon 

        t=2*l; 
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        r=t/2; 

  

%         rad_control=0; 

        ncells=floor(totA/t/cs); %Number of cells 

  

  

        hex_area=l^2*3*sqrt(3)/2; %Area of Cells Top/Bottom 

        cond_area=totA*(rho_hc/rho_hc_m); %Conduction area 

  

        ele=5; %Number of Intermediate Area 

  

        sec=2+ele; %Total Number of layers 

  

        hsec=h/sec; %Thickness divided by layers 

  

        hc_rad_a=2*pi*r*hsec; %Radiation area 

  

        FVdtd=disktdisk(r,h); %View factor from top to botom 

         

        view=ele-1; 

        for i=1:ele 

     %View factor from layer to another with sides 

            FVcyl(i,1)=sep_cyl(hsec,hsec*i,h/sec*(i+1),r) 

 

     %View factor from one layer to top or bottom 

            FVcyltdi(i,1)=base_cyl(hsec,hsec*(i-1),r); 

        end 

  

  

        FVhc=zeros(ele,ele); %View factor place holder 

         

        %Insert View factor into matrix 

        for i=1:ele 

            for j=1:ele 

                if j==i 

                    FVhc(i,j)=0; 

                else 

                    FVhc(i,j)=FVcyl(abs(j-i)); 

                end 

            end 

        end 

         

        global FV A1 Aa L K Qin radareas EM nm cells cold kair 

        kair=.0275; %Thermal Conduction of air (Q/m/K) 

  

        cells=ncells; 

        K=khc; 

        L=h; 

        nm=ele; 

         

        %Input Emissivity of layers for bare faces 

        em1=ones(sec,1)*.09; 

        em1(1)=.09; 

        em1(sec)=.09; 

         

        %Input Emissivity of layers for black faces 

        em2=ones(sec,1)*.09; 

        em2(1)=.9; 

        em2(sec)=.9; 

  

        EM=em1; %Emmissivity of Bare Face Sheet Samples 

  

  



 
 

 

 

12 

        FV1=[FVcyltdi,FVhc,flipud(FVcyltdi)]; 

  

        FV=[0,FVcyltdi',FVdtd;FV1;FVdtd,flipud(FVcyltdi'),0]; 

     

  

        fs_cond=cond_area/hsec*khc; 

        dcfs_cond=cond_area/hsec*khc*2; 

  

        cond=ones(sec,1)*fs_cond; 

        A1=cond_area; 

        Aa=totA-A1; 

         

         

        %Heat Input 

        if v==1 

            qin=[2.951  7.249   11.803 

            2.688   6.165   10.616]; 

        elseif v==2 

            qin=[2.773  6.134   10.962 

            2.912   6.485   11.366]; 

        elseif v==3 

            qin=[2.676  5.798   10.311 

            2.512   5.672   9.782]; 

        end 

  

        areas=ones(sec,1)*hc_rad_a; 

        areas(1)=hex_area; 

        areas(sec)=hex_area; 

  

        radareas=areas; 

        cold=273; %Cold Plate temperature 

         

        %Calculate Effective conductance with bare face sheet samples 

        for p=1:length(qin) 

            Qin=qin(1,p); %Heat Input 

            T0=[287 284 283 282 280 277 274]; 

            options=optimset('Display','iter'); 

            %Solve using Newton-Ralphson Method using HC_ss 

            [T,Tval,exitflag]=fsolve(@HC_ss,T0,options); 

     %Effective Conductance of Bare Face Sheet Samples (Q/m/K) 

            keff(v,p)=Qin*h/totA/(T(1)-T(7));  

  

            Thot(z,v,p)=T(1); 

            Tcold(z,v,p)=T(7); 

        end 

  

  

        EM=em2; %Emmissivty of Black Face Sheet Samples 

        %Calculate Effective conductance with black face sheet samples         

        for p=1:length(qin) 

            Qin=qin(2,p); %Heat Input 

            T0=[287 284 283 282 280 277 274]; 

            options=optimset('Display','iter'); 

            %Solve using Newton-Ralphson Method using HC_ss 

            [T2,Tval,exitflag]=fsolve(@HC_ss,T0,options); 

 %Effective Conductance of Black Face sheet Samples (Q/m/K) 

            keff2(v,p)=Qin*h/totA/(T2(1)-T2(7));  

 

            Thot2(z,v,p)=T(1); 

            Tcold2(z,v,p)=T(7); 

        end 

    end 

end 
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%Each row represents different thickness, while each column represents 

%different heat input. 

display(keff) 

display(keff2) 

 

 

sep_cyl.m 
function FV = sep_cyl(l1,l2,l3,r) 

%View factor from one section of the cylinder to another 

  

L1=l1/r; 

L2=l2/r; 

L3=l3/r; 

  

tm1=2*L2*(L3-L2); 

tm2=(L3-L1)*xl(L3-L1); 

tm3=(L2-L1)*xl(L2-L1); 

tm4=L3*xl(L3); 

tm5=L2*xl(L2); 

  

FV=1/(4*(L3-L2))*(tm1+tm2-tm3-tm4+tm5); 

 

end 

 

 

disktdisk.m 
function FV = disktdisk(r,a) 

%View Factor from bottom to top of cylinder 

  

R=r/a; 

X=(2*R^2+1)/R^2; 

  

FV=.5*(X-(X^2-5)^.5); 

  

end 

 

base_cyl.m 
function FV = base_cyl(h1,h2,r) 

%View factor from section of the cylinder to the base 

  

H1=h1/r; 

H2=h2/r; 

  

tm1=(1+H2/H1)*(4+(H1+H2)^2)^.5; 

tm2=H1+2*H2; 

tm3=H2/H1*(4+H2^2)^.5; 

  

FV=.25*(tm1-tm2-tm3); 

  

end 

 

HC_ss.m 

function F = HC_ss(T) 

     

    %Heat Transfer Equation for Layer 1 to Layer 7 

    global FV Qin A1 L K radareas EM nm cells cold kair Aa 

    bol=5.67e-8; %Boltzman-Stefan Constant 

  

    %Layer 1 

    eq1=Qin-nm*K*A1*2/L*(T(1)-T(2))-kair*Aa/L*(T(1)-

T(7))+cells*bol*EM(1)*radareas(1)*((T(2)^4-T(1)^4)... 
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        *EM(1)*FV(1,2)+(T(3)^4-T(1)^4)*EM(3)*FV(1,3)+(T(4)^4-T(1)^4)*EM(4)*FV(1,4)... 

        +(T(5)^4-T(1)^4)*EM(5)*FV(1,5)+(T(6)^4-T(1)^4)*EM(6)*FV(1,6)+(T(7)^4-... 

        T(1)^4)*EM(7)*FV(1,7)); 

     

    %Layer 2 

    eq2=nm*K*A1*2/L*(T(1)-T(2))-nm*K*A1/L*(T(2)-

T(3))+cells*bol*EM(2)*radareas(2)*((T(1)^4-T(2)^4)... 

        *EM(1)*FV(2,1)+(T(3)^4-T(2)^4)*EM(3)*FV(2,3)+(T(4)^4-T(2)^4)*EM(4)*FV(2,4)... 

        +(T(5)^4-T(2)^4)*EM(5)*FV(2,5)+(T(6)^4-T(2)^4)*EM(6)*FV(2,6)+(T(7)^4-... 

        T(2)^4)*EM(7)*FV(2,7)); 

     

    %Layer 3 

    eq3=nm*K*A1/L*(T(2)-T(3))-nm*K*A1/L*(T(3)-

T(4))+bol*cells*EM(3)*radareas(3)*((T(1)^4-T(3)^4)... 

        *EM(1)*FV(3,1)+(T(2)^4-T(3)^4)*EM(2)*FV(3,2)+(T(4)^4-T(3)^4)*EM(4)*FV(3,4)... 

        +(T(5)^4-T(3)^4)*EM(5)*FV(3,5)+(T(6)^4-T(3)^4)*EM(6)*FV(3,6)+(T(7)^4-... 

        T(3)^4)*EM(7)*FV(3,7)); 

  

    %Layer 4 

    eq4=nm*K*A1/L*(T(3)-T(4))-nm*K*A1/L*(T(4)-

T(5))+bol*cells*EM(4)*radareas(4)*((T(1)^4-T(4)^4)... 

        *EM(1)*FV(4,1)+(T(2)^4-T(4)^4)*EM(2)*FV(4,2)+(T(3)^4-T(4)^4)*EM(3)*FV(4,3)... 

        +(T(5)^4-T(4)^4)*EM(5)*FV(4,5)+(T(6)^4-T(4)^4)*EM(6)*FV(4,6)+(T(7)^4-... 

        T(4)^4)*EM(7)*FV(4,7)); 

     

    %Layer 5 

    eq5=nm*K*A1/L*(T(4)-T(5))-nm*K*A1/L*(T(5)-

T(6))+bol*cells*EM(5)*radareas(5)*((T(1)^4-T(5)^4)... 

        *EM(1)*FV(5,1)+(T(2)^4-T(5)^4)*EM(2)*FV(5,2)+(T(4)^4-T(5)^4)*EM(4)*FV(5,4)... 

        +(T(4)^4-T(5)^4)*EM(4)*FV(5,4)+(T(6)^4-T(5)^4)*EM(6)*FV(5,6)+(T(7)^4-... 

        T(5)^4)*EM(7)*FV(5,7)); 

  

    %Layer 6 

    eq6=nm*K*A1*2/L*(T(5)-T(6))-nm*K*A1/L*(T(6)-

T(7))+bol*cells*EM(6)*radareas(6)*((T(1)^4-T(6)^4)... 

        *EM(1)*FV(6,1)+(T(2)^4-T(6)^4)*EM(2)*FV(6,2)+(T(4)^4-T(6)^4)*EM(4)*FV(6,4)... 

        +(T(5)^4-T(6)^4)*EM(5)*FV(6,5)+(T(3)^4-T(6)^4)*EM(4)*FV(6,4)+(T(7)^4-... 

        T(6)^4)*EM(7)*FV(6,7)); 

  

    %Layer 7 

    eq7=-(T(7)-cold)*1000+nm*K*A1*2/L*(T(6)-T(7))+kair*Aa/L*(T(1)-

T(7))+bol*cells*EM(7)*radareas(7)*((T(1)^4-T(7)^4)... 

        *EM(1)*FV(7,1)+(T(2)^4-T(7)^4)*EM(2)*FV(7,2)+(T(4)^4-T(7)^4)*EM(4)*FV(7,4)... 

        +(T(5)^4-T(7)^4)*EM(5)*FV(7,5)+(T(6)^4-T(7)^4)*EM(6)*FV(7,6)+(T(3)^4-... 

        T(7)^4)*EM(3)*FV(7,3)); 

  

F=[eq1;eq2;eq3;eq4;eq5;eq6;eq7]; 

end 
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