High-Magnetic-Field Studies of Orthorhombic and Rhombohedral \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) Compounds

M. Schieber, R. B. Frankel, N. A. Blum, and S. Foner

National Magnet Laboratory,† Massachusetts Institute of Technology, Cambridge, Massachusetts

Mössbauer and magnetic susceptibility experiments at temperatures down to 4.2°K and in external fields up to 140 kOe show orthorhombic \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) (0.6\(<x<1.0\)) to be a collinear highly anisotropic ferrimagnet; the material is also piezoelectric and has magnetic properties similar to those of the isomorphous compound \(\text{GaFe}_2\text{O}_4 \). Rhombohedral \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) is paramagnetic above 80°K, and at 4.2°K exhibits a Mössbauer spectrum characteristic of a nonunique hyperfine field; the application of an external magnetic field produces a spectrum with an enhanced \(\Delta m=0 \) line which suggests a canted spin structure similar to that in the high-temperature phase \((T>260°K)\) of \(\alpha\text{Fe}_2\text{O}_3 \).

We report high magnetic field Mössbauer and magnetization measurements on \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) compounds having orthorhombic and rhombohedral crystal structures. The orthorhombic form is of interest because it is isomorphic with piezoelectric, magnetoelectric and ferrimagnetic \(\text{GaFe}_2\text{O}_4 \).

The crystal structures of \(\text{AlFe}_2\text{O}_4 \) and \(\text{GaFe}_2\text{O}_4 \) have been recently reinvestigated.1,2 The orthorhombic phase is stable for an appreciable range of stoichiometric composition; i.e., \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) and \(\text{Ga}_{2-x}\text{Fe}_x\text{O}_3 \) have been prepared for values of about 0.6\(<x<1.0\) and 0.8\(<x<1.2\), respectively. Polycrystalline \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) samples were prepared by heating the oxides at 1390°C for 48 h in oxygen. For values of \(x>1.0 \) we were unable to prepare an orthorhombic phase. Samples with \(x<0.6 \) formed an orthorhombic phase, but mixed with small amounts of \(\text{Al}_2\text{O}_3 \). The unit cell dimensions of orthorhombic \(\text{AlFe}_2\text{O}_4 \) with \(x=1.0 \) correspond very closely to those given by Dayal et al.: \(a=8.60, b=9.25, \) and \(c=4.97 \) Å. The orthorhombic compound with \(x=0.6 \) has a much smaller unit cell, the low-index lines yield the values: \(a=7.55, b=8.20, \) and \(c=4.69 \) Å. The rather large amount of \(\text{Fe}^{3+} \) incorporated in the \(\alpha\text{Al}_2\text{O}_3 \) structure is explained by the thermal history.

![Graph](image-url)
Fig. 1. Magnetization of \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \) polycrystalline samples vs applied magnetic field.

![Graph](image-url)
Fig. 2. Mössbauer absorption spectra at 4.2°K; orthorhombic \(\text{AlFe}_2\text{O}_4 \), (a) \(H=0 \), (b) \(H=75 \) kOe; rhombohedral \(\text{Al}_{2-x}\text{Fe}_x\text{O}_3 \), (c) \(H=0\), (d) \(H=75 \) kOe.
of the rhombohedral sample. This compound was grown as a single crystal from a molar mixture composed of 35% Na$_2$CO$_3$, 54% Al$_2$O$_3$, and 11% Fe$_2$O$_3$, heated to 1400°C and slowly cooled at a rate of 2°C/h to 1100°C.

As in the case of Ga$_{2-x}$Fe$_x$O$_3$, the orthorhombic Al$_{2-x}$Fe$_x$O$_3$ crystals are piezoelectric. The orthorhombic Al$_{2-x}$Fe$_x$O$_3$ Mössbauer spectra at 4.2°K show an ordered spin system composed of at least two magnetically nonequivalent sites with oppositely directed spins. An external field causes the middle hyperfine lines ($\Delta m=0$) to vanish, while the outer lines ($\Delta m=\pm 1$) split into two well-resolved components similar to those reported previously5 for Ga$_{2-x}$Fe$_x$O$_3$.

Magnetization measurements of orthorhombic Al$_{2-x}$Fe$_x$O$_3$ with $x=0.6$ and 1.0 polycrystalline material are not saturated at 4.2°K and 140 kOe. It should be mentioned that magnetic saturation has not been achieved on polycrystalline GaFeO$_3$ materials at 78°K and 140 kOe. The lack of saturation is due to the extremely high magnetic anisotropy of these compounds. This was shown earlier3 by Mössbauer and magnetic moment measurements on GaFeO$_3$ single crystals. Saturation was just achieved at about 80 kOe along principal axes at 78°K. The magnetization curves are shown in Fig. 1.

Rhombohedral Al$_{1.6}$Fe$_{0.4}$O$_3$ is paramagnetic above 80°K with a quadrupole split Mössbauer doublet, and at 4.2°K shows a poorly defined magnetic hyperfine spectrum suggesting a distribution of hyperfine fields or short-range magnetic order. Upon the application of an external magnetic field the spectrum is somewhat sharpened and the intensity of the $\Delta m=0$ lines increases with the applied external field. This is shown in Fig. 2, where the spectra are qualitatively similar to those of a canted spin system such as αFe$_2$O$_3$ above the Morin transition. The field-dependence of the magnetic moment at 4.2°K up to 140 kOe is shown in Fig. 1.

ACKNOWLEDGMENT

We wish to thank Dr. F. P. Glasser of the University of Aberdeen, Scotland, for kindly furnishing the stoichiometric Al$_{1.6}$Fe$_{1.4}$O$_3$ sample, and also thank Mr. E. J. McNiff, Jr. for assistance with the magnetization measurements.