MATLAB Based Algorithm to Find the REMAINING STATE OF CHARGE for Li-ion Batteries Ishrat Khatoon^{1,2}, Bhaskar Saha³, Kai Goebel⁴ ¹San Jose State University, ĆA, ²Peace Terrace Academy, Fremont, CA ³Mission Critical Technologies, Inc., CA, ⁴NASA Ames Research Center, CA #### Introduction Li-ion batteries are the main component of many machines. It is critical to the well being of the overall system. To maintain the health and estimate remaining state of charge (RSOC)of the battery four applications need to be taken care of: charge control, protection, authentication, and fuel gauging. - Charge control provides power conversion and controls charges. - •Li-ion cell resides in battery pack to protect from different conditions. - •Authenticate or validate the battery attached to host system. - •Fuel gauge function tracks the remaining state of charge(RSOC). ### **Li-ion Batteries** Positive Electrode Li-lon cell has a three layer structure. A positive electrode plate, a negative electrode plate and a separator layer. Lithium battery uses lithium cobalt oxide as positive electrode cathode A high crystallized special carbon as negative electrode - #### Goal •Implement in MATLAB the battery prognostics algorithm as described in "Impedance Track Based Fuel Gauging." Validate the algorithm using the battery testbed. Edit the battery prognostics website to present the material in a more educationally accessible format. ## Experimentation The RSOC of the battery can be determined from direct measurements. Most relations between battery variables and the SoC depends on the temperature (T). Where SoC is state of charge, and the variables such as battery voltage (V), battery impedance (Z), and the voltage relaxation time (τ) RSOC determination using Kalman filter. This method of fuel gauge not only accurately gauges the battery but control the charge and authenticates the battery pack. # **Battery Fuel Gauge** The two components of battery fuel gauge accuracy depend on analog measurement and battery modeling. #### Result Rate and temperature dependency on battery discharge capacity The RSOC of batteries will help make quick decisions using battery fuel gauge and Kalman filter in MATLAB algorithms. # **Acknowledgment & References** This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations express in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. I would like to thank and acknowledge my mentor Bhaskar Saha and his team, Maricela Verma, Jill Johnsen, Greg Stoehr, Bryan Rebar, and all the staff of CESAME for their full support and cooperation. Fundaro, Peter; Impedance Track Based Fuel Gauging, Texas Instruments(2007) V. Pop et al., Battery Management Systems. Accurate State-of-Charge Indication for Battery- Powered Applications. (2008) Saha, B., Goebel, K., & Christophersen, J., Comparison of prognostic Algorithms for estimating remaining useful life of batteries. (2009) www.nasa.gov