
JSish

Ryan Grasell

June 2015

1 Introduction

For my senior project, I implemented Professor Keen’s JSish spec in C++. JSish

is a subset of Javascript with support for execution from the command line and

files.

1.1 Educational Goals

I chose this project because I wanted to reinforce my programing language skills,

learn C++, and gain a deeper understanding of garbage collection.

I quickly grew familiar with C++. My prior experience with both C and Java

was a good enough introduction to let me hit the ground running. The biggest

hurdle for me was the lack of garbage collection built into C++. I understood

the principles of manual memory management, but I needed to grow accustomed

to manually freeing memory in a complex, object oriented environment.

The most educational part of this project was writing the garbage collector.

It was both an illuminating experience because I had never written one before,

and very practical because it gave me insight to how modern languages run.

1



1.2 Testing

I set up a testing environment with 2 tiers: unit and integration tests.

Unit testing covers each class individually. Each expression, statement,

value, and feature are covered independently. Unit tests are run with the Catch

C/C++ testing library.

Integration tests cover the behaviour of the project as a whole. The inte-

gration tests run the interpreter against sample JSish files, and compare the

outputs to known correct output.

The combination of unit and integration tests gives very good test coverage

to the project.

2 Performance Analysis

One of the draws of C++ is the potential for speed. Using C++ instead of a

more specialized language like SML adds complexity to development, and should

only be used if there are benefits.

I profiled 2 use cases for JSish. Small, responsive programs and longer

running computational programs. To benchmark these use cases, I measured

startup time for the interpreter, and duration of the program respectively.

Each benchmark was run by an SML implementation of JSish, and various

builds of the C++ implementation (each compiled with a different gcc optimiza-

tion level).

2.1 Startup Time

I tested startup time by running each interpreter against a test file whose only

statement was

print ’’Hello, World!’’;

2



This test was designed to measure only how long it took the interpreter to

begin executing code.

The results of this benchmark do not lend themselves well to graphical rep-

resentation. The SML implementation took 1070ms to start up, while all

variations of the C++ implementation took only 2ms.

The SML implementation is not suitable for small command line programs.

However, the C++ implementation starts up fast enough to not interrupt a

user’s workflow.

2.2 Computational Performance

The other class of benchmarks I ran cover long-running computational problems.

The reported numbers are the combined running times of all benchmarks.

Figure 1: Running time for benchmark suite

GCC (with optimization) produced very good results. Especially with -O3

optimizations, the C++ implementation of JSish overtakes SML significantly.

3



2.3 Conclusion

Both benchmarks show that the C++ implementation is significantly faster

than SML. The extended development time for the C++ implementation is

worthwhile, as long as one has access to a good optimizing C++ compiler.

3 Optimization

The main draw of C++ as the implementation language of JSish was speed.

The architecture of my C++ JSish implementation requires a high degree of

object allocations and deallocations.

I measured memory allocation performance by running the computational

benchmarks and recording function call durations with Callgrind.

A large percent of time in my computational benchmark was spent in mem-

ory allocation and deallocaiton.

To mitigate the heavy cost of memory allocation, I implemented a free list

for all of the garbage-collectable classes in the project. This significantly cut

down on memory management time:

Figure 2: Percent of time spent in memory management

4



GCC’s optimizations were able to cut down the running time for the overall

program, but they did not seem to speed up memory management. This made

it even more critical to implement a good optimization.

The free list did significantly speed up runtime for JSish. This is definitely

a case where C++’s power gave good results.

4 Reflection

Over the course of this project, I discovered the pros and cons of the different

methods and tools I used. At the beginning of the project, I made choices based

on their educational value more than their strict effectiveness to my project. If

I were to redo this project, there are a few decisions I would make differently:

4.1 Language

C++ was a good choice for this project. First of all, it was a great learning

experience for me. My previous exposure to C++ was very small, and I picked

up a good working knowledge of the language. C++ was well suited to the prob-

lem; it was very performant as discussed in the ‘performance’ section. However,

it also posed a few challenges:

4.1.1 STL

C++’s Standard Template Library formed the backbone of my data structures.

I found it powerful and fast, but cumbersome to work with. STL containers

were often verbose. For example, checking for membership in a set required:

Other tests for set membership, like the [] operator, would automatically

create, insert, and return a new member for the set if it didn’t already exist.

To STL’s credit, that behaviour was well documented. Personally, I found in

counterintuitive.

5



Figure 3: Testing for Set Membership

4.1.2 Portability

I specifically targeted Linux and Mac OS for this project. Even though I specif-

ically used only POSIX and cross-platform libraries, I experienced some trouble

with compatibility.

The GNU Readline library is supposed to be supported on both Mac OS

and Linux. I found that to be mostly true, despite a few graphical glitches. The

workarounds were straightforwards, but had I chosen to also target Windows,

using Readline would have been much more difficult.

Overall, C++ gave me decent portability inside the POSIX family of oper-

ating systems. Porting to Windows would have been an ordeal; either I would

have to convert my system calls to Window’s, or the user would have to install

a POSIX emulation layer.

This problem could be mitigated with better software design in my project.

However, time constraints forced me to focus only on POSIX compatibility.

Using a managed language may have given me that cross-platform compatibility

for no extra development time.

4.1.3 Conclusion

C++ performed well for this project. However, a managed language could have

solved the problems I ran into. My preference for Java may just be personal

bias, but I would have been much more productive using Java’s Collections

API. Java’s portability would definitely have simplified the process of porting

6



my project to other platforms.

C++’s saving grace is the raw speed and the flexibility it offered to the

developer. C++ made it simply to implement the free list without having to do

major code architecture changes.

I would have liked to implement JSish in Java to explore the performance

and practicality of the language, but again I hit a time constraint. I believe

Java could offer solutions without many drawbacks, especially with its built-in

garbage collection.

4.2 Code Architecture

This project has many moving parts, and good execution required modular

design. I met the modular design requirements by breaking the code up into

several packages:

Figure 4: Project Architecture

This design worked well during development. Near the end of development,

I was able to add Readline support easily. Other additions, like a garbage col-

lection statement, were also simple to add and required minimal code changed.

Adding the ’gc’ statement took only 10 lines of code.

The design I settled on has at least one major flaw: code for execution and

garbage collection for each statement and expression is kept in the class files.

This made development simple at first, but as I added features the files

became unwieldy. Files got too large to easily read through, and it was hard

to make changes to interfaces. Because code was so spread out, changes had to

7



be made in dozens of files. The observer pattern would have kept kept each file

to a minimal size and localized changes. On a development team of more than

one person, the observer pattern would also have made collaboration easier.

Refactoring this code to the observer pattern would be a simple, but possibly

time consuming endeavor.

4.3 Build System

I used a makefile to build JSish. It definitely had its benefits: I was able to

use the same build system on both Mac OS and Linux and it performed both

incremental and multithreaded builds. The makefile also builds and runs the

test cases.

However, it was difficult to put together (although that was a one time effort)

and it often had to rebuild the project from scratch when large changes were

made.

Makefiles also have portability issues. My simple makefile expects libraries

and binaries to be in standard locations. Any more complicated configurations

would require Autotools or a similar system. Autotools is overly complicated

for a project of this scope, but there do not seem to be any better systems to

work with makefiles.

4.3.1 Alternative Build Systems

If I were to start this project again, I would choose to use a dependency-

managing ”next generation” build system.

Maven and Gradle have automatic dependency resolution that would greatly

simplify configuration of the build environment. For example, a Maven build

could specify the testing library by simply adding an entry to the configuration

XML file. Using the makefile build, I had to add all of the testing library code

8



to the project and manually point to it in the makefile.

Maven has a native build plugin called NAR. NAR supports building native

code, handling environment specific details, and running test cases. If I were to

continue development on this project, my first step would be to transition the

build to Maven/NAR.

5 Conclusion

This was my first attempt at a C++ project, and I dove deep enough into

the language to write the parser and interpreter. Implementing the JSish in

a general purpose language was good practice, and the skills could easily be

useful in the future. Implementing my own garbage collector gave me a good

overview of garbage collector internals. In the future, most code I write will run

in a garbage-collected environment so this experience will help me create better

performing products.

JSish was an excellent educational experience. I set out to reinforce my

programing language skills, learn C++, and gain a deeper understanding of

garbage collection. I consider this project a success on all three counts.

9


