

Comparing Baseball Players Using
Expected Runs in Shiny

Spencer Rodrigues

Statistics Department

California Polytechnic State University, San Luis Obispo

June, 2017

© 2017 Spencer Rodrigues

Table of Contents

Introduction 3

Expected Runs 4

New R Functions 6

Batting App 6

Pitching App 8

Updating code 10

Conclusion 12

Bibliography 14

R/Shiny Code 15

2

Introduction

The game of baseball is not just a game of physical capability; it also consists of a large

portion of intellect. According to the great Yogi Berra, "Baseball is ninety percent mental. The

other half is physical." I have played baseball for seventeen years of my life, as both a pitcher

and field player, and there is a lot of truth to Yogi’s statement. There is never a resting moment

in the game, in the mental aspect. There are so many decisions that have to be made before

and during every play, from which pitch should be thrown to where the ball should be thrown

once you field it. With all these decisions that needed to be made, I wanted to further investigate

and then create an interface to compare players, which could lead to in game decisions for a

team.

 This project used portions of code from VJ Asaro’s Senior Project, with some touch ups.

VJ’s code used Markov chains and a batter’s data to calculate the expected runs from all the

base states. A base state is a combination of which bases are occupied, and how many outs

there are in the inning. For example, if we are in the (13,0) base state, there is a runner on 1st

and 3rd with nobody out. I developed it by fixing some errors that he had, adding expected run

calculations for pitchers, and making these into Shiny apps. One of the ideas for this project was

to assess which player would be better in a given situation. For batting, if it is late in the game,

we might want to put a pinch hitter into the game. With this analysis we would be able to make a

better decision than just looking at batting average. For pitching, we would be able to decide

which reliever we would want to put into the game. With the expected run calculations we will be

able to use a more complex analysis to aid coaches in decisions. It can also allow fans to

compare their favorite players to any other players in the same year, helping them in fantasy

sports, or just to see who is better.

3

Expected Runs
When computing the expected runs for a half inning we will need to calculate the

expected runs for a single at bat. To do this we will need the probabilities of a specific player’s

batting outcomes. This is calculated by the following table. The only value that will be exactly

the same for every batter is the probability of an error. This is because we are using the

proportion of plays where an error occurs in the MLB, according to baseball reference.

Table 1: Formulas for calculating probabilities

With these probabilities we calculate the probability of scoring 4,3,2 and 1 runs in a base

state, and then we sum the row for the expected runs in one at bat. For example, if there were

runners on 1st and 3rd, the calculation for expected runs in that state is

 3*P(HR) + 2*P(3B) + 1*[P(1B) + P(2B) + P(SF) + P(E)] + 0*[P(BB,HBP) + P(Out)]. This type of

computation will be done for all 24 base states. The table below shows the calculation of one

element of eRuns, the vector of expected runs for a single at bat from each base state.

4

For the calculation of expected runs for an entire half inning we need to use a transition

matrix. Each element in the transition matrix, P, contains the probability of moving from one

base state to another, using the left column as your current state and the top row as the state

you are moving to.

Table 2: Transition matrix, color coded corresponding to outs occurring on play

In the matrix P above, the yellow squares represent the states that have no outs

occurring in the at-bat, the blue squares mean 1 out occurs and the green square means that 2

outs occur on the play. Once the red column is reached, it means that there are 3 outs and that

the half inning has ended.

We need to solve this matrix to further progress our calculations for expected runs in a

half inning. The equation we use for this is E = (I-Q)-1 where Q is a 24x24 submatrix of P, with

the absorbing three out states are removed (row and column) and I is the 24x24 identity matrix.

Matrix E is then a 24x24 matrix whose values represent the expected number of visits to each

state, starting from each state until the 3rd out occurs. The number of plate appearances before

the absorbing state are calculated by the row sums of E. Our expected runs for the half inning is

then calculated by taking our vector of expected runs, eRuns, and multiplying it by E.

5

New R Functions

There were three new R functions that had to be written to be able to do all these

calculations. The first one is called prob.batting. In this function, we take all of the batting

statistics for the player in one season and convert them all to the proportion of their at bats that

occurred in that result. The proportions that it outputs are in Table 1.

The next new function that was created was trans.batting. In this function, we are

making the transition matrix, shown in Table 2. The transition matrix contains the probability of

moving from the current base state (shown as the row) to every other possible base state

(shown as the columns). This is computed individually for each batter, using their batting

statistics from the prob.batting function. Once this is run we will have a 25x25 matrix full of

probabilities to help us calculate the expected runs in the app. This function was written by VJ

Asaro, but there were some small errors that occurred when changing the order of his code. I

had a difficult time trying to fix them, but eventually I realized that his function was in need of

another user input to account for iterating through the team data.

The last new function is Mat.Exp.Runs. This function requires the R package Plotrix.

This function creates an 8x3 matrix of expected runs and each cell of the matrix is shaded

depending on the value. The lighter a color is, the more runs we would expect to score from that

state.

Shiny Batting App

When using the application, the first thing you will need to do is think of two batters that

you want to compare. Once you have done that, select their respective teams under each

Teams: pull down bar, and then select the player from the first team in the First Player: pull

down bar then select the player from the second team in the Second Player: pull down bar.

6

The players that are available to select are players that had at least ten at bats in the season. If

they played for more than one team in a season, the batting statistics in their expected runs

calculation will only include their batting with that particular team.

Once the players have been selected, the expected runs matrices will appear to the

right. Since there are eight different base states and three possible out states, we will be able to

make our 24x1 expected runs vector into an 8x3 expected runs matrix. Each base state’s

expected runs is the amount of runs we would expect them to score for the rest of that inning

from that state, given that our selected player has all the at bats.

7

Under these matrices are two graphical components to aid the user in comparing the two

players. The top graph has the two players’ 24 base state graphs overlaid on each other. The

first player’s line is red and the second player’s line is blue. The bottom graph shows the

difference between the two players at the eight base states, using different colors to represent

the different out states. If the value is negative at a particular state, it means that the second

player has a higher number of expected runs in that state than the first player, and vice-versa if

the difference is positive.

Shiny Pitching App

When using the application, the first thing you will need to do is think of two pitchers that

you want to compare. Once you have done that, select their respective teams under each

Teams: pull down bar, and then select the player from the first team in the First Player: pull

down bar and the player from the second team in the Second Player: pull down bar. The

8

players that are available to select are players that had at least three innings pitched in the

season. If they played for multiple teams during the season, their expected runs allowed

calculation will only include their pitching with that particular team.

Once the players have been selected, the expected runs allowed matrices will appear to

the right. Since there are eight different base states and three possible out states, we will be

able to make our 24x1 expected runs vector into an 8x3 expected runs matrix. Each state’s

expected runs allowed is the amount of runs we would expect them to give up for the rest of that

inning from that state.

9

Under these matrices are two graphical components to aid the user in comparing the two

players. The top graph has the two players’ 24 base state graphs overlaid on each other. The

first player’s line is red and the second will be blue. The bottom graph shows the differences

between the two players at the eight base states, using different colors to represent the different

out states. If the value is negative at a particular state, it means that the second player has a

higher expected runs allowed in that state than the first player, and vice-versa if it is positive.

Updating the Apps

I am hoping that there will be someone to update the data on these apps at the end of

each season. The steps to update the data for a new season are quite simple. For the batting

data, you will need to go to http://www.baseball-reference.com/. You will see the following at the

top of the web page. Hover your mouse over Seasons and then the select the Players: Batting

10

option. Once that has been done you will be on the page for that seasons batters. Find the

section labeled Player Standard Batting, click on the Share & More Option, and then click on

Get as Excel Workbook (experimental). Once the file is downloaded, you will need to save

the file as ALL_Batting_2017.csv, or change the year to whatever year it is. Make sure that this

file is saved as a CSV file and not a Web Page.

For the pitching data, we will use the same site, except when we hover of the Seasons

option, we will select Players: Pitching. Once there, find this bar.

Hover your mouse over the Pitching option, and then inside those options choose

Batting Against. Find the section labeled Player Batting Against, click on the Share & More

Option, then click on Get as Excel Workbook (experimental). Once the file is downloaded,

you will need to save the file as ALL_PITCHERS_2017.csv, or change the year to whatever

year it is. Make sure that the file is saved as a CSV file and not a Web Page.

There will be no need to clean any of the data that is obtained because the app will do it.

In the batting app, only the batters with more than 10 at bats for the season will be kept in the

11

data. For the pitching app, pitchers with more than 3 innings pitched will be kept, and the rest

will be removed. This is because some position players, like the center fielder, might come into

the game to pitch if their team is losing by a lot. In our pitching data we only want to include

actual pitchers to aid in decisions that can be made by the comparisons. Once the data is

cleaned to the two specifications above, the data will be subset into teams, creating 2 new data

sets for each team, 1 for pitchers and 1 for batters. Figuring out how to do this took me a decent

amount of time. I originally downloaded the data for each team, one by one. This took a while to

be completed. It wasn’t until later that I noticed I could download all of the players into one data

set and then have the app separate that data into the teams.

Conclusion

Baseball’s great complexity means that these apps will not be perfect. There are specific

calculations that are always changing and there are many other factors that just can’t be

accounted for in this formula. There are still some touch-ups that can be added to further

improve these applications. The ability to compare players from one year to the next would be

the first important step. Once that is possible it would be incredible to add all the seasons data

from baseball reference, so that we could compare the greats of the past to those of the

present. After the seasons of the past are added, the application should be updated at the end

of every season to allow for comparisons with recent players.The next step would be to account

for more diverse base-running decisions, to allow for a more accurate Expected Runs. One of

the ways that this can be done is to include the probability that a runner scores from first on a

double. Right now, there is only code in trans.batting that accounts for a base runner scoring

from second on a single. The rest of the base running assumptions are that the base runners

only advance the same amount of bases as the batter. For example, if there is a runner on first,

12

and the batter hits a single, there will always be a batter on second and third. Another way to

make the base running decisions more diverse would be to include the probability of multi-base

errors. The only type of error that we include in the model is an error that lets the runners

advance one base, but sometimes an error occurs where the base runner is able to advance

two bases.

These applications have a variety of uses. These include: deciding which relief pitcher to

put into the game, which batter you should put in as a pinch hitter, or deciding if you should bunt

or try to get a hit. There are probably many other uses for these applications that I have not

thought of, which I find very interesting and exciting. If this gets posted on the Cal Poly Statistics

Department Shiny App page I would be interested to hear what the users want to get from their

comparisons.

13

Bibliography

"Yogi Berra Quotes." Baseball Almanac. N.p., n.d. Web. 14 June 2017.

Sports Reference LLC. Baseball-Reference.com - Major League Statistics and

Information. http://www.baseball-reference.com/. 10 June 2017

Asaro, VJ. “Markov League Baseball.” Senior project, California Polytechnic State

University San Luis Obispo, 2016. DigitalCommons@Calpoly. Web. 14 June.
2017.

14

R/Shiny Batting Code

setwd("C:\\Users\\srodri40\\Desktop\\")

if (!require("shiny")) install.packages("shiny")
if (!require("xtable")) install.packages("xtable")
if (!require("ggplot2")) install.packages("ggplot2")
if (!require("plotrix")) install.packages("plotrix")
library(shiny)
library(ggplot2)
library(xtable)
library(plotrix)

data3=read.csv("ALL_Batting_2016.csv",header=T,as.is=T)[6:29]
data2=read.csv("ALL_Batting_2016.csv",header=T,as.is=T)[4]
data1=read.csv("ALL_Batting_2016.csv",header=T,as.is=T)[2]

data=cbind(data1,data2,data3)

#selecting all batters with more than 10
data= data[data$AB >=10,]

#Reading in teams, data name is selection name
Arizona_Diamondbacks=na.omit(data[data$Tm=="ARI",])
Atlanta_Braves=na.omit(data[data$Tm=="ATL",])
Baltimore_Orioles=na.omit(data[data$Tm=="BAL",])
Boston_Red_Sox=na.omit(data[data$Tm=="BOS",])
Chicago_Cubs=na.omit(data[data$Tm=="CHC",])
Chicago_White_Sox=na.omit(data[data$Tm=="CHW",])
Cincinnati_Reds=na.omit(data[data$Tm=="CIN",])
Cleveland_Indians=na.omit(data[data$Tm=="CLE",])
Colorado_Rockies=na.omit(data[data$Tm=="COL",])
Detroit_Tigers=na.omit(data[data$Tm=="DET",])
Houston_Astros=na.omit(data[data$Tm=="HOU",])
Kansas_City_Royals=na.omit(data[data$Tm=="KCR",])
Los_Angeles_Angels_of_Anaheim=na.omit(data[data$Tm=="LAA",])
Los_Angeles_Dodgers=na.omit(data[data$Tm=="LAD",])
Miami_Marlins=na.omit(data[data$Tm=="MIA",])
Milwaukee_Brewers=na.omit(data[data$Tm=="MIL",])
Minnesota_Twins=na.omit(data[data$Tm=="MIN",])
New_York_Mets=na.omit(data[data$Tm=="NYM",])
New_York_Yankees=na.omit(data[data$Tm=="NYY",])
Oakland_Athletics=na.omit(data[data$Tm=="OAK",])
Philadelphia_Phillies=na.omit(data[data$Tm=="PHI",])
Pittsburgh_Pirates=na.omit(data[data$Tm=="PIT",])
San_Diego_Padres=na.omit(data[data$Tm=="SDP",])

15

San_Francisco_Giants=na.omit(data[data$Tm=="SFG",])
Seattle_Mariners=na.omit(data[data$Tm=="SEA",])
St_Louis_Cardinals=na.omit(data[data$Tm=="STL",])
Tampa_Bay_Rays=na.omit(data[data$Tm=="TBR",])
Texas_Rangers=na.omit(data[data$Tm=="TEX",])
Toronto_Blue_Jays=na.omit(data[data$Tm=="TOR",])
Washington_Nationals=na.omit(data[data$Tm=="WSN",])

ui = bootstrapPage(
 titlePanel("MLB Player Batting 2016"),sidebarPanel(
 selectInput('team1', 'Teams:',

c('Arizona_Diamondbacks','Atlanta_Braves','Baltimore_Orioles','Boston_Red_Sox','Chicago_Cu
bs','Chicago_White_Sox','Cincinnati_Reds','Cleveland_Indians','Colorado_Rockies','Detroit_Tige
rs','Houston_Astros','Kansas_City_Royals','Los_Angeles_Angels_of_Anaheim','Los_Angeles_D
odgers','Miami_Marlins','Milwaukee_Brewers','Minnesota_Twins','New_York_Mets','New_York_
Yankees','Oakland_Athletics','Philadelphia_Phillies','Pittsburgh_Pirates','San_Diego_Padres','Sa
n_Francisco_Giants','Seattle_Mariners','St_Louis_Cardinals','Tampa_Bay_Rays','Texas_Ranger
s','Toronto_Blue_Jays','Washington_Nationals'),selected='Arizona_Diamondbacks'),

 selectInput('player1', 'First player:', 'Nick Ahmed'),
 selectInput('team2', 'Teams:',

c('Arizona_Diamondbacks','Atlanta_Braves','Baltimore_Orioles','Boston_Red_Sox','Chicago_Cu
bs','Chicago_White_Sox','Cincinnati_Reds','Cleveland_Indians','Colorado_Rockies','Detroit_Tige
rs','Houston_Astros','Kansas_City_Royals','Los_Angeles_Angels_of_Anaheim','Los_Angeles_D
odgers','Miami_Marlins','Milwaukee_Brewers','Minnesota_Twins','New_York_Mets','New_York_
Yankees','Oakland_Athletics','Philadelphia_Phillies','Pittsburgh_Pirates','San_Diego_Padres','Sa
n_Francisco_Giants','Seattle_Mariners','St_Louis_Cardinals','Tampa_Bay_Rays','Texas_Ranger
s','Toronto_Blue_Jays','Washington_Nationals'),selected='Atlanta_Braves'),

 selectInput('player2', 'Second player:', 'Erick Aybar#'),
 h5("A * at the end of a players name means they bat left-handed"),
 h5("A # at the end of a players name means they are a switch hitter"),
 h5("Neither means they bat right-handed")),
 mainPanel(splitLayout(cellWidths = c("50%", "50%"), plotOutput("plot1"),

plotOutput("plot2")),
fluidRow(column(12,plotOutput("plot3"))),fluidRow(column(12,plotOutput("plot4"))))

)

server = function(input, output, session){
 #updates player selection based on team choice
 observeEvent(input$team1,{
 updateSelectInput(session, "player1",choices=as.character(get(input$team1)[,1]))
 })
 observeEvent(input$team2,{
 updateSelectInput(session, "player2",choices=as.character(get(input$team2)[,1]))
 })

16

 prob.batting= function(data){
 data$P.BB.HBP.= (data$BB+ data$HBP)/data$PA
 data$P.1B.= (data$H- data$X2B-data$X3B- data$HR)/data$PA
 data$P.2B.= data$X2B/data$PA
 data$P.3B.= data$X3B/data$PA
 data$P.HR.= data$HR/data$PA
 data$P.DP.= data$GDP/data$PA
 data$P.E.= (data$AB-data$SO)*(1-0.984)/data$PA
 data$P.Out.=

1-(data$P.BB.HBP.+data$P.1B.+data$P.2B.+data$P.3B.+data$P.HR.+data$P.E.)
 data$P.1Out.= data$P.Out.-data$P.DP.
 data$P.SF.= data$SF/data$PA

 # Extrabase is the probability of advancing from 2nd base to home on a single
 data$P.Att.2nd.0out. = 0.4673
 data$P.Att.2nd.1out. = 0.5927
 data$P.Att.2nd.2out. = 0.9079
 data$P.Safe.2nd.= 0.96

 prob= data[, c(1,27:40)]

 return(prob)
 }

 # End of prob function

 # trans function to compute the transition matrix and expected runs matrix
 trans.batting= function(prob,i){
 A0=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.[i])

+prob$P.E.[i],0,0,

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.

[i])+prob$P.E.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

17

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 A1=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.[i])

+prob$P.E.[i],0,0,

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.

[i])+prob$P.E.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 A2=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.[i])

+prob$P.E.[i],0,0,

18

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.

[i])+prob$P.E.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 # creating B1 matrix: trans from 0 outs to 1 out
 B1= matrix(data=c(prob$P.Out.[i],0,0,0,0,0,0,0,
 0,prob$P.1Out.[i],0,0,0,0,0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.Out.[i],0,0,0,0,0,
 prob$P.SF.[i],0,0,prob$P.Out.[i]- prob$P.SF.[i],0,0,0,0,

0,0,0,0,prob$P.1Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out[i]*(1-prob$P.Safe.2nd.[i]),0,0,0,
 0,prob$P.SF.[i],0,0,0,prob$P.1Out.[i]- prob$P.SF.[i],0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.SF.[i],0,0,0,prob$P.Out.[i]
- prob$P.SF.[i],0,

0,0,0,0,prob$P.SF.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),0,0,prob$P.1
Out.[i]- prob$P.SF.[i]),

 nrow=8, ncol=8, byrow=TRUE)

 # creating B2 matrix: trans from 1 out to 2 outs
 B2= matrix(data=c(prob$P.Out.[i],0,0,0,0,0,0,0,
 0,prob$P.1Out.[i],0,0,0,0,0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.Out.[i],0,0,0,0,0,
 prob$P.SF.[i],0,0,prob$P.Out.[i]- prob$P.SF.[i],0,0,0,0,

0,0,0,0,prob$P.1Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out[i]*(1-prob$P.Safe.2nd.[i]),0,0,0,
 0,prob$P.SF.[i],0,0,0,prob$P.1Out.[i]- prob$P.SF.[i],0,0,

19

0,prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.SF.[i],0,0,0,prob$P.Out.[i]
- prob$P.SF.[i],0,

0,0,0,0,prob$P.SF.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),0,0,prob$P.1
Out.[i]- prob$P.SF.[i]),

 nrow=8, ncol=8, byrow=TRUE)

 # creating C2 matrix: trans from 0 outs to 2 outs
 C2= matrix(data=c(0,0,0,0,0,0,0,0,
 prob$P.DP.[i],0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,prob$P.DP.[i],0,0,0,0,
 prob$P.DP.[i],0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,prob$P.DP.[i],0,0,0,0),
 nrow=8, ncol=8, byrow=TRUE)

 # absorbing states
 D1= matrix(0, nrow=8, ncol=1)
 D2= matrix(data=c(0,prob$P.DP.[i],0,0,prob$P.DP.[i],prob$P.DP.[i],0,prob$P.DP.[i]),

nrow=8, ncol=1)
 D3= matrix(c(prob$P.Out.[i],
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i])),
 nrow=8, ncol=1)
 D4= matrix(1, nrow=1, ncol=1)

 abs0= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)
 abs1= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)
 abs2= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)

 # zero matrices
 zero= matrix(0, nrow=8, ncol=8)

 # creating overall transisition matrix by combining above matrices
 trans=

matrix(c(rbind(A0,zero,zero,abs0),rbind(B1,A1,zero,abs1),rbind(C2,B2,A2,abs2),
rbind(D1,D2,D3,D4)),nrow=25, ncol=25,

 dimnames= list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)",

"(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)",

20

"(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0
)","(12,0)","(13,0)","(23,0)",

"(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)",

"(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(x,3)")))

 R1=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P
.Safe.2nd.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.0
out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0,

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.0out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0),

 ncol=5,byrow=TRUE)

 R2=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P
.Safe.2nd.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.1
out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0,

21

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.1out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0),

 ncol=5,byrow=TRUE)

 R3=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P
.Safe.2nd.[i]),0,

 0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.2
out.[i])+prob$P.E.[i]),0,

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.2out.[i])+prob$P.E.[i]),0),

 ncol=5,byrow=TRUE)

 Rscore= matrix(rbind(R1,R2,R3),nrow=24,ncol=5)
 eruns=matrix(rowSums(Rscore), nrow=24, dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)"),c(
"Exp Runs for Half-Inn")))

 list(trans,eruns)
 }
 # End of trans function

 # Expected runs matrix function team 1
 Mat.Exp = function(data){
 require(plotrix)
 color2D.matplot(data, show.values=3, axes=FALSE, xlab=paste0(input$player1,"

Expected Runs"), ylab="Base(s) Occupied")
 axis(side=2, at=7.5:0.5, labels=c("None","1","2","3","12","13","23","123"), las=1)
 axis(side=3, at=0.5:2.5, labels=c("0","1","2"))
 mtext(text="", side=2, line=2, cex.lab=1)

22

 mtext(text="Outs", side=3, line=2, cex.lab=1)
 }

 # Expected runs matrix function team 2
 Mat.Exp.Runs = function(data){
 require(plotrix)
 color2D.matplot(data, show.values=3, axes=FALSE, xlab=paste0(input$player2,"

Expected Runs"), ylab="Base(s) Occupied")
 axis(side=2, at=7.5:0.5, labels=c("None","1","2","3","12","13","23","123"), las=1)
 axis(side=3, at=0.5:2.5, labels=c("0","1","2"))
 mtext(text="", side=2, line=2, cex.lab=1)
 mtext(text="Outs", side=3, line=2, cex.lab=1)
 }

 output$plot1 <- renderPlot({
 prob.batting1=prob.batting(get(input$team1))
 nplayers.batting1 = nrow(prob.batting1)
 trans.store.batting1=array(NaN,c(25,25,nplayers.batting1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting1=array(NaN,c(24,5,nplayers.batting1))
 Exp.runs.store.batting1=matrix(NaN,nrow=24,ncol=nplayers.batting1)

 # player by player expected runs calculation
 for (i in 1: nplayers.batting1){
 temp.batting=trans.batting(prob.batting1,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.batting1[,,i]=temp.trans.batting
 R.store.batting1[,,i]=temp.eruns.batting
 Exp.runs.store.batting1[,i]=Nine.inn
 }

23

 compare.batting1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.batting1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.batting1$Exp.runs.162.batting= Exp.runs.store.batting1[1,]*162
 compare.batting1$Percent.change=

round(((compare.batting1$Exp.runs.162.batting-get(input$team1)$R)/compare.batting1$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.batting1[,index1]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 Mat.Exp(player1.eruns)
 })

 output$plot2 <- renderPlot({
 prob.batting2=prob.batting(get(input$team2))
 nplayers.batting2 = nrow(prob.batting2)
 trans.store.batting2=array(NaN,c(25,25,nplayers.batting2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting2=array(NaN,c(24,5,nplayers.batting2))
 Exp.runs.store.batting2=matrix(NaN,nrow=24,ncol=nplayers.batting2)

 # player by player expected runs calculation
 for (i in 1: nplayers.batting2){
 temp.batting=trans.batting(prob.batting2,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.batting2[,,i]=temp.trans.batting
 R.store.batting2[,,i]=temp.eruns.batting
 Exp.runs.store.batting2[,i]=Nine.inn

24

 }

 compare.batting2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.batting2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.batting2$Exp.runs.162.batting= Exp.runs.store.batting2[1,]*162
 compare.batting2$Percent.change=

round(((compare.batting2$Exp.runs.162.batting-get(input$team2)$R)/compare.batting2$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.batting2[,index2]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 Mat.Exp.Runs(player2.eruns)
 })

 output$plot3 <- renderPlot({

 prob.batting1=prob.batting(get(input$team1))
 nplayers.batting1 = nrow(prob.batting1)
 trans.store.batting1=array(NaN,c(25,25,nplayers.batting1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting1=array(NaN,c(24,5,nplayers.batting1))
 Exp.runs.store.batting1=matrix(NaN,nrow=24,ncol=nplayers.batting1)

 for (i in 1: nplayers.batting1){
 temp.batting=trans.batting(prob.batting1,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.batting1[,,i]=temp.trans.batting

25

 R.store.batting1[,,i]=temp.eruns.batting
 Exp.runs.store.batting1[,i]=Nine.inn

 }

 compare.batting1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.batting1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.batting1$Exp.runs.162.batting= Exp.runs.store.batting1[1,]*162
 compare.batting1$Percent.change=

round(((compare.batting1$Exp.runs.162.batting-get(input$team1)$R)/compare.batting1$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.batting1[,index1]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p1.eruns=as.vector(player1.eruns)

 prob.batting2=prob.batting(get(input$team2))
 nplayers.batting2 = nrow(prob.batting2)
 trans.store.batting2=array(NaN,c(25,25,nplayers.batting2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting2=array(NaN,c(24,5,nplayers.batting2))
 Exp.runs.store.batting2=matrix(NaN,nrow=24,ncol=nplayers.batting2)

 for (i in 1: nplayers.batting2){
 temp.batting=trans.batting(prob.batting2,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

26

 trans.store.batting2[,,i]=temp.trans.batting
 R.store.batting2[,,i]=temp.eruns.batting
 Exp.runs.store.batting2[,i]=Nine.inn

 }

 compare.batting2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.batting2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.batting2$Exp.runs.162.batting= Exp.runs.store.batting2[1,]*162
 compare.batting2$Percent.change=

round(((compare.batting2$Exp.runs.162.batting-get(input$team2)$R)/compare.batting2$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.batting2[,index2]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p2.eruns=as.vector(player2.eruns)

 #creating expected runs plot
 plot(c(1,24),c(min(p1.eruns,p2.eruns),max(p1.eruns,p2.eruns)),xaxt="n",

type="n",xlab="Base State",ylab="Expected Runs",las=3,main="Expected Runs for each Base
State")

 lines(p1.eruns,col="red")
 lines(p2.eruns,col="blue")

lablist.x=as.vector(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)",
"(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,
2)","(123,2)"))

 axis(1, at=1:24,labels=F)
 text(x = seq(.6, 23.6, by=1), par("usr")[3]-.15, labels = lablist.x, srt = 85, pos =1, xpd =

T)

legend("topright",c(input$player1,input$player2),lty=c(1,1),lwd=c(2.5,2.5),col=c("red","blue"))
 })

 output$plot4 <- renderPlot({

 prob.batting1=prob.batting(get(input$team1))
 nplayers.batting1 = nrow(prob.batting1)
 trans.store.batting1=array(NaN,c(25,25,nplayers.batting1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"

27

,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting1=array(NaN,c(24,5,nplayers.batting1))
 Exp.runs.store.batting1=matrix(NaN,nrow=24,ncol=nplayers.batting1)

 for (i in 1: nplayers.batting1){
 temp.batting=trans.batting(prob.batting1,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.batting1[,,i]=temp.trans.batting
 R.store.batting1[,,i]=temp.eruns.batting
 Exp.runs.store.batting1[,i]=Nine.inn

 }

 compare.batting1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.batting1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.batting1$Exp.runs.162.batting= Exp.runs.store.batting1[1,]*162
 compare.batting1$Percent.change=

round(((compare.batting1$Exp.runs.162.batting-get(input$team1)$R)/compare.batting1$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.batting1[,index1]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p1.eruns=as.vector(player1.eruns)

 prob.batting2=prob.batting(get(input$team2))
 nplayers.batting2 = nrow(prob.batting2)
 trans.store.batting2=array(NaN,c(25,25,nplayers.batting2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(

28

12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.batting2=array(NaN,c(24,5,nplayers.batting2))
 Exp.runs.store.batting2=matrix(NaN,nrow=24,ncol=nplayers.batting2)

 for (i in 1: nplayers.batting2){
 temp.batting=trans.batting(prob.batting2,i)
 temp.trans.batting=temp.batting[[1]]
 temp.eruns.batting=temp.batting[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.batting[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.batting
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.batting2[,,i]=temp.trans.batting
 R.store.batting2[,,i]=temp.eruns.batting
 Exp.runs.store.batting2[,i]=Nine.inn

 }

 compare.batting2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.batting2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.batting2$Exp.runs.162.batting= Exp.runs.store.batting2[1,]*162
 compare.batting2$Percent.change=

round(((compare.batting2$Exp.runs.162.batting-get(input$team2)$R)/compare.batting2$Exp.run
s.162.batting)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.batting2[,index2]/9),nrow=8,ncol=3,dimnames=list(c(
"0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p2.eruns=as.vector(player2.eruns)

 #creating the difference in each base state between players
 diff=NULL
 for(i in 1:24){
 diff[i]=p1.eruns[i]-p2.eruns[i]

29

 }

 #creating expected runs plot
 plot(c(1,9.25),c(min(diff),max(diff)),xaxt="n", type="n",xlab="Base

State",ylab="Difference in Expected Runs",las=3,main=c("Difference in Expected Runs for each
Base State", "(if positive then first player has higher expected runs for that state)"))

 abline(h=0,v=0,col="gray60")
 lines(diff[1:8],col="red")
 lines(diff[9:16],col="blue")
 lines(diff[17:24],col="green")
 axis(1, at=1:8,labels=c(0,1,2,3,12,13,23,123))
 legend("topright",c("0 Outs","1 Out","2

Outs"),lty=c(1,1),lwd=c(2.5,2.5),col=c("red","blue","green"))
 })

}

shinyApp(ui=ui, server=server)

30

R/Shiny Pitching Code

setwd("C:\\Users\\srodri40\\Desktop\\")

if (!require("shiny")) install.packages("shiny")
if (!require("xtable")) install.packages("xtable")
if (!require("ggplot2")) install.packages("ggplot2")
if (!require("plotrix")) install.packages("plotrix")
library(shiny)
library(ggplot2)
library(xtable)
library(plotrix)

#Reading in teams, data name is selection name
data3=read.csv("ALL_PITCHERS_2016.csv",header=T,as.is=T)[7:29]
data2=read.csv("ALL_PITCHERS_2016.csv",header=T,as.is=T)[4:5]
data1=read.csv("ALL_PITCHERS_2016.csv",header=T,as.is=T)[2]

data=cbind(data1,data2,data3)
length(data)
#selecting all pitchers with more than 3 innings pitched
data= data[data$IP >=3,]

#Reading in teams, data name is selection name
Arizona_Diamondbacks=na.omit(data[data$Tm=="ARI",])
Atlanta_Braves=na.omit(data[data$Tm=="ATL",])
Baltimore_Orioles=na.omit(data[data$Tm=="BAL",])
Boston_Red_Sox=na.omit(data[data$Tm=="BOS",])
Chicago_Cubs=na.omit(data[data$Tm=="CHC",])
Chicago_White_Sox=na.omit(data[data$Tm=="CHW",])
Cincinnati_Reds=na.omit(data[data$Tm=="CIN",])
Cleveland_Indians=na.omit(data[data$Tm=="CLE",])
Colorado_Rockies=na.omit(data[data$Tm=="COL",])
Detroit_Tigers=na.omit(data[data$Tm=="DET",])
Houston_Astros=na.omit(data[data$Tm=="HOU",])
Kansas_City_Royals=na.omit(data[data$Tm=="KCR",])
Los_Angeles_Angels_of_Anaheim=na.omit(data[data$Tm=="LAA",])
Los_Angeles_Dodgers=na.omit(data[data$Tm=="LAD",])
Miami_Marlins=na.omit(data[data$Tm=="MIA",])
Milwaukee_Brewers=na.omit(data[data$Tm=="MIL",])
Minnesota_Twins=na.omit(data[data$Tm=="MIN",])
New_York_Mets=na.omit(data[data$Tm=="NYM",])
New_York_Yankees=na.omit(data[data$Tm=="NYY",])
Oakland_Athletics=na.omit(data[data$Tm=="OAK",])
Philadelphia_Phillies=na.omit(data[data$Tm=="PHI",])
Pittsburgh_Pirates=na.omit(data[data$Tm=="PIT",])
San_Diego_Padres=na.omit(data[data$Tm=="SDP",])

31

San_Francisco_Giants=na.omit(data[data$Tm=="SFG",])
Seattle_Mariners=na.omit(data[data$Tm=="SEA",])
St_Louis_Cardinals=na.omit(data[data$Tm=="STL",])
Tampa_Bay_Rays=na.omit(data[data$Tm=="TBR",])
Texas_Rangers=na.omit(data[data$Tm=="TEX",])
Toronto_Blue_Jays=na.omit(data[data$Tm=="TOR",])
Washington_Nationals=na.omit(data[data$Tm=="WSN",])

ui = bootstrapPage(
 titlePanel("MLB Player Pitching 2016"),sidebarPanel(
 selectInput('team1', 'Teams:',

c('Arizona_Diamondbacks','Atlanta_Braves','Baltimore_Orioles','Boston_Red_Sox','Chicago_Cu
bs','Chicago_White_Sox','Cincinnati_Reds','Cleveland_Indians','Colorado_Rockies','Detroit_Tige
rs','Houston_Astros','Kansas_City_Royals','Los_Angeles_Angels_of_Anaheim','Los_Angeles_D
odgers','Miami_Marlins','Milwaukee_Brewers','Minnesota_Twins','New_York_Mets','New_York_
Yankees','Oakland_Athletics','Philadelphia_Phillies','Pittsburgh_Pirates','San_Diego_Padres','Sa
n_Francisco_Giants','Seattle_Mariners','St_Louis_Cardinals','Tampa_Bay_Rays','Texas_Ranger
s','Toronto_Blue_Jays','Washington_Nationals'),selected='Arizona_Diamondbacks'),

 selectInput('player1', 'First player:', 'Jake Barrett'),
 selectInput('team2', 'Teams:',

c('Arizona_Diamondbacks','Atlanta_Braves','Baltimore_Orioles','Boston_Red_Sox','Chicago_Cu
bs','Chicago_White_Sox','Cincinnati_Reds','Cleveland_Indians','Colorado_Rockies','Detroit_Tige
rs','Houston_Astros','Kansas_City_Royals','Los_Angeles_Angels_of_Anaheim','Los_Angeles_D
odgers','Miami_Marlins','Milwaukee_Brewers','Minnesota_Twins','New_York_Mets','New_York_
Yankees','Oakland_Athletics','Philadelphia_Phillies','Pittsburgh_Pirates','San_Diego_Padres','Sa
n_Francisco_Giants','Seattle_Mariners','St_Louis_Cardinals','Tampa_Bay_Rays','Texas_Ranger
s','Toronto_Blue_Jays','Washington_Nationals'),selected='Atlanta_Braves'),

 selectInput('player2', 'Second player:', 'Dario Alvarez*'),
 h5("A * at the end of a players name means they pitch left-handed"),
 h5("A # at the end of a players name means they are a switch pitcher"),
 h5("Neither means they pitch right-handed")),
 mainPanel(splitLayout(cellWidths = c("50%", "50%"), plotOutput("plot1"),

plotOutput("plot2")),
fluidRow(column(12,plotOutput("plot3"))),fluidRow(column(12,plotOutput("plot4"))))

)

server = function(input, output, session){
 #updates player selection based on team choice
 observeEvent(input$team1,{
 updateSelectInput(session, "player1",choices=as.character(get(input$team1)[,1]))
 })
 observeEvent(input$team2,{
 updateSelectInput(session, "player2",choices=as.character(get(input$team2)[,1]))

32

 })

 prob.pitching= function(data){
 data$P.BB.HBP.= (data$BB+ data$HBP)/data$PA
 data$P.1B.= (data$H- data$X2B-data$X3B- data$HR)/data$PA
 data$P.2B.= data$X2B/data$PA
 data$P.3B.= data$X3B/data$PA
 data$P.HR.= data$HR/data$PA
 data$P.DP.= data$GDP/data$PA
 data$P.E.= (data$AB-data$SO)*(1-0.984)/data$PA
 data$P.Out.=

1-(data$P.BB.HBP.+data$P.1B.+data$P.2B.+data$P.3B.+data$P.HR.+data$P.E.)
 data$P.1Out.= data$P.Out.-data$P.DP.
 data$P.SF.= data$SF/data$PA

 # Extrabase is the probability of advancing from 2nd base to home on a single
 data$P.Att.2nd.0out. = 0.4673
 data$P.Att.2nd.1out. = 0.5927
 data$P.Att.2nd.2out. = 0.9079
 data$P.Safe.2nd.= 0.96

 prob= data[, c(1,27:40)]

 return(prob)
 }

 # End of prob function

 # trans function to compute the transition matrix and expected runs matrix
 trans.pitching= function(prob,i){
 A0=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.[i])

+prob$P.E.[i],0,0,

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.

[i])+prob$P.E.[i],

33

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.0out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 A1=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.[i])

+prob$P.E.[i],0,0,

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.

[i])+prob$P.E.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.1out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 A2=

matrix(data=c(prob$P.HR.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$
P.3B.[i],0,0,0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],0,

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B

34

.[i],prob$P.BB.HBP.[i],prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.[i])
+prob$P.E.[i],0,0,

prob$P.HR.[i],prob$P.1B.[i]+prob$P.E.[i],prob$P.2B.[i],prob$P.3B.[i],0,prob$P.BB.HBP.[i],0,0,

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.

[i])+prob$P.E.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]+prob$P.E.[i],0,prob$P.2B.[i],prob$P.BB.HBP.[i],

prob$P.HR.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],prob$P.2B.[i],prob$P.3B
.[i],0,prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.[i])+prob$P.E.[i],0,prob

$P.BB.HBP.[i],

prob$P.HR.[i],0,0,prob$P.3B.[i],prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i],0,prob
$P.2B.[i],prob$P.BB.HBP.[i]+prob$P.1B.[i]*(1-prob$P.Att.2nd.2out.

[i])+prob$P.E.[i]),
 nrow=8, ncol=8, byrow=TRUE)

 # creating B1 matrix: trans from 0 outs to 1 out
 B1= matrix(data=c(prob$P.Out.[i],0,0,0,0,0,0,0,
 0,prob$P.1Out.[i],0,0,0,0,0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.Out.[i],0,0,0,0,0,
 prob$P.SF.[i],0,0,prob$P.Out.[i]- prob$P.SF.[i],0,0,0,0,

0,0,0,0,prob$P.1Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out[i]*(1-prob$P.Safe.2nd.[i]),0,0,0,
 0,prob$P.SF.[i],0,0,0,prob$P.1Out.[i]- prob$P.SF.[i],0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.SF.[i],0,0,0,prob$P.Out.[i]
- prob$P.SF.[i],0,

0,0,0,0,prob$P.SF.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i]),0,0,prob$P.1
Out.[i]- prob$P.SF.[i]),

 nrow=8, ncol=8, byrow=TRUE)

 # creating B2 matrix: trans from 1 out to 2 outs
 B2= matrix(data=c(prob$P.Out.[i],0,0,0,0,0,0,0,
 0,prob$P.1Out.[i],0,0,0,0,0,0,

0,prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.Out.[i],0,0,0,0,0,
 prob$P.SF.[i],0,0,prob$P.Out.[i]- prob$P.SF.[i],0,0,0,0,

0,0,0,0,prob$P.1Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out[i]*(1-prob$P.Safe.2nd.[i]),0,0,0,
 0,prob$P.SF.[i],0,0,0,prob$P.1Out.[i]- prob$P.SF.[i],0,0,

35

0,prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),prob$P.SF.[i],0,0,0,prob$P.Out.[i]
- prob$P.SF.[i],0,

0,0,0,0,prob$P.SF.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i]),0,0,prob$P.1
Out.[i]- prob$P.SF.[i]),

 nrow=8, ncol=8, byrow=TRUE)

 # creating C2 matrix: trans from 0 outs to 2 outs
 C2= matrix(data=c(0,0,0,0,0,0,0,0,
 prob$P.DP.[i],0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,prob$P.DP.[i],0,0,0,0,
 prob$P.DP.[i],0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0,
 0,0,0,prob$P.DP.[i],0,0,0,0),
 nrow=8, ncol=8, byrow=TRUE)

 # absorbing states
 D1= matrix(0, nrow=8, ncol=1)
 D2= matrix(data=c(0,prob$P.DP.[i],0,0,prob$P.DP.[i],prob$P.DP.[i],0,prob$P.DP.[i]),

nrow=8, ncol=1)
 D3= matrix(c(prob$P.Out.[i],
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i],
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i]),
 prob$P.Out.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out[i]*(1-prob$P.Safe.2nd.[i])),
 nrow=8, ncol=1)
 D4= matrix(1, nrow=1, ncol=1)

 abs0= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)
 abs1= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)
 abs2= matrix(c(0,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=TRUE)

 # zero matrices
 zero= matrix(0, nrow=8, ncol=8)

 # creating overall transisition matrix by combining above matrices
 trans=

matrix(c(rbind(A0,zero,zero,abs0),rbind(B1,A1,zero,abs1),rbind(C2,B2,A2,abs2),
rbind(D1,D2,D3,D4)),nrow=25, ncol=25,

 dimnames= list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)",

"(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)",

36

"(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0
)","(12,0)","(13,0)","(23,0)",

"(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)",

"(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(x,3)")))

 R1=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P
.Safe.2nd.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.0
out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0,

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.0out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.0out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0),

 ncol=5,byrow=TRUE)

 R2=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P
.Safe.2nd.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]+prob$P.SF.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.1
out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0,

37

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.1out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.1out.[i])+prob$P.E.[i]+prob$P.SF.[i]),0),

 ncol=5,byrow=TRUE)

 R3=matrix(c(0,0,0,1*prob$P.HR.[i],0,
 0,0,2*prob$P.HR.[i],1*prob$P.3B.[i],0,

0,0,2*prob$P.HR.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i]),
0,

0,0,2*prob$P.HR.[i],1*(prob$P.3B.[i]+prob$P.2B.[i]+prob$P.1B.[i]+prob$P.E.[i]),0,

0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P
.Safe.2nd.[i]),0,

 0,3*prob$P.HR.[i],2*prob$P.3B.[i],1*(prob$P.1B.[i]+prob$P.E.[i]),0,

0,3*prob$P.HR.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.Safe.2nd.[i]),1*
(prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.[i]*(1-prob$P.Att.2nd.2
out.[i])+prob$P.E.[i]),0,

4*prob$P.HR.[i],3*prob$P.3B.[i],2*(prob$P.2B.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*prob$P.S
afe.2nd.[i]),
1*(prob$P.BB.HBP.[i]+prob$P.1B.[i]*prob$P.Att.2nd.2out.[i]*(1-prob$P.Safe.2nd.[i])+prob$P.1B.
[i]*(1-prob$P.Att.2nd.2out.[i])+prob$P.E.[i]),0),

 ncol=5,byrow=TRUE)

 Rscore= matrix(rbind(R1,R2,R3),nrow=24,ncol=5)
 eruns=matrix(rowSums(Rscore), nrow=24, dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)"),c(
"Exp Runs for Half-Inn")))

 list(trans,eruns)
 }
 # End of trans function

 # Expected runs matrix function team 1
 Mat.Exp = function(data){
 require(plotrix)
 color2D.matplot(data, show.values=3, axes=FALSE, xlab=paste0(input$player1,"

Expected Runs Allowed"), ylab="Base(s) Occupied")
 axis(side=2, at=7.5:0.5, labels=c("None","1","2","3","12","13","23","123"), las=1)
 axis(side=3, at=0.5:2.5, labels=c("0","1","2"))
 mtext(text="", side=2, line=2, cex.lab=1)

38

 mtext(text="Outs", side=3, line=2, cex.lab=1)
 }

 # Expected runs matrix function team 2
 Mat.Exp.Runs = function(data){
 require(plotrix)
 color2D.matplot(data, show.values=3, axes=FALSE, xlab=paste0(input$player2,"

Expected Runs Allowed"), ylab="Base(s) Occupied")
 axis(side=2, at=7.5:0.5, labels=c("None","1","2","3","12","13","23","123"), las=1)
 axis(side=3, at=0.5:2.5, labels=c("0","1","2"))
 mtext(text="", side=2, line=2, cex.lab=1)
 mtext(text="Outs", side=3, line=2, cex.lab=1)
 }

 output$plot1 <- renderPlot({
 prob.pitching1=prob.pitching(get(input$team1))
 nplayers.pitching1 = nrow(prob.pitching1)
 trans.store.pitching1=array(NaN,c(25,25,nplayers.pitching1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching1=array(NaN,c(24,5,nplayers.pitching1))
 Exp.runs.store.pitching1=matrix(NaN,nrow=24,ncol=nplayers.pitching1)

 # player by player expected runs calculation
 for (i in 1: nplayers.pitching1){
 temp.pitching=trans.pitching(prob.pitching1,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.pitching1[,,i]=temp.trans.pitching
 R.store.pitching1[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching1[,i]=Nine.inn
 }

39

 compare.pitching1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.pitching1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.pitching1$Exp.runs.162.pitching= Exp.runs.store.pitching1[1,]*162
 compare.pitching1$Percent.change=

round(((compare.pitching1$Exp.runs.162.pitching-get(input$team1)$R)/compare.pitching1$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.pitching1[,index1]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 Mat.Exp(player1.eruns)
 })

 output$plot2 <- renderPlot({
 prob.pitching2=prob.pitching(get(input$team2))
 nplayers.pitching2 = nrow(prob.pitching2)
 trans.store.pitching2=array(NaN,c(25,25,nplayers.pitching2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching2=array(NaN,c(24,5,nplayers.pitching2))
 Exp.runs.store.pitching2=matrix(NaN,nrow=24,ncol=nplayers.pitching2)

 # player by player expected runs calculation
 for (i in 1: nplayers.pitching2){
 temp.pitching=trans.pitching(prob.pitching2,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.pitching2[,,i]=temp.trans.pitching
 R.store.pitching2[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching2[,i]=Nine.inn

40

 }

 compare.pitching2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.pitching2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.pitching2$Exp.runs.162.pitching= Exp.runs.store.pitching2[1,]*162
 compare.pitching2$Percent.change=

round(((compare.pitching2$Exp.runs.162.pitching-get(input$team2)$R)/compare.pitching2$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.pitching2[,index2]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 Mat.Exp.Runs(player2.eruns)
 })

 output$plot3 <- renderPlot({

 prob.pitching1=prob.pitching(get(input$team1))
 nplayers.pitching1 = nrow(prob.pitching1)
 trans.store.pitching1=array(NaN,c(25,25,nplayers.pitching1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching1=array(NaN,c(24,5,nplayers.pitching1))
 Exp.runs.store.pitching1=matrix(NaN,nrow=24,ncol=nplayers.pitching1)

 for (i in 1: nplayers.pitching1){
 temp.pitching=trans.pitching(prob.pitching1,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.pitching1[,,i]=temp.trans.pitching

41

 R.store.pitching1[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching1[,i]=Nine.inn

 }

 compare.pitching1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.pitching1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.pitching1$Exp.runs.162.pitching= Exp.runs.store.pitching1[1,]*162
 compare.pitching1$Percent.change=

round(((compare.pitching1$Exp.runs.162.pitching-get(input$team1)$R)/compare.pitching1$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.pitching1[,index1]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p1.eruns=as.vector(player1.eruns)

 prob.pitching2=prob.pitching(get(input$team2))
 nplayers.pitching2 = nrow(prob.pitching2)
 trans.store.pitching2=array(NaN,c(25,25,nplayers.pitching2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching2=array(NaN,c(24,5,nplayers.pitching2))
 Exp.runs.store.pitching2=matrix(NaN,nrow=24,ncol=nplayers.pitching2)

 for (i in 1: nplayers.pitching2){
 temp.pitching=trans.pitching(prob.pitching2,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

42

 trans.store.pitching2[,,i]=temp.trans.pitching
 R.store.pitching2[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching2[,i]=Nine.inn

 }

 compare.pitching2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.pitching2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.pitching2$Exp.runs.162.pitching= Exp.runs.store.pitching2[1,]*162
 compare.pitching2$Percent.change=

round(((compare.pitching2$Exp.runs.162.pitching-get(input$team2)$R)/compare.pitching2$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.pitching2[,index2]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p2.eruns=as.vector(player2.eruns)

 #creating expected runs plot
 plot(c(1,24),c(min(p1.eruns,p2.eruns),max(p1.eruns,p2.eruns)),xaxt="n",

type="n",xlab="Base State",ylab="Expected Runs Allowed",las=3,main="Expected Runs
Allowed for each Base State")

 lines(p1.eruns,col="red")
 lines(p2.eruns,col="blue")

lablist.x=as.vector(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)",
"(2,1)","(3,1)","(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,
2)","(123,2)"))

 axis(1, at=1:24,labels=F)
 text(x = seq(.6, 23.6, by=1), par("usr")[3]-.15, labels = lablist.x, srt = 85, pos =1, xpd =

TRUE)

legend("topright",c(input$player1,input$player2),lty=c(1,1),lwd=c(2.5,2.5),col=c("red","blue"))
 })

 output$plot4 <- renderPlot({

 prob.pitching1=prob.pitching(get(input$team1))
 nplayers.pitching1 = nrow(prob.pitching1)
 trans.store.pitching1=array(NaN,c(25,25,nplayers.pitching1),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(
12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"

43

,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching1=array(NaN,c(24,5,nplayers.pitching1))
 Exp.runs.store.pitching1=matrix(NaN,nrow=24,ncol=nplayers.pitching1)

 for (i in 1: nplayers.pitching1){
 temp.pitching=trans.pitching(prob.pitching1,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.pitching1[,,i]=temp.trans.pitching
 R.store.pitching1[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching1[,i]=Nine.inn

 }

 compare.pitching1=cbind(get(input$team1)[,c(1,4)],Exp.runs.store.pitching1[1,],

get(input$team1)$R/162, get(input$team1)$R)
 compare.pitching1$Exp.runs.162.pitching= Exp.runs.store.pitching1[1,]*162
 compare.pitching1$Percent.change=

round(((compare.pitching1$Exp.runs.162.pitching-get(input$team1)$R)/compare.pitching1$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index1=which(get(input$team1)$Name==input$player1)

player1.eruns=matrix(cbind(Exp.runs.store.pitching1[,index1]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p1.eruns=as.vector(player1.eruns)

 prob.pitching2=prob.pitching(get(input$team2))
 nplayers.pitching2 = nrow(prob.pitching2)
 trans.store.pitching2=array(NaN,c(25,25,nplayers.pitching2),dimnames=

list(c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)","(

44

12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)","(
x,3)"),c("(0,0)","(1,0)","(2,0)","(3,0)","(12,0)","(13,0)","(23,0)","(123,0)","(0,1)","(1,1)","(2,1)","(3,1)"
,"(12,1)","(13,1)","(23,1)","(123,1)","(0,2)","(1,2)","(2,2)","(3,2)","(12,2)","(13,2)","(23,2)","(123,2)",
"(x,3)")))

 R.store.pitching2=array(NaN,c(24,5,nplayers.pitching2))
 Exp.runs.store.pitching2=matrix(NaN,nrow=24,ncol=nplayers.pitching2)

 for (i in 1: nplayers.pitching2){
 temp.pitching=trans.pitching(prob.pitching2,i)
 temp.trans.pitching=temp.pitching[[1]]
 temp.eruns.pitching=temp.pitching[[2]]

 # creating E: rowsums(E)= expected number of batters at each starting state for the

inning
 I=diag(24)
 Q=temp.trans.pitching[-25,-25]
 E=solve(I-Q)

 # Expected Runs for rest of inning at starting state: mult by 9 for full game
 Exp.Runs= E%*%temp.eruns.pitching
 Nine.inn=Exp.Runs*9
 Nine.inn

 trans.store.pitching2[,,i]=temp.trans.pitching
 R.store.pitching2[,,i]=temp.eruns.pitching
 Exp.runs.store.pitching2[,i]=Nine.inn

 }

 compare.pitching2=cbind(get(input$team2)[,c(1,4)],Exp.runs.store.pitching2[1,],

get(input$team2)$R/162, get(input$team2)$R)
 compare.pitching2$Exp.runs.162.pitching= Exp.runs.store.pitching2[1,]*162
 compare.pitching2$Percent.change=

round(((compare.pitching2$Exp.runs.162.pitching-get(input$team2)$R)/compare.pitching2$Exp.
runs.162.pitching)*100, 3)

 #matching player index from team data to input name
 index2=which(get(input$team2)$Name==input$player2)

player2.eruns=matrix(cbind(Exp.runs.store.pitching2[,index2]/9),nrow=8,ncol=3,dimnames=list(c
("0","1","2","3","12","13","23","123"),c("0 OUTS","1 OUT","2 OUTS")))

 p2.eruns=as.vector(player2.eruns)

 #creating the difference in each base state between players
 diff=NULL
 for(i in 1:24){
 diff[i]=p1.eruns[i]-p2.eruns[i]

45

 }

 #creating expected runs plot
 plot(c(1,9.25),c(min(diff),max(diff)),xaxt="n", type="n",xlab="Base

State",ylab="Difference in Expected Runs Allowed",las=3,main=c("Difference in Expected Runs
Allowed for each Base State", "(if positive then first player has higher expected runs allowed for
that state)"))

 abline(h=0,v=0,col="gray60")
 lines(diff[1:8],col="red")
 lines(diff[9:16],col="blue")
 lines(diff[17:24],col="green")
 axis(1, at=1:8,labels=c(0,1,2,3,12,13,23,123))
 legend("topright",c("0 Outs","1 Out","2

Outs"),lty=c(1,1),lwd=c(2.5,2.5),col=c("red","blue","green"))
 })

}

shinyApp(ui=ui, server=server)

46

