VISUAL CODE

BREAKING THE BINARY






INTRODUCTION

“DECODING CODING”

Access to introductory code and programming education remains
incredibly low. The computer, once touted as "the Great Equalizer"
and "bicycle for the mind" remains fully available only to the few.

Yet there are countless innovations yet to be made in the field of
computing. This is startling, considering how much change it has
already made in our lives. In a world driven by computing, program-
ming and computer science should be accessible to everyone.

Current solutions are highly skewed towards more "scientific" think-
ers. In our interviews with over 400 people, this theme of their ex-
periences became quickly evident. An overwhelming number of
people shared that they were turned away from code and program-
ming within their first hour of experience with the topic. Consistent-
ly, people related that they guickly hit a “wall of math and algo-
rithms”. Alarmingly, many had such a negative experience that they
felt they would never revisit coding entirely. Currently, there is a
huge emphasis on teaching code and programming across the United
States, often in the context of the "Hour of Code" program, in which
young people are introduced to the topic in just an hour. If these
programs are failing an overwhelming percentage of students, how-
ever, alternative methods of introducing the subject become neces-
sary.

This project seeks to create an accessible programming language
that is more visually based. Although some solutions exist, namely
MIT’'s Scratch, nothing has caught up to the mobile age. This proj-
ect aims to reframe creating a game or app into the context of tell-
ing a story, putting character creation first. By researching sto-
ry-telling and how people learn, and by applying technical and user
interface design knowledge, this project intends to deliver a soft-
ware solution that opens introductory coding education to more
people.



ONLY

1/4

OF U.S. SCHOOLS

OFFER COMPUTER
SCIENCE CLASSES

CODE.ORG




OUR TEAM

Jacob Johannesen
Oesign

Andrew Adriance
Development




M

U

SECTION 2

RESEARCH



Inaccessibility In Computer Science:
A Longstanding Tradition

Access to introductory code and programming education remains
incredibly low. The computer, once touted as "the Great Equalizer”
and "hicycle for the mind" remains fully available only to the few.

Yet there are countless innovations yet to be made in the field of
computing. This is startling, considering how much change it has
already made in our lives. In a world driven by computing, program-
ming and computer science should be accessible to everyone.

Current solutions are highly skewed towards more "scientific" think-
ers. In our interviews with over 400 people, this theme of their ex-
periences became qguickly evident. An overwhelming number of
people shared that they were turned away from code and program-
ming within their first hour of experience with the topic. Consistent-
ly, people related that they guickly hit a “wall of math and algo-
rithms”. Alarmingly, many had such a negative experience that they
felt they would never revisit coding entirely. Currently, there is a
huge emphasis on teaching code and programming across the United
States, often in the context of the "Hour of Code"” program, in which
young people are introduced to the topic in just an hour. If these
programs are failing an overwhelming percentage of students, how-
ever, alternative methods of introducing the subject become neces-
sary.

This project seeks to create an accessible programming language
that is more visually based. Although some solutions exist, namely
MIT’s Scratch, nothing has caught up to the mobile age. This proj-
ect aims to reframe creating a game or app into the context of tell-
ing a story, putting character creation first. By researching sto-
ry-telling and how people learn, and by applying technical and user
interface design knowledge, this project intends to deliver a soft-
ware solution that opens introductory coding education to more
people.



Seymour Papert's Mindstorms:
Looking Back 36 Years

Seymour Papert has been a leading figure in computer science edu-
cation for young people, and practically invented even the notion of
it. He has spent this greater part of his life on this issue, and wrote
Mindstorms: Children, Computers, and Powerful Ideas in 1980. He
also helped to create the Logo educational programming language.
Is his own words:

In most contemporary educational situations where children come
into contact with computers the computer is used to put children
through their paces, to provide exercises of an appropriate level
of difficulty, to provide feedback, and to dispense information.
The computer programming the child. In the LOGO environment the
relationship is reversed: The child, even at preschool ages, is in
control: The child programs the computer.

Papert builds on this capability of computers as a technology, em-
phasizing the importance of the platform's interactive nature.
Beyond this, he even relates computers to the advent of the printing
press--a technology with the potential to completely change infor-
mation, but this time not only in the way we communicate that
information, but also in the way we create and produce it.

With speaking of such change, Papert is quick to mention the poten-
tial drawbacks of the post-computer society. Papert mentions the
techno-Utopian critics of 1980, who fear that the "holding power”
and psychological effects of computers can be incredibly detrimen-
tal to to mind. 1980's fears even include "students spending sleep-
less nights riveted to the computer terminal, coming to neglect both
studies and social contact". In 2018, this fear continues and has
essentially been proven true. Technologies that were unforeseeable
in 1980, including social media and engrossing video games, are a
huge source of addiction. A recent report by Common Sense Media
has found that teens spend an average of six hours a day using
social media. Ultimately, teenagers of 2015 (year of study] repre-
sent one of the first generations to grow up having complete access
to the internet and social media, making these findings especially
troubling.



Papert, however, in fact agreed with the critics of his time, main-
taining that while the negatives were real, it was important to focus
on and develop the computer's positive potential.

Logo: A Virtual Material

Seymour Papert worked with the MIT Media Lab to develop the LOGO
programming language. He believed that children learn best when
given material with which to create new things. LOGO is based on
the idea of a “turtle”, a simple and basic component that can be
used in various combinations to create more complex systems—sim-
ilar to conventional programming languages. Nonetheless, LOGO is
very easy for anyone to simply pick up and start using. It is based
on simple movement commands—move forward, rotate to the right,
etc. By chaining these basic commands together, LOGO users can
instruct the turtle to draw pictures. LOGO continues to have huge
influence today, with recently developed introductory coding pro-
grams including Hopscotch that use similar principles.

Scratch: Puzzle Pieces

In 2002 Mitchel Resnick introduced Scratch—a visual programming
language based on snapping puzzle-like colored blocks together.
This project, based upon Papert’s research, also came out of MIT’s
Media Lab. Scratch allows for more complicated programs and
games to be built than what was possible with LOGO, and the system
that it established continues to be a standard in introductory pro-
gramming education today.

An Aging Standard

Despite being created almost 14 years ago, Scratch’s influence re-
mains strong in introductory programming.



A Standard That Hurts Students

In 2016, the world of technology is incredibly different than that of
2002. Despite this, there have been minimal efforts to create new
introductory system to engage students. Instead efforts, such as
code.org, have concentrated on pushing existing technology through
programs like Hour of Code. Through our interviews with over 200
educators, parents, and students we have found that while Scratch
helps engage more students, a significant percentage of students
are still turned away from code and programming within the first
hour of introduction to the subject. Ultimately, while efforts to
increase computer science education at the organization level are
admirable, we also must focus on technology solutions that can
engage different types of learners.

Additionally troubling is the concern that STEM-focused education
overlooks, and in many cases even devalues the arts. People that we
talked to brought this pain point up repeatedly. In our own solution,
we seek to bridge the “divide” between art and computer science by
incorporating the arts throughout.






Swift-Based i0OS App

For this project, we decided to build our software solution for the
i0S platform. This is because i0S-based iPads are commonly used in
primary education settings.XXWe also considered developing for
Google Chrome—a platform that has guickly grown in popularity
within schools due to low pricing. Ultimately, however, we found
through interviews that students, parents, and educators alike had
incredibly negative experiences with the platform. Beyond this,
mobile devices have an unparalleled ability to engage younger audi-
ences.

Overall Flow

Ease of use is mission critical to our software solution. Our app has
to be easy to navigate and understand. When researching competing
apps, we consistently found context issues. Sub-menus of these
apps built up and up, obscuring their purpose.

For our software solution, we knew that our goal of having users
build their own games and apps made it incredibly tempting to build
up similar layers of complexity. Instead, we decided to break down
the navigation into easy to understand and universal parts.

Navigation Bar

The navigation bar allows users to move between the different parts
that make up their app or game. We have defined these three sec-
tions as objects, code, and scene.

Objects

This section is where users can create new objects. Objects are
the first section for a reason—as both the code and scene sec-
tions build upon and use these objects. Beyond this, interviews
and research identified objects (or characters]) as the starting
point when someone without coding experience thought about
building a game.

Code

This section is where users can add behaviors to objects that
they created in ‘Objects’.

10



Scene
The scene allows users to place the objects they have created
into a world.

Objects Bar

The objects bar is located on the |left on the screen, and importantly
is persistent whether users are currently in the objects, code, or
scene section. All sections relate back to objects, and so access to
them is always upfront.

Widgets

Widgets pop up when a user wants to do some more advanced cus-
tomization. Widgets interrupt the app, blurring the previous context
and creating a new one on top. Widgets cannot link to anything else.
With only one level of abstraction at a time possible, widgets seek
to make coding that first app or game less confusing.

Building from Components, Not Templates

A common complaint among interviewees is that Scratch-based
solutions only offer stock images to use in games. Beyond this,
some solutions offer very primitive templates from which to create
characters. Drawing inspiration from LEGO bricks and Minecraft, we
have decided to take a more modular approach. In our design, com-
ponent pieces can be comhbined in a variety of ways to create a huge
variety of objects. In his writings on how kids learn with computers,
Seymour Papert constantly relates back to the idea of “materials”
that can be shaped built upon. For our software, we want to make
sure that even the graphics were based on what the user wanted to
make. No templates or pre-made junk here.

11



ACTIONS EVENTS

Collsion With (x ] Vel

&5




o

GRAVITY
-9.8




BUILDER

Uses components, similar
to LEGO bricks.

14






Name
Matthew Murillo

Age
18

City
Gilroy, California

Access to Computer Science Classes
Low

Description

Matthew is a senior at Gilroy High School. He excels at school, but
is worried about starting a computer science degree at Berkeley in
the Fall after not passing the AP Computer Science exam. He has a
passion for computers, but his school simply doesn’t offer comput-
er science classes—so the knowledge he does have, he learned on
his own

This year, Matt has even collaborated with friends on an app they
were planning to build. The idea was a space-themed game, and the
group used Google Drive to share story lines and sketches. When it
came time to actually build the game, however, their plans fell flat
with a short-lived journey into coding and programming apps.

As he remembers the experience he wonders if maybe computer
science just isn’'t for him.

16



Name
Melissa Benjamin

Age
12

City
Bellevue, Washingtaon

Access to Computer Science Classes
Very High

Description

Melissa started coding in elementary school, and has a real talent
for it. She makes simple apps in her free time using Scratch, which
she learned at her STEM-focused and very well funded school.

Now that Melissa’s in middle school, however, she’s starting to
notice some things. When encountering a problem in coding, Melissa
visualizes herself inside the computer and talks about the iPad as if
it were a person. When she communicates this way of thinking to
her peers, however, they laugh at her and call her wrong. This de-
spite the fact that she consistently does better than them with
tough problems in code. Melissa decides it'’s easier to simply not
explain her coding problems in the way that she actually thinks
about them for now.

17






Analysis and Verification of Success

For this project, success will be measured by ability of users to
complete certain tasks. In some cases, this may be on a scale of 1 -
10 based on how difficult or easy said task was to complete. These
measurements will be taken with subjects who use both our soft-
ware solution and existing software. We will then be able to assess
the percentage difference in ease of use of our software.

Beyond this we will also be measuring user engagement, and per-
ception of code and programming based on their experience with
our software.

Interviews

In interviews with over 200 educators, parents, and students we
attempted to narrow down specific concerns that resonated with
people. A top concern among those we spoke to was “a wall of algo-
rithms, math and code”, “coding being boring”, and “being unahble to
express creativity on the computer”.

Societal Impacts

Already, research shows the field of computer science to be inac-
cessible to many. Nonetheless, our society continues to push young
people towards the fields—while not attempting to understand the
issue of why so many are turned away in the first place. Ultimately,
this project aims to build a more accessible introduction to code
and programming.

Future Work and Next Steps

For this project, we plan to eventually release our software solution
as a consumer product.

19



Conclusion

In 2016, information and technology dominates our lives—with data
being collected on every aspect of the way we live our lives and
screens becoming an extension of our own body and mind. While our
use of technology has increased exponentially, our ability to pro-
gram computers has simply not caught up. This is not only economi-
cally devastating, with technology companies unable to fill posi-
tions, but also culturally problematic. The computer, as described
by Seymour Papert, is an incredible tool because of it's bidirection-
al nature—it can talk to you and, in theory, you can talk back though
code and programs.

Beyond this, a certain culture has developed around computer sci-
ence and programming. This culture has created a mythology of
programmers as “wizards” and “rock stars”, terminology used in
many Silicon Valley job descriptions. Sprawling corporate campuses
claim to shelter “top talent” as they “lead the world” though “inno-
vations” that in reality are little more than a phone with a slightly
improved camera or 10% more processing power.

KUltimately, Papert’s vision of the computer as a tool for everyone
has not been realized. In his writings, he compares the computer to
the advent of the printing press. Today, we are faced with the gues-
tion of whether we will promote computer literacy for all or contin-
ue to reinforce the “Silicon Valley” mentality of computing for the
few.

20



WORKS C



Works Cited

"Every Child Deserves Opportunity." Code.org. Code.org, n.d. Web. 8
May 2016.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic, 1893. Print.

"Scratch - Imagine, Program, Share." Scratch Help. MIT Media Lab,
n.d. Wehb. 8 May 2016.

Turkle, Sherry, and Seymour Papert. "Epistemological Pluralism:
Styles and Voices within the Computer Culture." Signs: Journal of
Women in Culture and Society 16.1 (1980): 128-57. Web.









