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Abstract

A simulation study of the parametric and nonparametric
Linear-Circular Correlation Coefficient was carried out to
evaluate the mathematical distribution the statistics followed.
A further study was conducted to investigate the effect of ties
on the nonparametric correlation coefficient. Lastly, a com-
parison of power between the parametric and nonparametric
Linear-Circular Correlation coefficient was conducted with
varying sample sizes, means, and distributions.

Introduction

Circular statistics are specialized statistical methods that
deal specifically with directional data. Data that is angular
require specialized techniques due to the modulo 2π (in
radians) or modulo 360◦ (in degrees) nature of angles.
Critical methods such as the mean (x̄) in ”linear” statistics
do not correctly report the ”average” angle. e.g., the average
angle between 1◦ and 359◦ should not be 180◦ but 0◦.

Correlation, typically in terms of Pearson’s correlation
coefficient, is a measure of association between two linear
random variables x and y. In this paper, the specific
circular technique of the parametric and nonparametric
linear-circular correlation coefficient will be explored where
correlation is no longer between two linear variables x
and y, but between a linear random variable x and circular
random variable θ. Some specific examples of where
measuring linear-circular Correlation may be interesting
include:

• Observing wind speed and wind direction.

• Radiation emitted and the sun’s position in the sky.

• Watts produced and the crank arm angle when bicycling.

• Ocean current direction and water temperature.
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Parametric Linear-Circular Correlation
Coefficient

Similar to Pearson’s Correlation Coefficient where the un-
derlying conditions require that both x and y are normally
distributed, the variability about y does not change with x,
linearity between x and y, and independence between x and
y, the parametric Linear-Circular Correlation Coefficient,
as introduced by Mardia (1976), requires x and θ to be
independent and x to be normally distributed. According
to Johnson & Wehrly (1977), the multiple correlation
coefficient of x and the random vector (cosθ, sinθ)T is R2

xθ
as defined below:

R2
xθ =

r2xc + r2xs − 2rxcrxsrcs
1− r2cs

where rxc = corr(x, cosθ), rxs = corr(x, sinθ), rcs =
corr(cosθ, sinθ). The correlations are Pearson sample cor-
relation coefficients. When x and θ are independent and x is
normally distributed, the following follows an F distribution
with 2 numerator and n−3 denominator degrees of freedom.

1
2 (n− 3)R2

xθ

1−R2
xθ

∼ F2,n−3

Nonparametric Linear-Circular Correlation
Coefficient

Analogous to Spearman’s Rank Correlation Coefficient
between two linear random variables, the nonparametric
Linear-Circular Correlation coefficient measures asso-
ciation through rank. Introduced by Mardia (1976) the
nonparametric Linear-Circular Correlation Coefficient does
not rely on an underlying distribution for the linear variable
x and the circular variable θ.

To calculate the nonparametric linear-circular correlation
between a linear variable x and circular variable θ, we must
first assign ranks to each circular θi. Once ranks are assigned
to the circular variable, the linear variable is ordered from
smallest to largest. A ranked circular variable, βi, is calcu-
lated to be:

βi =
2π(ri)

n



where n is the total number of linear-circular pairs, (xi,θi),
and ri the corresponding circular ranks of θ1, ..., θn. We then
calculate Tc and Ts as shown below:

Tc =

n∑
i=1

xicos(βi)

Ts =

n∑
i=1

xisin(βi)

where xi is the rank of x (when x is tied, the average rank is
used for all tied x). The final step is to calculate the correla-
tion coefficient:

U =
24(T 2

c + T 2
s )

n2(n+ 1)
∼ χ2

2, as n→∞

U follows a χ2 distribution with 2 degrees of freedom
asymptotically. Notice that U does not scale within the tradi-
tional R2 values of between [0,1]. This is taken care of with
the following transformations:

an =
1

1 + 5cot2(πn ) + 4cot4(πn )

when n is even and:

an =
2sin4(πn )

(1 + cos(πn ))3

when n is odd. The scaled correlation Dn is calculated in
the following:

Dn = an(T 2
c + T 2

s )

Simulating the Parametric Linear-Circular
Correlation Coefficient

Simulation of the parametric linear-circular correlation
coefficient was done using R version 3.1.0 Spring Dance.
10,000 linear-circular pairs were simulated for sample sizes
of 15, 30, 50, 100, and 500 from a Normal(6,2) for the
linear variable and Uniform(0,2π) for the circular variable.
For each Figure (1 through 5), the Kolmogorov-Smirnov
(KS) Test Statistic was used to assess the goodness-of-fit to
the theoretical F2,n−3 distirbution as stated by Johnson and
Wehrly (1977). Additionally, both a plot of the distribution
with the F2,n−3density overlaid (left) and the F probability
plot (right) were generated.

From the adjusted (from multiple testing) p-values
corresponding to the Kolmogrov-Smirnov Test, we found
that regardless of sample size the distribution of the
parametric linear-circular correlation coefficient fits the
prescribed F2,n−3 distribution well. This can also be seen
from both the F probability plot where few points fall off
the diagonal line, and the histogram follows, almost exactly,
the overlaid F density.

Simulating the Nonparametric
Linear-Circular Correlation Coefficient

To investigate the behavior of the nonparametric linear-
circular correlation coefficient under ideal conditions,
100,000 linear-circular pairs of sample sizes of 15, 30,
50, 100, 500, and 1000 from a Normal(0,1) for the linear
variable and a von Mises(0,1) were generated. Since the
nonparametric linear-circular correlation coefficient asymp-
totically approaches a χ2 distribution with two degrees of
freedom, the particular sample size and the distribution
being sampled from were both factors of interest. To inves-
tigate how quickly (size of sample needed) the distribution
of the correlations followed a χ2 with two degrees of
freedom when sampling from a non-normal distribution,
an additional simulation of 100,000 linear-circular pairs

Figure 1: n=15;KS p-value: 0.14012

Figure 2: n=30; KS p-value: 0.66221
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of sample sizes of 15, 30, 50, 100, 500, and 1000 were
generated from a uniform(0,1) for the linear variable and
uniform(0,2π) for the circular variable.

In Figure 6 through Figure 11 shown on the next
page, the histogram of correlation coefficients (with density
curve) and the Chi-Square Probability Plot were created
for the linear-circular pairs drawn from a Normal(0,1)
and von Mises(0,1). Figure 12 through Figure 17 are also
histograms of the correlation coefficient (with density
curve) and Chi-Square Probability Plots, but represents
the linear-circular pairs drawn from a uniform(0,1) and
uniform(0,2π). For both combinations of distribtuions that
were sampled from, the Kolmogorov-Smirnov Test Statistic
was generated to assess Goodness-of-Fit.

Judging only by the Chi-Square probability plot, at
approximately a sample size of 100 is when the fit of the
correlation coefficient starts to follow χ2 with two degrees
of freedom. We can see that the Kolmogorov-Smirnov test
statistic shows the fit of the correlation coefficient to be
improving as sample size increases. Specifically, between a
sample size of 100 and 500, the p-value of the Kolmogorov-
Smirnov changes from significant to nonsignificant at the
α = 0.05 significance level. However, from just the fit
of the density curve, it appears at a sample size of 15 the
linear-circular correlation coefficient begins to follow the
theoretical distribution.

Similarly, for Figure 12 through Figure 17, the dis-
tribution of the linear-circular correlation coefficient when
pairs are drawn from uniform distributions start to follow
a χ2 with two degrees of freedom at a sample size of
approximately 100 as seen with the Chi-Square Probability
Plot; The Chi-Square Probability Plots of sample sizes
greater than 100 do not deviate much from the diagonal
line. This is confirmed with the Kolmogorov-Smirnov Test
statistic, which changes from significant to nonsignificant
at the α = 0.05 significance level at this sample size. The
density fit of a χ2 with two degrees of freedom at a sample
size of 15 does not seem to be a terrible fit. However, going
below this sample size the distribution begins to appear
discrete.

Other combinations of distributions were explored
such as:

• Linear variable sampled from a Normal Distribution and
a Circular variable sampled from a Wrapped-Exponential
distribution.

• Linear variable sampled from a Exponential Distribu-
tion and a Circular variable sampled from a Wrapped-
Exponential distribution.

However, they all exhibited the same properties of the two
linear-circular combination exhibited in this paper.

Figure 3: n=50; KS p-value: 0.09409

Figure 4: n=100; KS p-value: 0.04111

Figure 5: n=500; KS p-value: 0.71929
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Figure 6: ; n=15; Normal-von Mises; P-val: 0.0263

Figure 7: n=30; Normal-von Mises; P-val: 0.0138

Figure 8: n=50; Normal-von Mises; P-val: 0.0083

Figure 9: n=100; Normal-von Mises; P-val: 0.00412

Figure 10: n=500; Normal-von Mises; P-val 0.62175

Figure 11: n=1000; Normal-von Mises; P-val 0.6248

4



Figure 12: ; n=15; Uniform-Uniform; P-val: 0

Figure 13: n=30; Uniform-Uniform; P-val: 0

Figure 14: n=50; Uniform-Uniform; P-val: 0

Figure 15: n=100; Uniform-Uniform; P-val: 0.07813

Figure 16: n=500; Uniform-Uniform; P-val 0.33253

Figure 17: n=1000; Uniform-Uniform; P-val 0.79406
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Ties and the Nonparametric Linear-Circular
Correlation Coefficient

To further investigate the nonparametric linear-circular Cor-
relation Coefficient, the effect of ties on the correlation’s
property of asymptotically following a χ2 distribution with
two degrees of freedom was explored. 1,000,000 simulations
of sample size 15, 30, 50, and 100 were conducted and both
the number of ties and the nonparametric correlation coef-
ficient was recorded. The number of ties was computed to
be:

n− (unique values)

The linear variable was sampled from Uniform(0,10) and
the circular variable was sampled from Uniform(0,2π).
Uniform distributions were chosen so that the location of
the tie would be uniformly distributed, eliminating the effect
of the location of the tie.

Ties were generated artificially by rounding to the
nearest hundredth and the nearest tenth of just the linear
variable. We were not capable of controlling the total
proportion of ties—only the way we tied the data. The rank
of the ties were decided by their average ranks, as was
done by Fisher and Lee (1981) with the data supplied from
Johnson and Wehrly (1977).

Although we rounded to the hundredth and tenth
digit, only the rounding to the nearest integer for the
linear variable will be shown. Roughly 80-90% of the data
resulted in ties. Although the p-value corresponding to the
Kolmogorov-Smirnov test statistic is significant, as shown
in the following Figures (18 through 21), the χ2 density fit
onto the histogram is excellent despite the large proportion
of tied values, demonstrating the robustness of the test
statistic.

Figure 18: n=15; Ties Uniform (0,10); P-val: 0

Figure 19: n=30; Ties Uniform (0,10); P-val: 0

Figure 20: n=50;Ties Uniform (0,10); P-val 0

Figure 21: n=100;Ties Uniform (0,10); P-val 0
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Comparing Power Between the Parametric
and Nonparametric Linear-Circular

Correlation Coefficient
Power, the probability of rejecting the null hypothesis,
Ho, was simulated by sampling the linear variable from a
normal distribution and the circular variable from a Uniform
Distribution. Correlation was created in the data by forcing
linear values with circular values between 0◦ (0 radians)
and 90◦ (π2 radians) to follow a Normal (20,1) distribution.
The corresponding linear values for circular values that
fell outside of the arc (90◦ to 360◦ or π

2 to 2π radians) are
to follow a Normal Distribution with variance of 1, but
mean increasing from 1 to 20 in increments of 0.2. As the
simulation approaches N(20,1) on the interval [π/2, 2π]
power should decline until it becomes the set significance
level. This was done for sample sizes of 15, 30, 50, 100, and
500.
The following Figures best demonstrate how power was
simulated. Each of the Figures below are a single simulation
of sample size of 1000 from the respective distributions in
the caption.

Figure 22: N(20,1) b/w [0,π2 ], N(11,2) Else;
nonparametric p-value = 1
parametric p-value = 1

Figure 23: N(20,1) b/w [0,π2 ], N(1,2) Else;
nonparametric p-value = 1
parametric p-value = 1

Figure 24: N(20,1) b/w [0,π2 ], N(20,2) Else;
nonparametric p-value = 0.0499
parametric p-value = 0.05017



Simulating X from a Normal Distribution. As seen in
the simulation below, as sample size increases, the nonpara-
metric linear-circular correlation power curve (red) becomes
increasingly indistinguishable from the parametric linear-
circular power curve (blue). At a sample size of 500, the
two curves become one and the same.

Simulating X from an Exponential Distribution. A sim-
ilar simulation study of power to compare the parametric
vs. nonparametric linear-circular correlation coefficient us-
ing an exponential distribution instead of a normal distribu-
tion was carried out to see how the parametric linear-circular
correlation fares when the condition of the linear variable
following a Normal distribution is not satisfied. Values of
x̄ where values of θ fell between [0,π2 ] followed an Expo-
nential distribution with λ = 1/20. Values from [π2 ,2π] fol-
lowed an Exponential distribution with λ = 1/j where j
took values from 1 to 20 in increments of 0.2. Similar to the
simulation immediately previous to this one, the blue curve
demonstrates the parametric Linear-Circular power, the red
curve, nonparametric linear-circular power. It is noteworthy
that again, the parametric linear-circular correlation coeffi-
cient seems to have more power at every sample size for
every λ value simulated despite conditions not being met.
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Figure 25: n=15; Normal-Wrapped Uniform
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Figure 26: n=30;Normal-Wrapped Uniform

Figure 27: n=50;Normal-Wrapped Uniform
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Figure 28: n=100;Normal-Wrapped Uniform

Figure 29: n=500;Normal-Wrapped Uniform

Figure 30: n=15;Exponential-Wrapped Uniform
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Figure 31: n=30;Exponential-Wrapped Uniform

Figure 32: n=50;Exponential-Wrapped Uniform
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Figure 33: n=100;Exponential-Wrapped Uniform

Figure 34: n=500;Exponential-Wrapped Uniform
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Conclusion
In short, the nonparametric and parametric test statistics
both follow their theoretical distributions (asymptotically
for the nonparametric statistic). It was found that the
nonparametric statistic was robust against ties. Additionally,
it was also found that the power of the parametric statistic
outperformed the nonparametric statistic for almost all
values of λ for our exponential linear random variable.

There are many avenues of the parametric and non-
parametric linear-circular correlation coefficients still left
unexplored. In this paper the effect/impact of ties on the
parametric linear-circular correlation coefficient was not
explored. Additionally why the parametric linear circular
correlation coefficient was more powerful for the nonnor-
mal linear variable that was simulated was not explored.
Furthermore, the simulation study only varied the mean
and λ value for the normal and exponential distribution
respectively.

Future studies can include different distributions as
well as varying the various parameters required for those
distributions. One could also improve on the method of
tying and attempt to understand why the nonparametric test
statistic is robust against ties.

Acknowledgments
Dr. Ulric Lund for being pleasant to talk to [almost] every

Friday and really giving me direction in directional
statistics.

A shameless plug for his other, nonacademic abilities is
below.

P-values
Probability

null hypothesis is true.
No partial credit.

-Dr. Lund

References
• Batschelet E., Hillman D., Smolensky M., Halberg

F. (1973), Angular-Linear Correlation Coefficient for
Rhythometry and Circannually Changing Human Birth
Rates at Different Geographic Latitudes, International
Journal of Chronobiology, Vol.1, pp. 183-202

• Feridun Tasdan & Meral Cetin (2014), A simulation study
on the influence of ties on uniform scores test for circular
data, Journal of Applied Statistics, 41:5,pp. 1137-1146

• Fisher N.I., Lee A.J. (1981), Nonparametric Measures of
Angular-Linear Association, Biometrika, Vol. 68 No. 3
(Dec., 1981), pp. 629-636

• Johnson R.A., Wehrly T. (1977), Measures and Models
for Angular Correlation and Angular-Linear Correlation,
Journal of the Royal Statistical Society, Series B (Method-
ological) Vol. 39 No. 2, pp. 222-229

• Liddell I.G., Ord J.K. (1978), Linear-Circular Correlation
Coefficients: Some Further Results, Biometrika, Vol 65,
No. 2 (Aug., 1978), pp. 448-450

• Mardia K.V. (1976), Linear-Circular Correlation Coeffi-
cients and Rhythmometry, Biometrika, Vol. 63 No. 2 (Au-
gust., 1976), pp. 403-405

R Packages Used:
Couldn’t have done this project without the help of the

following authors and their R packages.

• C. Agostinelli and U. Lund (2013). R package ’circular’:
Circular Statistics (version 0.4-7). URL https://r-forge.r-
project.org/projects/circular/

• Hadley Wickham (2007). Reshaping Data with the re-
shape Package. Journal of Statistical Software, 21(12), 1-
20. URL http://www.jstatsoft.org/v21/i12/.

• H. Wickham. ggplot2: elegant graphics for data analysis.
Springer New York, 2009.

• Baptiste Auguie (2012). gridExtra: functions in Grid
graphics. R package version 0.9.1. http://CRAN.R-
project.org/package=gridExtra

• Lemon, J. (2006) Plotrix: a package in the red light district
of R. R-News, 6(4): 8-12.

• Revolution Analytics and Steve Weston (2014). foreach:
Foreach looping construct for R. R package version 1.4.2.
http://CRAN.R-project.org/package=foreach

• Revolution Analytics and Steve Weston (2014).
doSNOW: Foreach parallel adaptor for the snow
package. R package version 1.0.12. http://CRAN.R-
project.org/package=doSNOW

• R Core Team (2014). R: A language and environment for
statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria. URL http://www.R-project.org/

14



Appendix

Parametric Linear-Circular Correlation
Coefficient

#### Parametric Linear Circular Correlation
Coefficient ####

y = as.circular(theta,units = "degrees",
type = "angles")

data = data.frame(x,y);

cor.circular.lc = function(x,y=NULL,test =
FALSE){

### x vector or matrix of linear data
### y vector or matrix of circular data
### test if test == TRUE then a

significance test for the correlation
is computed

if (!is.null(y) & NROW(x) != NROW(y))
stop("x and y must have the same number

of observations")
if (is.null(y) & NCOL(x) < 2)
stop("supply both x and y or a

matrix-like x")
ncx <- NCOL(x)
ncy <- NCOL(y)
if (is.null(y)) {
ok <- complete.cases(x)
x <- x[ok, ]

}
else {
ok <- complete.cases(x, y)
if (ncx == 1) {
x <- x[ok]

}
else {
x <- x[ok, ]

}
if (ncy == 1) {
y <- y[ok]

}
else {
y <- y[ok, ]

}
}
n <- NROW(x)
if (n == 0) {
warning("No observations (at least after

removing missing values)")
return(NULL)

}
### Converting y to radians ###
if (!is.null(y)) {
y <- conversion.circular(y, units =

"radians", zero = 0,
rotation = "counter",

modulo = "2pi")
attr(y, "class") <- attr(y, "circularp")

<- NULL
}
if(is.null(y)){

z = conversion.circular(x[,2], units =
"radians", zero = 0,

rotation =
"counter",
modulo = "2pi");

attr(z, "class") <- attr(z, "circularp")
<- NULL;

r_xs = cor(x[,1],sin(z));
r_xc = cor(x[,1],cos(z));
r_cs = cor(cos(z),sin(z));

}else{

### calculating individual components ###
r_xs = cor(x,sin(y));
r_xc = cor(x,cos(y));
r_cs = cor(cos(y),sin(y));

}
### calculating correlation coeff

linear-circular ###
cor.lc = (r_xcˆ2 + r_xsˆ2 -

2*(r_xc*r_xs*r_cs))/(1-r_csˆ2);

if(test){
f.stat = (.5*(n-3)*cor.lc)/(1-cor.lc);
p.val = pf(f.stat,df1 = 2, df2=

n-3,lower.tail = FALSE);
result = list(cor = cor.lc, statistic =

f.stat, p.value = p.val);

}else{
result = list(cor = cor.lc);

}
return(result);

}
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Nonparametric-Linear Circular Correlation
Coefficient

cor.circular.lc.rank = function(x, y =
NULL, test = FALSE){

if (!is.null(y) & NROW(x) != NROW(y))
stop("x and y must have the same

number of observations")
if (is.null(y) & NCOL(x) < 2)
stop("supply both x and y or a

matrix-like x")
ncx <- NCOL(x)
ncy <- NCOL(y)
if (is.null(y)) {
ok <- complete.cases(x)
x <- x[ok, ]

}
else {
ok <- complete.cases(x, y)
if (ncx == 1) {
x <- x[ok]

}
else {
x <- x[ok, ]

}
if (ncy == 1) {
y <- y[ok]

}
else {
y <- y[ok, ]

}
}
n <- NROW(x)
if (n == 0) {
warning("No observations (at least

after removing missing values)")
return(NULL)

}
### Converting y to radians ###
if (!is.null(y)) {
y <- conversion.circular(y, units =

"radians", zero = 0,
rotation =

"counter",
modulo = "2pi")

attr(y, "class") <- attr(y,
"circularp") <- NULL

### assigning ranks to theta’s
r_i = rank(y,ties.method = "average");
data = data.frame(x,y,r_i);

}

if(is.null(y)){
y = conversion.circular(x[,2], units =

"radians", zero = 0,
rotation =

"counter", modulo
= "2pi");

attr(y, "class") <- attr(y,
"circularp") <- NULL;

# Creating the rank circular correlation
coeff #

r_i = rank(y,ties.method = "average");
data = data.frame(x=x[,1],y,r_i);

}

# sorted data set by X, ascending #
newdata = data[order(data$x),];

# calculating beta stats
n = nrow(newdata);
newdata$iteration = rank(newdata$x,

ties.method = "average");
newdata$beta = 2*pi*newdata$r_i/n;

T_C =
with(newdata,sum(iteration*cos(beta)));

T_S =
with(newdata,sum(iteration*sin(beta)));

U = (24*(T_Cˆ2 + T_Sˆ2))/((nˆ2)*(n+1));

# scaled correlation coefficient D_n
falls between [0,1]

if(n %% 2 == 0){
a_n = 1/(1+5*(1/(tan(pi/n)ˆ2)) +

4*(1/(tan(pi/n)ˆ4)))
}else{
a_n = 2*(sin(pi/n))ˆ4 /

((1+(cos(pi/n)))ˆ3)
}

D_n = a_n * ((T_Cˆ2) + (T_Sˆ2))

if(test){

p.val = pchisq(q = U,df = 2,lower.tail =
FALSE);

#rank.correlation is our U statistic14.
#scaled.correlation = D statistic
#p-value. U stat follows a Chi-Square

with 2 degree of freedom. as n->
infinity.

result = list(rank.correlation = U,
scaled.correlation = D_n ,
p.value = p.val);

}else{
result = list(rank.correlation = U,

scaled.correlation = D_n);
}
return(result);
}
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Simulating the Parametric Linear-Circular
Correlation Coefficient

rm(list=ls());
dir = "C:/Users/Robin/Dropbox/Circular

Data/";
setwd(dir);

library("circular");
library("reshape2");
library("ggplot2");
library("gridExtra");
library(foreach); # parallel processing
library(doSNOW); # more parallel processing
library("parallel"); # for the # of cores

finaldata = NULL;
## Sample Sizes we simulated ##
samplesize = c(15,30,50,100,500);
trials=100000;

## Multicore stuff ##
numcores = detectCores();
cluster = makeCluster(numcores, type =

"SOCK");
registerDoSNOW(cluster);

## actual simulation ##
finaldata = foreach(n =

1:length(samplesize),.combine = cbind)
%dopar% {

library(circular);
#getting the correlation coeff
replicate(trials,

cor.circular.lc(rnorm(samplesize[n],6,2),
circular(runif(samplesize[n],0,2*pi),units
= "radians"),TRUE)$statistic);

};
stopCluster(cluster);

#### Renaming Columns ####
colnames(finaldata)=paste0("sample.size.",
as.character(samplesize));

finaldata = as.data.frame(finaldata);

write.csv(finaldata,file =
paste0(dir,"(parametric) Sim
",format(Sys.time(), "%a %b %d
%Y"),".csv"));

#### Plotting ####

for(j in 1:length(samplesize)){
## Calculating F Distribution
finaldata$f = df(finaldata[,j],

df1 = 2,
df2= samplesize[j]-3);

### Melting the data and use the density
aesthetic for the chi-sq density

melt.data =
melt(finaldata[,c(j,length(finaldata))],id.vars
= "f");

## Calculating the Kolmogorov Smirnov ##
ks.result =

ks.test(finaldata[,j],"pf",df1 = 2,
df2 = samplesize[j]-3,alternative =
"two.sided");

## Calculating the simulated p-value ##
sim.p.value = sum(finaldata[,j]>qf(p =

.95,df1 = 2, df2 =
samplesize[j]-3,lower.tail =
TRUE))/trials;

#plot1 is the plot of the distribution of
the Chi-square and overlaying it with
the curve of the Chi-Sq(df = 2)

plot1 = ggplot(data = melt.data,
aes(f,value))+

geom_histogram(aes(x=value,y=..density..),
# Histogram with density instead of
count on y-axis

binwidth=.25,
colour="black", fill="white")+

stat_function(fun=function(x)
df(x,2,samplesize[j]-3),col="blue");
#overlaying with the curve of the
chi-sq

#plot2 is the normal probability plot of
the data

plot2 = qplot(sample =
finaldata[,j],distribution =qf,
dparams = list(df1 = 2, df2 =
samplesize[j]-3))+

geom_abline(aes(intercept=0,
slope=1),colour = "red")+

labs(title = paste("QQ Plot of n
=",samplesize[j]))+

annotate("text",
x=5,
y=round((min(finaldata[,j]))+3):(round(min(finaldata[,j]))),
label = c(paste("KS Test Stat

=",round(ks.result$statistic,digits
= 5)),

paste("KS p.value
=",round(ks.result$p.value,digits=5)),

paste("p > F_.95
=",sim.p.value),

paste("n =
",samplesize[j])),

hjust=0,
colour = "#0033FF");

#picture saving
png(filename = paste("n

=",samplesize[j],".png"),height=1024,width=1280,bg
= "transparent", antialias =
"cleartype");

grid.arrange(plot1,plot2,ncol = 2);
dev.off();

}
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Simulating the Nonparametric Linear-Circular
Correlation Coefficient

rm(list=ls());
dir = "C:/Users/Robin/Dropbox/Circular

Data/";
setwd(dir);

library("circular");
library("reshape2");
library("ggplot2");
library("gridExtra");
library(foreach); # parallel processing
library(doSNOW); # more parallel processing
library("parallel"); # for the # of cores
## Sample Sizes we simulated ##
samplesize = c(15,30,50,100,500,1000);
trials = 100000;
## Multicore stuff ##
numcores = detectCores();
cluster = makeCluster(numcores, type =

"SOCK");
registerDoSNOW(cluster);

## actual simulation ##
finaldata = foreach(n =

1:length(samplesize),.combine = cbind)
%dopar% {

library(circular);
replicate(trials,

cor.circular.lc.rank(runif(samplesize[n],0,1),
circular(runif(samplesize[n],0,2*pi),units
= "radians"),TRUE)$rank.correlation);

#replicate(trials,
cor.circular.lc.rank(rexp(samplesize[n],1),
circular(rexp(samplesize[n],1),units =
"radians"),TRUE)$rank.correlation);

#replicate(trials,
cor.circular.lc.rank(rexp(samplesize[n],1),
circular(rnorm(samplesize[n],0,1),units
= "radians"),TRUE)$rank.correlation);

#replicate(trials,
cor.circular.lc.rank(rnorm(samplesize[n],0,1),
circular(rvonmises(samplesize[n],0,1),units
= "radians"),TRUE)$rank.correlation);

};

stopCluster(cluster);

#### Renaming Columns ####
colnames(finaldata)=paste0("sample.size.",
as.character(samplesize));

finaldata = as.data.frame(finaldata);

write.csv(finaldata,file =
paste0(dir,"(nonparametric) Sim
",format(Sys.time(), "%a %b %d
%Y"),".csv"));

#### Plotting ####

for(j in 1:length(samplesize)){

## Calculating Chi-Sq Distribution
finaldata$chisq = dchisq(finaldata[,j],df

= 2)

### Melting the data and use the density
asthetic to take care of the chi-sq
density instead

melt.data =
melt(finaldata[,c(j,length(finaldata))],id.vars
= "chisq");

## Calculating the Kolmogorov Smirnov ##
ks.result =

ks.test(finaldata[,j],"pchisq",2,alternative
= "two.sided");

## Calculating the simulated p-value ##
sim.p.value = sum(finaldata[,j]>qchisq(p

= .95,df = 2,lower.tail =
TRUE))/trials;

#plot1 is the dist. of the Chi-square
overlayed with the Chi-sq(df = 2) curve

plot1 = ggplot(data = melt.data,
aes(chisq,value))+

geom_histogram(aes(x=value,y=..density..),
# Histogram with density instead of
count on y-axis

binwidth=.25,
colour="black",

fill="white")+
stat_function(fun=function(x)

dchisq(x,2),col="blue"); #overlaying
with the curve of the chi-sq

#plot2 is the normal probability plot
plot2 = qplot(sample =

finaldata[,j],distribution =qchisq,
dparams = list(df = 2))+

geom_abline(aes(intercept=0,
slope=1),colour = "red")+

labs(title = paste("QQ Plot of n
=",samplesize[j]))+

annotate("text",
x=5,
y=round((min(finaldata[,j]))+3):(round(min(finaldata[,j]))),
label = c(paste("KS Test Stat

=",round(ks.result$statistic,digits
= 5)),

paste("KS p.value
=",round(ks.result$p.value,digits=5)),

paste("p > Chisq_.95
=",sim.p.value),

paste("n =
",samplesize[j])),

hjust=0,
colour = "#0033FF");

#picture saving
png(filename = paste("n

=",samplesize[j],"(nonparametric).png"),height=1024,width=1280,bg
= "transparent", antialias =
"cleartype");

grid.arrange(plot1,plot2,ncol = 2);
dev.off();

}
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Simulating Ties

dir = "C:/Users/Robin/Dropbox/Circular
Data/";

setwd(dir);
library("circular");
library("reshape2");
library("ggplot2");
library("gridExtra");
library(foreach); # parallel processing
library(doSNOW); # more parallel processing
library("parallel"); # for the # of cores

samplesize = c(15,30,50,100);

multiplefunction =
function(linear,circular,test = FALSE){

## multiplefunction ##
# inputs:
# linear - a linear variable.
# circular - a circular variable
# Outputs:
# a vector containing the

nonparametric correlation coefficient
and the number of unique values

#
correlation =

cor.circular.lc.rank(linear,
circular,test)$rank.correlation;

linear.ties =
length(linear)-length(unique(linear));

return(c(correlation,linear.ties))
}
#### IN PARALLELL!!! WOOHOO ####
numcores = detectCores();
cluster = makeCluster(numcores, type =

"SOCK");
registerDoSNOW(cluster);

finaldata = foreach(n =
1:length(samplesize),.combine = rbind)
%dopar% {

library(circular);
replicate(1000000,

multiplefunction(round(runif(samplesize[n],0,10)),
circular(runif(samplesize[n],0,2*pi),units
= "radians"),TRUE));

};
stopCluster(cluster);
finaldata = as.data.frame(t(finaldata))

#### Renaming Columns ####
finaldata = as.data.frame(finaldata);
for(cnames in 1:length(finaldata)){
if(cnames %%2 == 1){
colnames(finaldata)[cnames]=c(paste0("sample.size.",
as.character(samplesize[ceiling(cnames/2)])));
}else{
colnames(finaldata)[cnames]=c(paste0("ties.",
as.character(samplesize[ceiling(cnames/2)])));
}

}
write.csv(finaldata,file = paste0(dir,"Ties

Sim ",format(Sys.time(), "%a %b %d

%Y"),".csv"));
#### Plotting ####
for(j in 1:(2*length(samplesize))){
if(j%%2==1){
data.location = ceiling(j/2);

finaldata$chisq = dchisq(finaldata[,j],df
= 2)

### Melting the data and use the density
asthetic to take care of the chi-sq
density instead

melt.data =
melt(finaldata[,c(j,length(finaldata))],id.vars
= "chisq");

ks.result =
ks.test(finaldata[,j],"pchisq",2,alternative
= "two.sided");

sim.p.value = sum(finaldata[,j]>qchisq(p
= .95,df = 2,lower.tail =
TRUE))/100000;

plot1 = ggplot(data = melt.data,
aes(chisq,value))+

geom_histogram(aes(x=value,y=..density..),
# Histogram with density instead of
count on y-axis

binwidth=.25,
colour="black", fill="white")+

stat_function(fun=function(x)
dchisq(x,2),col="blue")

plot2 = qplot(sample =
finaldata[,j],distribution =qchisq,
dparams = list(df = 2))+

geom_abline(aes(intercept=0,
slope=1),colour = "red")+

annotate("text",
x=5,
y=round((min(finaldata[,j]))+3):(round(min(finaldata[,j]))),
label = c(paste("KS Test Stat

=",round(ks.result$statistic,digits
= 5)),

paste("KS p.value
=",round(ks.result$p.value,digits=5)),

paste("p > Chisq_.95
=",sim.p.value),

paste("n =
",samplesize[data.location])),

hjust=0,
colour = "#0033FF");

message(paste("Printing", "n
=",samplesize[data.location],".png"));

png(filename = paste("n
=",samplesize[data.location],".png"),height=1024,width=1280,bg
= "transparent", antialias =
"cleartype");

grid.arrange(plot1,plot2,ncol = 2);
dev.off();

}
}
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Power Simulation where X is Exponential (...and
Normal)
X is Normal is commented out in this code. This function is
really long because both the Nonparametric and Parametric
Linear-Circular Correlation Coefficients were written out

completely in the foreach{} loop.

#### parameters to change ####
samplesize = c(15,30,50,100,500);
sim.results = NULL;
sim.results.temp = NULL;
trials = 5000;
Powercurve = NULL;
mu.val = seq(from = 1,to = 20, by = .2);

######## NORMAL ######################
# crt.cor = function (dta,mu){
# if((dta>0 && dta<(pi/2))){
# rnorm(n = 1,mean = 20,sd = 1);
# }else{
# rnorm(n = 1,mean = mu,sd = 1);
# }
# }
######## Exponential ##################

crt.cor = function (dta,mu){
if((dta>0 && dta<(pi/2))){
rexp(n = 1,rate=1/20);

}else{
rexp(n = 1,rate=1/mu);

}
}

######################################

## Multicore stuff ##
numcores = detectCores();
cluster = makeCluster(numcores, type =

"SOCK");
registerDoSNOW(cluster);

for(j in 1:length(samplesize)){
Powercurve = NULL;
for(k in mu.val){

sim.results = foreach(i =
1:trials,.combine =
rbind)%dopar%{
#functions required.
library("circular");

# crt.cor = function (dta,mu){
# if((dta>0 && dta<(pi/2))){
# rnorm(n = 1,mean = 20,sd =

1);
# }else{
# rnorm(n = 1,mean = mu,sd =

1);
# }
# }

crt.cor = function (dta,mu){
if((dta>0 && dta<(pi/2))){
rexp(n = 1,rate=1/20);

}else{

rexp(n = 1,rate=1/mu);
}

}

cor.circular.lc.rank =
function(x, y = NULL, test
= FALSE){

if (!is.null(y) & NROW(x) !=
NROW(y))

stop("x and y must have the
same number of
observations")

if (is.null(y) & NCOL(x) < 2)
stop("supply both x and y

or a matrix-like x")
ncx <- NCOL(x)
ncy <- NCOL(y)
if (is.null(y)) {
ok <- complete.cases(x)
x <- x[ok, ]

}
else {
ok <- complete.cases(x, y)
if (ncx == 1) {
x <- x[ok]

}
else {
x <- x[ok, ]

}
if (ncy == 1) {
y <- y[ok]

}
else {
y <- y[ok, ]

}
}
n <- NROW(x)
if (n == 0) {
warning("No observations

(at least after
removing missing
values)")

return(NULL)
}
### Converting y to radians

###
if (!is.null(y)) {
y <- conversion.circular(y,

units = "radians", zero
= 0,

rotation
=
"counter",
modulo
=
"2pi")

attr(y, "class") <- attr(y,
"circularp") <- NULL

### assigning ranks to
theta’s

r_i = rank(y,ties.method =
"average");
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data = data.frame(x,y,r_i);

}

if(is.null(y)){
y =

conversion.circular(x[,2],
units = "radians", zero
= 0,

rotation
=
"counter",
modulo
=
"2pi");

attr(y, "class") <- attr(y,
"circularp") <- NULL;

### Creating the rank
circular correlation
coeff

r_i = rank(y,ties.method =
"average");

data =
data.frame(x=x[,1],y,r_i);

}

#### sorted data set by X,
ascending ####

newdata =
data[order(data$x),];

#### calculating beta stats
n = nrow(newdata);
newdata$iteration =

rank(newdata$x,
ties.method = "average");

newdata$beta =
2*pi*newdata$r_i/n;

T_C =
with(newdata,sum(iteration*cos(beta)));

T_S =
with(newdata,sum(iteration*sin(beta)));

U = (24*(T_Cˆ2 +
T_Sˆ2))/((nˆ2)*(n+1));

#### scalled correlation
coefficient D_n falls
between [0,1]

if(n %% 2 == 0){
a_n =

1/(1+5*(1/(tan(pi/n)ˆ2))
+ 4*(1/(tan(pi/n)ˆ4)))

}else{
a_n = 2*(sin(pi/n))ˆ4 /

((1+(cos(pi/n)))ˆ3)
}

D_n = a_n * ((T_Cˆ2) +
(T_Sˆ2))

if(test){

p.val = pchisq(q = U,df =
2,lower.tail = FALSE);

#rank.correlation is our U
statistic14.

#scaled.correlation = D
statistic

#p-value. U stat follows a
Chi-Square with 2
degree of freedom. as
n-> infinity.

result =
list(rank.correlation =
U,

scaled.correlation
= D_n ,

p.value = p.val);
}else{
result =

list(rank.correlation =
U,

scaled.correlation
= D_n);

}
return(result);

}
cor.circular.lc =

function(x,y=NULL,test =
FALSE){

### x vector or matrix of
linear data

### y vector or matrix of
circular data

### test if test == TRUE then
a significance test for
the correlation is
computed

if (!is.null(y) & NROW(x) !=
NROW(y))

stop("x and y must have the
same number of
observations")

if (is.null(y) & NCOL(x) < 2)
stop("supply both x and y

or a matrix-like x")
ncx <- NCOL(x)
ncy <- NCOL(y)
if (is.null(y)) {
ok <- complete.cases(x)
x <- x[ok, ]

}
else {
ok <- complete.cases(x, y)
if (ncx == 1) {
x <- x[ok]

}
else {
x <- x[ok, ]

}
if (ncy == 1) {
y <- y[ok]

}
else {
y <- y[ok, ]
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}
}
n <- NROW(x)
if (n == 0) {
warning("No observations

(at least after
removing missing
values)")

return(NULL)
}
### Converting y to radians

###
if (!is.null(y)) {
y <- conversion.circular(y,

units = "radians", zero
= 0,

rotation
=
"counter",
modulo
=
"2pi")

attr(y, "class") <- attr(y,
"circularp") <- NULL

}
if(is.null(y)){
z =

conversion.circular(x[,2],
units = "radians", zero
= 0,

rotation
=
"counter",
modulo
=
"2pi");

attr(z, "class") <- attr(z,
"circularp") <- NULL;

r_xs = cor(x[,1],sin(z));
r_xc = cor(x[,1],cos(z));
r_cs = cor(cos(z),sin(z));

}else{

### calculating individual
components ###

r_xs = cor(x,sin(y));
r_xc = cor(x,cos(y));
r_cs = cor(cos(y),sin(y));

}
### calculating correlation

coeff linear-circular ###
cor.lc = (r_xcˆ2 + r_xsˆ2 -

2*(r_xc*r_xs*r_cs))/(1-r_csˆ2);

if(test){
f.stat =

(.5*(n-3)*cor.lc)/(1-cor.lc);
p.val = pf(f.stat,df1 = 2,

df2= n-3,lower.tail =
FALSE);

result = list(cor = cor.lc,
statistic = f.stat,
p.value = p.val);

}else{

result = list(cor = cor.lc);
}
return(result);

}

#simulating uniform around the
circular than applying
crt.cor

dta =
circular(runif(samplesize[j],0,2*pi),units
= "radians")

lin.dta =
sapply(dta,function(x)
crt.cor(x,k));

sim.results.temp =
c(cor.circular.lc(lin.dta,dta,test=TRUE)$p.value,

cor.circular.lc.rank(lin.dta,dta,test=TRUE)$p.value);

}

nonpar.power.val =
sum(sim.results[,2]<=.05)/trials;#nonparametric
correlation

par.power.val =
sum(sim.results[,1]<=.05)/trials;#parametric
correlation

#rbinding the values power values from
each sample size #

if(k != 1){
Powercurve =

rbind(Powercurve,c(k,nonpar.power.val,
par.power.val))

}else{
Powercurve = c(k,nonpar.power.val,

par.power.val);
}

message(paste0("sample size
",samplesize[j], ", mu value ",k))

}

Powercurve = data.frame(Powercurve);
colnames(Powercurve) = c("k",

"nonpar.power", "par.power");

#### Melting data for a stacked form or
"long" form. the way ggplot likes it
####

stacked.Powercurve = melt(Powercurve, id
= "k");

#### Outputting a png file ####
message(paste0("printing power curve for

sample size ", samplesize[j]));

someplot = ggplot(data =
stacked.Powercurve,aes(x=k,y=value,
colour = variable))+
geom_line()+
labs(title = paste("Power Curve n

=",samplesize[j]))+
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xlab("Values of mu for Exp(1/lambda)
from [pi/2,2pi]");

png(filename = paste("Power Study -
sample size
=",samplesize[j],".png"),height=1024,width=1280,bg
= "transparent", antialias =
"cleartype");

grid.newpage();
print(someplot+theme_gray(base_size=12*(1024/1280)))

dev.off();

}

stopCluster(cluster);
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Circular Data Sets Used for Code Verification

#### Testing the Parametric Linear-Circular
Correlation

# Measurments of Ozone Concentration (x)
and Wind Direction (theta)

x=c(28, 85.2, 80.5,4.7,45.9,12.7,72.5,
56.6, 31.5, 112, 20, 72.5, 16,45.9,
32.6, 56.6, 52.6, 91.8,55.2);

theta =
c(327,91,88,305,344,270,67,21,281,8,204,86,333,18,57,6,11,27,84);

#### Testing the Nonparametric
Linear-Circular Correlation

# Even n = 8
x = c(1.5,1.6,1.7,2.0,2.1,1.8,1.4,1.2);
theta = c(30,100,120,170,240,260,300,330);

# Possible odd
x=c(14,13.41421,12);
theta=c(0,45,90);

# Circannual distribution of simian births
at different latitudes (Gauqelin 1968).
n =5;

#U_n=.390, D_n = .098, R = .974

x = c(49,36,34,33.5,18);
theta = c(286,183,164,188,95);
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