
Dynamic Voxel Based Terrain Generation
Thomas Sanford

June 2015

Abstract

This project is an implementation of an editable terrain system. By maintaining an octree

of volumetric data and performing the mesh creation on the GPU, the program can allow for free

editing of the surroundings which is then reflected in real time. This allows for real time

applications to have terrain that can change depending on how the user interacts with it.

Introduction

There are many applications for real-time graphics, but one of the most well-known is in

the video game industry. A common theme in video games is the idea that there is a whole

virtual world to both explore and interact with. This leads developers to constantly try and create

new ways they can present this world. Terrain plays a huge part in that aspect. Whether the

setting is a city, a desert, a forest, or a mountain, how the terrain is presented can have a strong

impact on the player’s immersion. At the same time, terrain is not entirely static in the real world.

Given a significant impact, terrain may be moved, deformed, or destroyed. To present the game’s

world in as much realism as possible, these factors be taken into consideration. This is why it is

important to represent the landscape in a way that is not only fast, but is also editable in real time

and of a high enough quality to adequately express the setting of the game to the player.

Previous Work

One of the earliest ways of creating terrain has been in the form of a height map. Much

like a displacement map, a height map is a top down image that shows the elevation of the map

at a given coordinate. While this can be used to generate relatively decent hills or other purely

vertical geometry, it is lacking in the ability to

create landscapes that have more than one

height at a specific point. For instance, one

height value is not sufficient to create caves,

tunnels, or any sort of overhang. Another

downfall is that vertical elevation is the only

variable. While it would be possible to create an

editable height map system, only the height at a certain point could change. This is not sufficient

if the intention is to have a truly dynamic landscape.

Another common method of creating terrain is to simply create it as its own 3D model.

This method can produce great results, with the upper limit being only the skill of the modeler

who created it. It’s true that terrain created in this way can look great, but at the same time, it

loses the ability to be dynamic in any way. This can be covered for by making pre-scripted

destruction animations, but covering all possible cases would require significant time and effort

on the part of the asset creators. This method also requires potentially complex collision methods,

since the common practice of bounding volumes would not allow for caves or tunnels. In this

sense, it is still not an ideal solution.

More recently, people have been looking towards volumetric data as a way to create real

time terrain. This data is most commonly represented as a 3D grid of values that can be used to

create a surface. Because of this three dimensional grid, it is fairly trivial to compute collisions

with the surface. There are also many methods of ultimately representing volumetric data, such

as the Marching Cubes
[1]

 algorithm or Dual Contouring
[2]

. However, even though these methods

can create great looking terrain, there is still the issue of edibility. While volumetric data is

intrinsically easier to manipulate in terms of raw data, the actual generation of the final mesh can

take a not insignificant amount of time. In order to

have truly real time dynamic terrain, the resulting

mesh needs to be rebuilt every time the data is edited.

This can lead to momentary freezes or skips in the

visuals of the game. However, volumetric data on its

own has a lot of potential, so it was used as the base

for this project.

Algorithm

In order to create dynamic terrain generation, this solution works off of the basic

Marching Cubes
[1]

 algorithm. There are a few changes however. Instead of one grid of data, a

hybrid tree system is used. Also, all computations for building the mesh fall to a geometry shader

on the GPU. By adding these two main steps, it is possible to get all the benefits of volumetric

terrain while still allowing for seamless editing.

The general flow of the program follows these steps. First the user creates a new root node. This

requires four parameters, a central position, the size of the final grid, the resolution of each leaf,

and the maximum space allowed between data points. With this data it recursively creates the

octree structure, each node spawning eight more nodes until the desired resolution has been

achieved. These final leaves are of a separate class that handles the various functions that affect

their data. This octree of chunks is the main spatial data structure for the program. Octrees are

ideal for spatial subdivision as it divides cubic areas into finer cubic areas and allows for large

irrelevant sections to be ignored with a simple bounding box test. Once the structure is initialized,

the user is free to add or

remove shapes from the

data grid. As previously

stated, checking the

bounding box of the

parent node allows for

the exclusion of all

unnecessary grid tests

since the parent completely contains all children. This significantly improves the speed with

which the data can be edited and allows for a larger total map size.

 At this point, the user has an empty data grid. Data can be added or removed with the

appropriate function calls. Depending on the desired shape, the program will use an implicit

function to edit the data values in the grid. When removing a shape, only points currently inside

a surface are edited, while adding a shape only affects voxels outside of the surface. This allows

for the addition and removal of multiple shapes while not affecting any current data. This

approach works well with volumetric data since implicit equation results easily lend themselves

to isosurface checks.

While adding and removing geometry a user provided parameter dictates whether or not

to rebuild the mesh. This allows for mass editing of data if many edits need to happen at once.

The act of building the mesh in this scope refers to how the data is packaged for the GPU. This

would be the step where the Marching Cubes
[1]

 algorithm would occur, going over each voxel

and creating a set of triangles for the resulting mesh. Unfortunately, this leaves the user waiting a

noticeable fraction of a second between edits, while also being unable to move the camera.

While this may be acceptable in some uses, such as in a level editor, if the system is to be

integrated into an actual game, this is not ideal. To cover for this, the actual mesh is not

generated on the CPU. All volumetric data for the leaf is packed into a 3D texture and passed to

the GPU, along with 2D textures that contain the required Marching Cubes look up tables and

the central position for the chunk. The mesh is then assembled on the GPU by making use of the

Marching Cubes
[1]

 algorithm on a geometry shader.

There are many types of shaders, with the most common being the vertex and fragment

shader combination. The geometry shader is an addition to this pair, and lies inbetween the

vertex shader and fragment shader in the pipeline. While the vertex shader allows for

calculations to be performed on existing vertices, the geometry shader allows for the creation of

new vertices. This is interesting when considering Marching Cubes
[1]

 since it deals with discrete

voxels of uniform size. This allows each voxel cube to be represented as a single central point

when making the draw calls. All the resulting geometry can then be created on the GPU,.

Marching Cubes is performed by looking at each

voxel in the data grid. Each point has a floating point

number that corresponds to its relation to the desired

isosurface. The surface in this implementation has an

isovalue of zero. This means if the value is negative then

it is inside or below the surface while a positive value

represents points above or outside of the surface. Using

this information the algorithm looks at each set of eight

points that create a single voxel cube on the data grid. Using the provided lookup tables, it is

possible to find the corresponding mesh segment that should be created given the sign changes

along the voxel’s edges. The geometry shader does this for each voxel in the grid. Because it is

performed on the GPU instead of the CPU, this allows the user to not experience any temporary

freezes as the only CPU bound computations are simple data edits.

The resulting terrain is also textured. Since a mesh generated from volume data has no

natural texture coordinates, they are calculated in the fragment shader. The texture for the

material is set to repeating, and three texture lookups are performed for each fragment. The

texture coordinates are the xy, yz, and xz coordinates of the fragment in world space. This allows

the texture to be projected on to the surface. However, only one color is ultimately needed, not

three. To get this, the color is interpolated by using the remaining coordinate value of the normal.

For instance, the xy color corresponds to the z coordinate of the normal. Because the normals are

unit vectors, the color is then scaled by the square of its corresponding normal value. The final

color is given by (nz
2

 * color(px, py)) + (nx
2

 * color(py, pz)) + (ny
2

 * color(px, pz)), where n is the

normal vector and p is the world space coordinates of the fragment. This achieves a smooth

blend of the texture around the resulting surface.

Results

A small game was created using this algorithm at its core. The player starts at the top

level of the grid and has to dig their way down to the bottom. Pressing the space bar excavates a

sphere in front of them, while pressing ‘c’ creates a sphere. There are two material types – sand

which makes up the majority of the volume, and stone which serves as an obstacle that cannot be

dug through. This was done to give the game a goal as well as show the support for multiple

materials that the volumetric data provides.

Future Work

Some future work that could be done on this project would most likely be focused on the

initial allocation of memory. While the system itself supports practically any resolution, it is

limited by the amount of memory available and the time it takes to allocate it. It is possible to

have much better quality of meshes as a result, but it could take anywhere from two to thirty

minutes to set up depending on the supplied parameters. The current build starts in only a few

seconds which is satisfactory, but future work may allow for much better resolutions in a similar

amount of time.

Another item that could be added is level of detail rendering. The resolution of each

chunk does not change during runtime, so all data is sent and processed, even if it ultimately

renders to a small part of the screen. By diminishing the resolution of the grid as the camera

moves away, it would be possible to see performance increases as less data needs to be processed

while maintaining the same graphical quality. The octree system was initially designed with this

addition in mind so it would be fairly straight forward to implement.

Conclusion and Limitations

 Ultimately, this algorithm is successful at creating an editable terrain system that can run

in real time. The octree helps speed up the current implementation, but also leaves room for the

algorithm to be expanded. Some limitations exist though. Because the geometry shader builds

each section of the mesh in discrete parts, it has no knowledge of vertices outside any one voxel.

This leads to the flat shading seen in the images as smooth normal cannot be computed without

knowing the neighboring vertices. For a similar reason, shadows are not supported. The common

practice of using a shadow map would require the mesh to be built twice per frame, once from

the light’s perspective and again from the camera’s, since the geometry is not static. Outside of

these limitations, this is a solid solution for the problem of real time terrain.

Resources

Papers:

[1] Lorensen and Cline 1987. Marching Cubes: A High Resolution 3D Surface Construction

Algorithm.

[2] Ju, Losasso, Schaefer, and Warren 2002. Dual Contouring of Hermite Data.

Images:

Figure 1: http://en.wikipedia.org/wiki/Heightmap

Figure 2: http://www.interactive-graphics.de/j_images/VMV2013/results1.png

Figure 3: http://upload.wikimedia.org/wikipedia/commons/thumb/2/20/Octree2.svg/1280px-

Octree2.svg.png

Figure 4: http://http.developer.nvidia.com/GPUGems3/elementLinks/01fig04.jpg

General Resources:

Details and Tables for Marching Cubes: http://paulbourke.net/geometry/polygonise/

Specifics on porting Marching Cubes to GPU: http://www.icare3d.org/codes-and-

projects/codes/opengl_geometry_shader_marching_cubes.html

