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An Optimal Method to Combine Results from Different Experiments 

By Theodore P. Hill and Jack Miller 

Georgia Institute of Technology and Lawrence Berkeley National Laboratory 

hill@math.gatech.edu, miller@lbl.gov 

When different experiments measure the same unknown quantity, such as Planck’s constant, how 

can their results be consolidated in an unbiased and optimal way? Is there a good method to 

combine data from experiments that may differ in time, geographical location, and methodology 

and even in underlying theory? 

The consolidation of data from different sources can be particularly vexing in the determination 

of the values of the fundamental physical constants. For example, the U.S. National Institute of 

Standards and Technology (NIST) recently reported “two major inconsistencies” in some 

measured values of the molar volume of silicon Vm(Si) and the silicon lattice spacing d220, 

leading to a recommended ad hoc factor of 1.5 increase in the uncertainty in the value of 

Planck’s constant h [MTN1, p. 54, MTN2]. (One of those two inconsistencies has subsequently 

been resolved [M].) 

But input data distributions that happen to have different means and standard deviations are not 

necessarily “inconsistent” or “incoherent” [D, p 2249].  If the various input data are all normally 

or exponentially distributed, for example, then every interval centered at the unknown positive 

true value has a positive probability of occurring in every one of the independent experiments. 

Ideally, of course, all experimental data, past as well as present, should be incorporated into the 

scientific record. But in the case of the fundamental physical constants, for instance, this could 

entail listing scores of past and present experimental datasets, each of which includes results 

from hundreds of experiments with thousands of data points, for each one of the fundamental 

constants. Most experimentalists and theoreticians who use Planck’s constant, however, need a 

concise summary of its current value rather than the complete record. Having the mean and 

estimated standard deviation (e.g. via weighted least squares) does give some information, but 

without any knowledge of the distribution, knowing the mean within two standard deviations is 

only valid at the 75% level of significance, and knowing the mean within four standard 

deviations is not even significant at the standard 95% confidence level. Is there an objective, 

natural and optimal method for consolidating several input-data distributions into a single 

posterior distribution P , without ad hoc adjustments or arbitrary assignment of weights to the 

input data sets? This article proposes such a method. 

First, it is useful to review some of the shortcomings of standard methods for consolidating data 

from several different input distributions. For simplicity, consider the case of only two different 
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experiments in which independent laboratories Lab I and Lab II measure the value of the same 

quantity. Lab I reports its results as a probability distribution (e.g. via an empirical histogram 

or probability density function), and Lab II reports its findings as . 

Averaging the Probabilities 

One common method of consolidating two probability distributions is to simply average them -

for every set of values A, set If the distributions both have densities, 

for example, averaging the probabilities results in a probability distribution with density the 

average of the two input densities (Figure 1). This method has several significant disadvantages. 

First, the mean of the resulting distribution is always exactly the average of the means of 

, independent of the relative accuracies or variances of each. (Recall that the variance is 

the square of the standard deviation.) But if Lab I performed twice as many of the same type of 

trials as Lab II, the variance of  would be half that of , and it would be unreasonable to 

weight the two respective empirical means equally. 

A second disadvantage of the method of averaging probabilities is that the variance of is 

always at least as large as the minimum of the variances of  (see Figure 1), since 

. If are nearly identical, 

however, then their average is nearly identical to both inputs, whereas the standard deviation of a 

reasonable consolidation should be strictly less than that of both . The method of 

averaging probabilities completely ignores the fact that two laboratories independently found 

nearly the same results. Figure 1 also shows another shortcoming of this method - with normally-

distributed input data, it generally produces a multimodal distribution, whereas one might desire 

the consolidated output distribution to be of the same general form as that of the input data -

normal, or at least unimodal. Generalizing this method to allow biased (unequal) weights has the 

same drawbacks, and the additional problem of assigning and justifying the unequal weights. 
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Figure 1. Averaging the Probabilities. 

(Green curve is the average of the red (input) curves. Note that the variance of the average 

is larger than the variance of either input.) 

Averaging the Data 

Another common method of consolidating data - one that does preserve normality - is to average 

the underlying input data itself. That is, if the result of the experiment from Lab I is a random 

variable 
1X (i.e. has distribution 

1P 2X  (independent of ) and the result of Lab II is 
1X , with 

distribution 2P ), take P to be the distribution of . As with averaging the 

distributions, averaging the data also results in a distribution that always has exactly the average 

of the means of the two input distributions, regardless of the relative accuracies of the two input 

data-set distributions (see Figure 2). With this method, on the other hand, the variance of P is 

never larger than the maximum variance of  (since ), 

whereas some input data distributions that differ significantly should reflect a higher uncertainty. 

A more fundamental problem with this method is that in general it requires averaging data 

obtained using very different and even indirect methods, including for example the watt balance 

and x-ray and optical interferometer measurements used in part to obtain the 2006 CODATA 

recommended value for Planck’s constant. 

Figure 2. Averaging the Data 

(Green curve is the average of the red data. Note that the mean of the averaged data is 

exactly the average of the means of the two input distributions, even though they have 

different variances) 
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New Method – Conflating the Data 

An alternative method for consolidating different input distributional data, called the conflation 

of distributions (designated with the symbol “&” to suggest consolidation of ) has none 

of these disadvantages. Conflation is easy to calculate and visualize, and has many useful 

properties. If the input distributions all have densities, then the conflation 

of is the probability distribution with density that is the normalized 

product of the input densities. That is, if the densities of are , respectively, 

then is the probability distribution with density (see Figure 3)

and 
1P 2P

. 1 2

1 2

( ) ( ) ... ( )
( )

( ) ( ) ... ( )

n

n

f x f x f x
f x

f t f t f t dt

(If the denominator is zero or is infinite, the definition is slightly different, and for discrete input 

distributions, the analogous definition is the normalized product of the probability mass 

functions – see [H] for details.) The conflation of distributions has a natural heuristic and 

practical interpretation – gather data from the independent laboratories sequentially and 

simultaneously, and record the values only when the laboratories (nearly) agree. 

Figure 3. Conflating Distributions 
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(Green curve is the conflation of red curves. Note that the mean of the conflation is closer 

to the mean of the input distribution with smaller variance, i.e. with greater accuracy) 

It may at first glance seem counterintuitive that the conflation of two relatively broad 

distributions can be a much narrower one (Figure 3). However if both measurements are 

assumed equally valid, then the true value should lie in the overlap region between the two 

distributions with high probability. Looking at it statistically, if one lab makes 50 measurements 

and another lab makes 100,  then the standard deviations of their resulting distributions will 

usually be different. If the labs' methods are different, with different systematic errors, or their 

methods rely on different fundamental constants with different uncertainties, then the means will 

likely be different too. But the bottom line is that the total of 150 valid measurements is 

substantially greater than either lab's data set, so the standard deviation should indeed be smaller. 

Advantages of Conflation 

Conflation has significant practical and mathematical advantages. It is easy to calculate and 

visualize, and easy to update (simply conflate the latest input with the overall conflation of past 

inputs). As was shown in Figure 3, the mean of the conflation gives more weight to means of 

input distributions arising from more accurate experiments (recall that the methods of averaging 

the probabilities and averaging the data both result in a distribution whose mean is exactly the 

average of the input means; Figures 1 and 2.) 

Conflations of normal (Gaussian) distributions are always normal (see Figure 3, and red curve in 

Figure 4B), and coincide with the classical weighted least squares method, hence yielding BLUE 

(Best Linear Unbiased Estimators) and MLE (Maximum Likelihood) estimators (cf. [A],[RS]). 

Many of the other important classical families of distributions, including gamma, beta, uniform, 

exponential, Pareto, Laplace, Bernoulli, zeta and geometric families, are also preserved under 

conflation. 
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Figure 4A. Three Input Distributions 

Figure 4B. Comparison of Averaging Probabilities, Averaging Data, and Conflating 

(Green curve is average of the three input distributions in Figure 4A, blue curve is average 

of the three input datasets, and red curve is the conflation.) 

Most importantly, however, the conflation of several distributions is optimal in three significant 

mathematical respects. First, the conflation is the unique distribution that minimizes the 

maximum loss of the Shannon Information, a classical formal measure of information.  When the 

goal is to consolidate information from several (input) distributions into a single (output) 

distribution, replacing several distributions by a single distribution will clearly result in some 

loss of information, however that is defined. The Shannon Information (also called the surprisal, 

or self-information), ( )PS A , obtained by observing an event A in an experiment P is 

(so the smaller the value of ( )P A , the greater the information or surprise). 

The (combined) Shannon Information of P1, P2,…, Pn for the event A, is 
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, and the loss between the Shannon Information of a 
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distribution P and for the event A is . Thus the loss of information 

depends on the outcome A observed.  The conflation of P1, P2,…, Pn is the unique probability 

distribution P that makes the maximum loss of Shannon Information, among all possible 

observed outcomes A, as small as possible. 

The conflation of the distributions is also the unique probability distribution that makes the 

variation of these likelihood ratios as small as possible. In classical hypotheses testing, a standard 

technique to decide from which of n known distributions given data actually came is to 

maximize the likelihood ratios, that is, the ratios of the probability density or probability mass 

functions. Analogously, when the objective is how best to consolidate data from those input 

distributions into a single (output) distribution P

x

, one natural criterion is to choose P so as to 

make the ratios of the likelihood of observing under P  to the likelihood of observing x under 

all of the (independent) distributions { }iP as close as possible. 

The conflation of the distributions is also the unique probability distribution that preserves the 

proportionality of likelihoods. A criterion similar to likelihood ratios is to require that the output 

distribution P reflect the relative likelihoods of identical individual outcomes under the . For { }iP

example, if the likelihood of all the experiments { }iP observing the identical outcome x is twice 

that of the likelihood of all the experiments { }iP observing y, then P(x) should also be twice as 

large as P(y). 

Conflation has one more advantage over the methods of averaging probabilities or data. In 

practice, assumptions are often made about the form of the input distributions, such as an 

assumption that underlying data is normally distributed [MTN1]. But the true and estimated 

values for Planck’s constant are clearly never negative, so the underlying distribution is certainly 

not truly normally distributed – more likely it is truncated normal. Using conflations, the 

problem of truncation essentially disappears – it is automatically taken into account. If one of the 

input distributions is summarized as a true normal distribution, and the other excludes negative 

values, for example, then the conflation will exclude negative values, as is seen in Figure 5. 
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Figure 5. (Green curve is the conflation of red curves. Note that the conflation has no 

negative values, since the triangular input had none.) 

Example with {220} Lattice Spacing Measurements 

The input data used to obtain the CODATA 2006 recommended values and uncertainties of the 

fundamental physical constants includes the measurements and inferred values of the absolute 

{220} lattice spacing of various silicon crystals used in the determination of Planck’s constant 

and the Avogadro constant. The four measurements came from three different laboratories, and 

had values 192,015.565(13), 192,015.5973(84), 192,015.5732(53) and 192,015.5685(67), 

respectively [MTN2, TableXXIV], where the parenthetical entry is the uncertainty. The 

CODATA Task Force viewed the second value as “inconsistent” with the other three (see red 

curves in Figure 6) and made a consensus adjustment of the uncertainties. Since those values 

“are the means of tens of individual values, with each value being the average of about ten data 

points” [MTN2], the central limit theorem suggests that the underlying datasets are 

approximately normally distributed as is shown in Figure 6 (red curves).  The conflation of those 

four input distributions, however, requires no consensus adjustment, and yields a value 

essentially the same as the final CODATA value, namely, 192,015.5762 [MTN2, Table LIII], but 

with a much smaller uncertainty. Since uncertainties play an important role in determining the 

values of the related constants via weighted least squares, this smaller, and theoretically 

justifiable, uncertainty is a potential improvement to the current accepted values. 
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Figure 6. (The four red curves are the distributions of the four measurements of the {220} 

lattice spacing underlying the CODATA 2006 values; the green curve is the conflation of 

those four distributions, and requires no ad hoc adjustment.) 

Conclusion 

The conflation of several input-data distributions is a probability distribution that summarizes the 

data in an optimal and unbiased way. The input data may already be summarized, perhaps as a 

normal distribution with given mean and variance, or may be the raw data themselves in the form 

of an empirical histogram or density. The conflation of these input distributions is easy to 

calculate and visualize, and affords easy computation of sharp confidence intervals. Conflation is 

easy to update, is the unique minimizer of loss of Shannon information , the unique minimal 

likelihood ratio consolidation and the unique proportional consolidation of the input 

distributions. Conflation of normal distributions is always normal, and conflation preserves 

truncation of data. Perhaps the method of conflating input data will provide a practical and 

simple, yet optimal and rigorous method to address the basic problem of consolidation of data. 
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