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Abstract 

Lévy’s classical continuity theorem states that if the pointwise limit of a sequence of 

characteristic functions exists, then the limit function itself is a characteristic function if 

and only if the limit function satisfies a single universal limit condition (in his case, the limit 

at zero is one), in which case the underlying measures converge weakly to the probability 

measure represented by the limit function. It is the purpose of this article to give a 

number of direct analogs of Lévy’s theorem for other probability-representing functions 

including moment sequences, maximal moment sequences, mean-residual-life functions, 

Hardy-Littlewood maximal functions, and failure-rate functions. In each of these cases 

the single crucial condition on the limit function often relates to conservation of mass or 

moment, but a general theory encompassing all of these examples is still missing. 

§1 Introduction 

In general, limits of characteristic functions of probability measures are not character

istic functions, limits of moment sequences are not moment sequences, limits of densities 

are not densities, and limits of many maximal functions such as failure rate functions or 

Hardy-Littlewood functions are themselves not failure rate functions or Hardy-Littlewood 

functions. On the other hand, for each of these examples and a number of analogous re

sults, the only additional requirement for the limit function to itself be a member of the 
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representing class of functions is that the limit function satisfy one universal limit condi

tion. With Lévy’s continuity theorem as prototype, the purpose of this note is to establish 

a number of similar continuity theorems for weak convergence of probability measures. 

The underlying intuition is that many of the most basic defining properties of probabi

lity-representing functions are preserved by limits. For example, the limit of convex func

tions is convex, the limit of measurable functions is measurable, the limit of non-negative 

definite functions is non-negative definite, the limit of non-decreasing functions is non-

decreasing, the limit of d-periodic functions is d-periodic, and the limit of functions with 

values in [a, b] has values in [a, b]. Continuity, however, is in general not preserved under 

limits, and therefore if continuity is necessary (in addition to non-negative definiteness, 

convexity, etc.) for a function to be an element of a representing class, then that continu

ity condition is often the only additional property the limit function must satisfy in order 

for it to be in the class. 

The crucial continuity conditions in the theorems below often relate to conservation 

of mass or moment (tightness or uniform integrability), but a general theory containing 

all these results is still missing. 

§2 General Probability Distributions 

Throughout this note: N denotes the natural numbers; Z the integers; R and Rk real 

and k-dimensional Euclidean space, respectively; C the complex plane; B and Bk the real 

and k-dimensional Borel subsets of R and Rk; R+ the non-negative reals [0, ≤); ϕ(a) the 

Dirac (point) mass at a; a ⇒ b the minimum of a and b; E(X) the expected value of the 

random variable X; and L(X) the distribution (law) of the random variable X. 

As a first example of Lévy-like continuity theorems, consider the well-known gen

eralization of the classical one-dimensional case of Lévy’s theorem to the general finite 

dimensional setting. (Recall that the characteristic function of an Rk-valued random vec

tor X is given by �x(ψv) = E(ei∈w,X�), where ∈·, ·� is the Euclidean inner product.) 

functions (�k) respectively. If lim �k = g, then there is a Borel probability measure P 

Theorem 2.1. Suppose (Pn n=1 are Borel probability measures on Rk with characteristic 

n�� 
w

on Rk with characteristic function g if and only if lim g(ψx) = ψ1, in which case Pn −� P . 
�x��0 
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Proof. (See Theorem 18.21 of Fristedt and Gray (1997). Note also that the proof that 

distinct Borel probability measures on Rk have distinct characteristic functions uses the 

Parseval relation when k > 1.) 

Not all classical probability-representing functions share this property that all point-

wise limits of such functions are themselves probability-representing functions of that same 

type if and only if they satisfy a single universal limit condition. For instance, consider 

the case of classical empirical distribution functions. 

Example 2.2. Let (Fn)� and (Gn)� be the cdf’s for the Dirac point masses (ϕ( 1 ))n=1 n=1 
n 

and (ϕ( −1 ) respectively. Then lim Fn = g1 and lim Gn = g2 both exist, but only g2 is)
n n�� n�� 

a cdf, since g1 is not right continuous at zero, even though ϕ( 1 ) and ϕ( −1 both converge )
n n 

weakly to ϕ(0). 

The problem in Example 2.2, however, is simply the artificial convention of right 

continuity in the classical definition of cdf, and that is easy to repair in the following way. 

Definition 2.3. For a non-decreasing function g : R � [0, 1], let ĝ denote the equivalence 

class of all non-decreasing functions from R to [0, 1] which agree with g at all continuity 

points of g. (In Example 2.2 above, for instance, g1 ≥ ĝ2.) Conversely, given such an 

equivalence class ĝ, let g denote the unique right continuous element in ĝ. Also, let lim ̂gn 

denote the equivalence class of lim gn, if it exists. 

Clearly there is a one-to-one correspondence between Borel probability measures and 

equivalence classes of cdf’s, and this correspondence leads to the following very simple 

Lévy-like theorem. 

Theorem 2.4. Suppose (Fn)� are the cdf’s for Borel probability measures (Pn)� Ifn=1 n=1. 

ˆlim Fn = ĝ, then there is a Borel probability measure P with generalized cdf ĝ if and 
n�� 

w
only if lim g(x) − g(−x) = 1, in which case Pn −� P . 

x�� 
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Proof. Clearly g is non-decreasing with values in [0, 1], each Fn is. By definition, g is 

right continuous, so g is the cdf for a Borel probability measure iff lim g(x) = 0 and 
x�−� 

w
lim g(x) = 1 iff lim g(x) − g(−x) = 1, in which case Pn −� P since Fn � g at all 
x�� x�� 

continuity points of g. 

An analogous result for half-space representing functions can be formulated using 

essentially the same arguments, since a Borel probability measure on Rk is determined by 

its measures of half-spaces (e.g., Feller (1971)). That is, P is uniquely determined by the 

functions (� (ψa, b))�a�Rk,b�R, where � (ψa, b) = P (H+(ψa, b)), and H+(ψa, b) = {ψx ≥ Rk :
P P 

aixi > b}. The corresponding result for this setting, roughly speaking, says that if 

� (ψa, b) converges for all a, b as n � ≤, then the limiting functions {g(ψa, b)} correspond 
P 

n 
w

to a Borel probability (and Pn −� P ) if and only if lim g(ψa, b) − g(ψa, −b) = 1 for all 
b�� 

ψa ≥ Rk . 

The final result in this section is a Lévy-like continuity theorem for completely general 

Borel probabilities (e.g., no moment or continuity conditions) supported on the positive 

reals. 

Definition 2.5. For a Borel probability measure P with support in R+, let �P : R+ � R+ 

be given by 

�P (t) = E(X ⇒ t), 

(where L(X) = P ). 

Theorem 2.6. Suppose (Pn)
� are Borel probability measures with support in R+ .n=1 

If lim � = g, then there exists a Borel probability P with �P = g if and only if 
Pn�� n 

w
lim �(t + 1) − �(t) = 0, in which case Pn −� P . 
t�� 

The proof will be based on the following lemma, which is an analog of a result of Gilat 

(1987) for the maximal function E(X → t) and distributions with finite mean. 

Lemma 2.7. There is a one-to-one correspondence between Borel probability measures 

on R+ and the set of all functions � : R � R satisfying 

(1a) � is concave 
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(1b) � is non-decreasing
 

(1c) �(t) = t for t ≡ 0 

(1d) lim �(t + 1) − �(t) = 0 
t�� 

Moreover, this correspondence is given by P ⇔� {E(X ⇒ t), t ≥ R}, where L(X) = P ; and 
(�(t+h)−�(t))

�∞ 
−(t) ⇔� P ([t, ≤)), where �∞ is the left-hand derivative lim of �.− hh→0 

Proof of Lemma 2.7. Suppose P is a Borel probability measure with support in R+, and 

let X be a random variable with L(X) = P . Clearly �P (t) := E(X ⇒ t) satisfies (1a)–(1d). 

Conversely, suppose � satisfies (1a)–(1d). Then (1a) implies that �∞ 
− exists and is left-

continuous everywhere; (1b) implies that �∞
−(0) = 1; − ∧ 0 everywhere; (1c) implies that �∞ 

and (1a,d) imply that �−
∞ (t) � 0 as t � ≤. Hence �∞ is the left-continuous version, − 

P ([t, ≤)), of the distribution function for a unique Borel probability P . 

Remark. lim �P (t) = m < ≤ if and only if P has finite mean m, in which case (1d) is 
t�� 

trivial.
 

Proof of Theorem 2.6. By Lemma 2.7, � satisfies (1a–d), with � = � , for all
 
P P 

n n 

n ≥ N. Thus g = lim � is non-decreasing and concave, and satisfies g(t) = t for t ≡ 0.
P 

n 

Thus by Lemma 2.7 again, there exists a Borel probability P with support in R+ and 

satisfying �P = g if and only if g(t + 1) − g(t) � 0 as t � ≤. 
w

It remains only to show that � � �P implies that Pn −� P . This follows from the 
P 

n 

correspondence given in Lemma 2.7, which implies that the cdf’s of Pn converge to the cdf 

of P at all continuity points of P . 

As the following example shows, if the supports of (Pn) are not bounded below, then 
w

−� P does not imply that � � �P .Pn P 
n 

1 n−1Example 2.8. Let Pn = ϕ(−n) + ϕ(1) for n ≥ N, and let P = ϕ(1). Clearly
n n 

w
Pn −� P , but lim � ∞(0) = −1 = 0 = �P (0).

P 
n 
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Replacing E(X ⇒ t) by E(X − t)+ in Definition 2.5 will yield analogous results for 

mean residual life functions. A related theorem in Krengel and Lin (1987) shows that if 

E(Xn −t)
+ and E(Xn +t)

− converge to finite limits for all t as n � ≤, then Pn (= L(Xn)) 

always converges in distribution. Without the continuity condition, however, the limiting 

functions may in general not be E(X − t)+ and E(X + t)− . 

§3 Distributions with Finite Means 

In this section, several Lévy-like continuity theorems will be established for distribu

tions with finite means. 

For probability-representing functions such as the potential function 

UP (t) := E|X − t| 

or the mean residual life function 

LP (t) := E(X − t)+ , 

(cf. Van der Vecht (1986)), direct analogs of Theorem 2.6 for distributions with finite 

means can be established by replacing E(X ⇒ t) by E|X − t| or E|X − t|+, and replacing 

the hypothesis of positive support by the hypothesis of integrability. In a similar vein, 

the next theorem gives an analog for another classical representation function, the Hardy-

Littlewood maximal function. 

Definition 3.1. For a real Borel probability measure P with finite mean, let HP : (0, 1) � 

R denote the Hardy-Littlewood maximal function 

1 t 

HP (t) = F −1(s)ds, 
t 0 

where F −1 is the generalized upper inverse, or quantile function, corresponding to the cdf 

F for P . 

Theorem 3.2. Suppose (Pn) are real Borel probability measures with finite means and 

Hardy-Littlewood maximal functions (Hn), respectively. If lim Hn(t) = g(t) for all t ≥ 
n�� 

(0, 1), then there exists a Borel probability P with finite mean and satisfying HP = g if 
w

and only if lim g(t) < ≤, in which case Pn −� P . 
t→1 
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Sketch of Proof. First check that a Borel probability with finite mean is uniquely 

determined by its Hardy-Littlewood maximal function (via F −1(t) = H(t) + tH ∞(t)), and 

that a function h : (0, 1) � R is a Hardy-Littlewood maximal function for some probability 

distribution with finite mean iff h is non-decreasing, lim h(t) < ≤, and th(t) is convex in 
t→1 

t. Since it is the limit of such functions, g itself is non-decreasing and tg(t) is convex in 

t, so the only remaining condition is finiteness of the left limit of g at 1. The conclusion 
w

−� P follows since HPn � HP implies F −1 � F −1 .Pn Pn P 

The next result, the main theorem in (Hill and Spruill (1994)), is based on a repre

sentation theorem of Hoeffding for maximal moments. 

Definition 3.3. For a real Borel probability measure P with finite mean, (Mk)
� = k=1 

(Mk(P ))1 are the maximal moments k=1 

Mk(P ) = E(X1 → · · · → Xk) 

where X1, X2, . . . , Xk are i.i.d. with L(X) = P . (Note that E|X| < ≤ � Mk(P ) < ≤ for 

all k, where L(X) = P .) 

Theorem 3.4. Suppose (Pn) are Borel probability measures with support in R+ and finite 

means. If lim Mk(Pn) = gk for all k ≥ N, then there exists a Borel probability P with 
n�� 

gk w
Mk(P ) = gk for all k ≥ N if and only if lim = 0, in which case Pn −� P .

kk�� 

Proof. (See Hill and Spruill (1994); for an alternative proof based on characterizations 

of expectation sequences of maximal order statistics, see Kolodynski (2000).) 

In some Lévy-like continuity theorems, the single necessary and sufficient condition 

on the limit function that it represent a probability distribution is most easily expressed 

in non-limit terms. In the next theorem, the crucial condition is easily expressed in terms 

of a sequence of equalities, a limit version of which is possible but cumbersome. 
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Definition 3.5. For a real Borel probability measure P with finite mean, let the sequential 
z i−1barycenter array (mi,k(P ))� be given inductively as follows: i=1 k=1 

m1,1(P ) = xP (dx) 

mi,2j (P ) = mi−1,j 

mi,2j−1(P ) = E(X | X ≥ (mi−1,j−1,mi−1,j ]) if F (mi−1,j ) > F (mi−1,j−1) 

= mi−1,j (P ) otherwise 

with the convention that mi,0 = −≤ and mi,2i = ≤, where L(X) = P and F is the cdf 

for P . 

Theorem 3.6. Suppose (Pn)� are real Borel probability measures with finite means. n=1 

If lim mi,k(Pn) = gi,k for all i and k, then there exists a Borel probability P with 
n�� 

mi,k(P ) = gi,k for all i and k if and only if 

(2) gi,4k−3 = gi,4k−2 ∨ gi,4k−1 = gi,4k−2 for all i and k, 

(or equivalently, 

2i−2 

lim �sgn|gi,4k−2 − gi,4k−3| − sgn|gi,4k−1 − gi,4k−2|� = 0 
i�� 

k=1 

w
where sgn a = −1 if a < 0, = 0 if a = 0, = 1 if a > 0) in which case Pn −� P . 

Proof. By (Hill and Monticino (1998), Theorem 2.9), a triangular array (mi,k )
� 2i−1 isi=1 k=1 

a sequential barycenter array for some P , that is, mi,k(P ) = mi,k for all i and k, if and 

only if 

(3a) mi,2j = mi−1,j for all i ≥ N and j = 1, . . . , 2i−1 − 1, 

(3b) mi,k−1 ≡ mi,k for all i ≥ N and k = 1, . . . , 2i , 

and 

(3c) mi,4k−3 = mi,4k−2 ∨ mi,4k−1 = mi,4k−2 for all i and k. 
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Since the limit of a sequence of arrays satisfying (3a,b) also satisfies (3a,b), there is a
 

Borel probability measure P with mi,k(P ) = gi,k for all i and k if and only if g satisfies (2). 
w

To see that this implies that Pn −� P , note that by the inversion theorem in (Hill and 

Monticino (1998), Theorem 2.7), mi,k(Pn) � mi,k(P ) for all i and k implies that Fn � F 

at all continuity points of F . 
w

On the other hand, Pn −� P does not in general imply that mi,k(Pn) � mi,k(P ) for 

all i, k, even for distributions with bounded support, as the next example shows. 

n−1 1 w
Example 3.7. Let Pn = ϕ(0) + ϕ(1), P = ϕ(0). Then Pn −� P , but m2,3(Pn) � 

n n 

1 ∞= 0 = m2,3(P ). 

The final result in this section is a Lévy-like theorem for Borel probability measures 

with finite moments of all orders. 

Definition 3.8. For a Borel probability measure P and positive integer k with 

|x|kdP (x) < ≤, let µk(P ) denote the kth moment µk(P ) = x kdP (x) of P , and let 
R 

µ2k(P ) 
1 
2k 

C = P : lim sup < ≤ . 
kk�� 

Theorem 3.9. Suppose (Pn n=1 are in C. If lim µk(Pn) = gk is finite for all k ≥ N, then 
n�� 

1 
2kg

there exists a P in C with µk(P ) = gk for all k ≥ N if and only if lim sup 2k < ≤, in 
k 

k�� 
w

which case Pn −� P . 

Proof. Fix (Pn n=1, and let µn,k x kdPn)� = (x) for all n, k ≥ N. By hypothesis 
R 

(4) lim µn,k = gk for all k ≥ N. 
n�� 

By the classical result for the Hamburger moment problem (e.g., Kawata (1972), 

Theorem 11.1.5), given a sequence of real numbers (gk), there exists a (not necessarily 

unique) Borel probability measure P satisfying 

(5) µk(P ) = gk for all k ≥ N 
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if and only if the sequence {gk} is non-negative definite, that is, if and only if 

(6) |gi+j |
n for all n = 0, 1, 2 . . . , i,j=0 ∧ 0 

where |gi+j | is the determinant of the (n + 1) × (n + 1) matrix with (i, j)-th entry gi+j 

(and g0 := 1). 

Thus, since Pn has finite kth moments for all n and k, it follows that the sequence 

(µn,k)
� is non-negative definite for each n. By (4) and the continuity of the determinant k=1 

function, the limit sequence (gk) satisfies (6), which (by the classical result again) implies 

there is at least one Borel measure P satisfying (5). 

Next, suppose that (gk) satisfies 

1

2

2k 
kg


(7) lim sup
 < ≤.
 
k�� k
 

k 
2

k 
k ≡ M for all k ≥ N, so 
1

2

1 1 

g
Then there exist M > 0 with 

∧ = ≤. 
kM 1

2k 
k=12kk=1 g 

By Carleman’s theorem (e.g., Kawata (1972) Theorem 11.1.7), this implies that the P 
w

satisfying (5) is unique, and by Polyá’s theorem (Polyá (1920)), (7) implies that Pn −� P . 

The converse is trivial by definition of C. 

Remarks. It easily follows that the limit of moment sequences of distributions with the 

same compact support is itself always a moment sequence of a unique Borel probability 

distribution which is the weak limit of the original probability distributions. Even with 

unbounded support, as the proof shows, the (finite) limit of moment sequences is still the 

moment sequence for a distribution, but uniqueness (and hence weak convergence) may 

fail. This may easily be seen by letting P, Q be distinct Borel measures with |µk(P )| < ≤ 

and µk(P ) = µk(Q) for all k ≥ N, (cf., Feller, Vol. II (1971)), and then taking Pn � P for 
w 

all n ≥ N. Then lim µk(Pn) = µk(Q) for all k, but Pn ∞� Q. 
n�� 
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§4 Discrete and Absolutely Continuous Distributions
 

For a Borel probability measure P on R, let � : R � C denote the characteristic 
P 

function � (t) = E(eitX ), where L(X) = P . (This simply is the classical 1-dimensional 
P 

case of Definition 3.1.) The next theorem is a simple example of a continuity theorem for 

discrete distributions. 

Theorem 4.1. Suppose (Pn)� are Borel probability measures with support in Z. Ifn=1 

� � g, then there exists a Borel probability P with support in Z, and satisfying � = g,
P P 

n 
w

if and only if g is continuous, in which case Pn −� P . 

Proof. As is well known (cf., Fristedt and Gray (1997), Theorem 13.13), a function 

� : R � C is the characteristic function of a Z-valued random variable if and only if 

(8a) �(0) = 1, 

n n 

(8b) �(vk − vj )zj z̄k ∧ 0, 
k=1 j=1 

for all n = 1, 2, . . . , all complex n-tuples (z1, . . . , zn), and all real n-tuples (v1, . . . , vn), 

(8c) � is periodic with period 2�, 

(8d) � is continuous. 

Since limits of functions satisfying (8a)–(8c) clearly satisfy those same properties, 

there is a Borel probability P with � = g if and only if � is continuous, in which case 
P
 

w

Pn −� P as in the classical Lévy continuity theorem. 

The next two theorems record easy examples of continuity theorems for absolutely 

continuous distributions. 

Theorem 4.2. Suppose (Pn)� 
n=1 are absolutely continuous probability measures with den

sity functions (fn) respectively. If lim fn = g, then there exists an absolutely continuous 
n�� 

N w
probability P with density g if and only if lim g dx = 1, in which case Pn −� P .

−NN�� 
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Proof. For each n ≥ N, fn is Borel measurable and (almost surely) non-negative, so the 

limit function g is also measurable and non-negative. Thus if g = 1, defining P by 
R 

P (A) = g dx for all A ≥ B it follows that P is an absolutely continuous probability 
A
 

w

measure with density g, in which case fn � f implies that Pn −� P (cf., Feller (1971) 

p. 25). 

w
Remark. Even if Pn −� P , where each P is absolutely continuous and P is also a.c. 

with continuous density f , it does not follow that fn � f , as the example in Feller (Ibid) 

shows. 

Definition 4.3. For an absolutely continuous probability measure P with density f and 

cdf F , and with support in [0, ≤), the failure rate function for P , rP : R+ � R+, is given 

by 
f(t) 

r(t) = rP (t) = . 
1 − F (t) 

Theorem 4.4. Suppose (Pn)
� are absolutely continuous Borel probability measuresn=1 

with support in [0, ≤), and failure rate functions (rn) respectively. If lim rn = g, then 
n�� 

there exists an absolutely continuous probability P with failure rate rP = g if and only if 
N w

lim g(x)dx = ≤, in which case Pn −� P .
0N�� 

Proof. If r is the failure rate function for an a.c. probability P , then 

� 
t 

− r(x)dx 
−�F (t) = 1 − e 

f − r(since r = = − ln(1 − F ) implies that e = 1 − F ).1−F 

Thus g : R+ � R is a failure rate function (for some P ) if and only if g is Borel 

measurable, almost surely non-negative, and g(x)dx = ≤. The limit function g is
0 

non-negative and measurable since the (rn) are, so it is a failure rate function if and only 

if it has unbounded integral. In this case, since rn � g implies that Fn � F everywhere, 
w

clearly Pn −� P . 
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§5 Applications 

The Lévy-like continuity theorems above are useful in establishing weak limit theorems 

by choosing a representation which facilitates the analysis of the distributions in question. 

Just as the characteristic function is useful in establishing the classical central limit theorem 

precisely because the characteristic function of a sum of iid variables is easy to calculate, 

so the maximal moment method (Theorem 3.4) facilitates proof of classical weak laws in 

extreme value theory simply because the maximal moments of sample maxima are easy to 

calculate (cf., Hill and Spruill (1994), Proposition 4.1). 
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