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I.	
  Introduction	
  	
  

A.	
  Background	
  
	
  
 In 2007, in hopes of protecting 
the two species of fish rockfish and 
lingcod, the government 
implemented marine protected areas 
(or mpa’s), in the South Central 
Coast. In these protected areas 
shown in Figure 1,1 the capabilities 
of the captains that lead the party 
boat fishing trips were limited, which 
raised the question of how the 
fishing has changed since the 
marine protected areas were put in 
place. It is a common hypothesis that 
the fisherman will fish on the edge of 
the specified marine protected areas, 
in hopes that fishing extremely close 
to the protected areas will lead to 
them catching bigger and better fish.  
 
 

Party boat fishing consists of a captain, who owns a commercial 
passenger fishing vessel, being paid to take others on an agreed upon number of 
trips, or until all of the people on the vessel have reached their bag limit (the legal 
maximum number fish an individual can catch). For the South Central Coast, 
these fishing trips come out of Morro Bay and Port San Luis, and are primarily 
booked through Virg’s Sport Fishing, Patriot Sport Fishing, and Central Coast 
Sport Fishing.  
 
 

B.	
  The	
  Data	
  	
  
	
  

When Dr. Andrew Schaffner and I met with Biology grad student Morgan 
Ivens-Duran for the first time, she came to us with a data set that included 
information pertaining to party boat fishing on the South Central Coast of 
California that covered eleven past years. This data collection began in 2003, 
when Morgan’s lab, the Center for Coastal Marine Sciences, became interested 
in where fisherman on the South Central Coast were fishing, and how the 
rockfish and lingcod cohabitate. As natural in a sample, this data set included 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  California	
  Marine	
  Protected	
  Areas,	
  Central	
  Coast	
  MPA	
  Region,	
  
http://www.californiampas.org/pages/regions/centralcoast.html	
  (January	
  2014).	
  	
  

Figure	
  1:	
  Map	
  of	
  the	
  Central	
  Coast	
  
MPA’	
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information on a small proportion of the boat trips that were made each year, only 
about 6 to 22 percent. For each trip that was sampled, we have information on 
three variables: the latitude and longitude of every drop that was made, and the 
effort that was made at each drop (cumulative time per drop that all fishing lines 
are in the water). 

 
 
In 2007, the marine protected areas were put in place, and as a result, the 

data is split into pre-mpa data from 2003-2006, and post-mpa data from 2008-
2012. For the purpose of our analyses, we will leave out the year 2007 because it 
was the year that the marine protected areas were put in place, and thus has 
mixed pre and most mpa data. Below, Figure 2 shows a bar graph of the total 
number of trips that were made per year, showing the divide between pre-mpa 
years (green) and post-mpa year (blue) with 2007 as a buffer year in gray.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre and Post MPA data can be compared to investigate how the spatial 
pattern and intensity of fishing effort had changed in the South Central Coast 
region over the 10 year time period, and specifically how it has changed as a 
result of the implementation of the marine protected areas. 
 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Total Trips per Year

Year

N
um

be
r o

f T
rip

s

0
10
00

20
00

30
00

40
00

Figure	
  2:	
  Bar	
  Graph	
  of	
  Total	
  Trips	
  Made	
  per	
  Year	
  
(Appendix	
  lines	
  285-­‐295)	
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C.	
  Analytics	
  	
  
	
  

In order to assist Morgan in exploring her research question, we created 
estimates of the fishing effort along the Central Coast for each year, allowing her 
to get a clear picture of where the most effort was located. Furthermore, we 
provide estimates of the uncertainty in our effort estimates along the Central 
Coast. To do this we applied several estimation techniques to the data including 
Kernel Density Estimation and Splines to estimate effort, and Bootstrapping to 
estimate the uncertainty in our estimates.  

 
 

The Kernel Density estimation will allow us to estimate the spatial 
distribution (density) of drops to gain a better understanding of where the 
fisherman are fishing and how often. In addition to where and how often these 
fisherman were fishing, we needed to also include the amount of effort that was 
being put forth each time fishing lines were dropped at each location. We 
estimated the effort using two-dimensional splines. Finally, to estimate the 
variability (uncertainty) of these estimates we used bootstrapping. This process 
was repeated separately for each of the 10 years of pre-mpa and post-mpa data 
to create a clear picture could be drawn about how the fishing location effort 
changes from year to year.  
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III.	
  Tools	
  for	
  Analysis	
  
 

A.	
  Kernel	
  Density	
  Estimation	
  to	
  Estimate	
  Drop	
  Densities	
  
 

Kernel Density Estimation is a nonparametric way to estimate the 
probability density of a random variable. In the simplest terms, Kernel Density 
Estimation is a density smoother calculated using a weighted moving average. 
This concept applies really well to a simple histogram: for a set value of x, we 
compute the (scaled by bandwidth) proportion of the data that falls within a 
specific neighborhood (determined by the bandwidth) of x. To illustrate this idea, 
we can first look at the definition of the pdf, 𝑓(𝑥), of a random variable X, 

 𝑃 𝑥 − 𝑏 < 𝑋 < 𝑥 + 𝑏 = 𝑓 𝑡 𝑑𝑡!!!
!!!  ≈ 2b  𝑓(𝑥),  

 
and thus,  

𝑓 𝑥 ≈
1
2𝑏 𝑃 𝑥 − 𝑏 < 𝑋 < 𝑥 + 𝑏  

 
where b represents the bandwidth parameter2. This probability can also be 
estimated by a frequency in the sample, so  
 

𝑓 𝑥 =   
1
2𝑏

number of observations in   𝑥 − 𝑏, 𝑥 + 𝑏
𝑛    . 3 

 
 

The selection of the bandwidth, b, will have a significant effect on the 
kernel density estimations; choosing a b too large will result in an overly smooth 
and non descriptive curve, whereas choosing a b that is too small will result in a 
highly irregular and overly specific smoothing curve. The following histograms in 
Figure 3 are of a sample of 20 longitude values modeled with different values of 
b, and a possible kernel density estimate curve using the bandwidth b=0.1.  
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  Walter	
  Zucchini,	
  Part	
  I:	
  Kernel	
  Density	
  Estimation,	
  Applied	
  Smoothing	
  Techniques,	
  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	
  
3	
  Walter	
  Zucchini,	
  Part	
  1:	
  Kernel	
  Density	
  Estimation,	
  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	
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You can visualize the kernel density estimate by smoothing a histogram 
with bins of width 2b. Imagine that you have a rectangle, with height !

!!
 and width 

2𝑏, that is placed over each point in the sample on the x-axis. The estimate of 
𝑓(𝑥) at a given point is !

!
 times the sum of the heights of all of the rectangles that 

include that point. This method would be using the rectangular “weighting” 
function, in which all of points in the rectangle are given an equal weight when 
calculating the estimate of 𝑓(𝑥) at that given point. Figure 4 shows an example of 
the effect that changing b (denoted bw in the image) has when using a 
rectangular kernel estimate.  
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Figure	
  3:	
  Sample	
  of	
  Longitudes	
  plotted	
  with	
  varying	
  bandwidths	
  
(Appendix	
  lines	
  38-­‐64)	
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This series of images (Figure 4) shows the importance of choosing a value for b, 
which controls the degree of smoothing that is appropriate for the data. You can 
see that a value of b=0.025 results in very scattered peaks that do not do much 
smoothing of the data at all, where as a value of b=0.2 creates more smoothing 
in the data, but is slightly too large due to the flat and non-descript nature of the 
smoothing curve.  
 
 

In the context of estimating the density of fishing locations (lat/long), we 
chose an appropriate bandwidth (b=.0155) using a cluster analysis of the 
latitudes and longitudes that were fished to identify clusters that would represent 
fishing spots. The median size of the fishing spots was used to choose the 
bandwidth.   
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Figure	
  4:	
  Rectangular	
  Kernel	
  Density	
  Estimates	
  of	
  Sample	
  of	
  Longitudes	
  
with	
  varying	
  bandwidths	
  (Appendix	
  lines	
  69-­‐117)	
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As important as it is to choose an appropriate bandwidth for your data, it is 
also important to consider the type of kernel that you want to use. In the example 
above the type of kernel is rectangular, while other common types of kernels 
include triangular, Epanechnikov, and Gaussian. The important idea to note 
about these kernels is that they are all functions that weight the data and that 
follow the form,  
 

𝑤 𝑡, 𝑏 =   
1
ℎ𝐾

𝑡
𝑏    

 
where 𝐾 !

!
   is a function of the kernel4; the kernel density will determine the 

shape of your smoothing function. For the purposes of our analyses, we applied 
a Gaussian kernel, which will put more weight on the points in the middle of our 
kernels and less weight on the points in the tails of the kernel, and will resemble 
a normal curve.  
 
 

Because the weights are applied to the points that are encapsulated in 
each kernel, the effect of a bandwidth that is too small is amplified and the curve 
will result in having too many peaks. On the other end of the spectrum, a 
bandwidth that is too large will result in a very shallow and normal-looking curve 
that does not illustrate any patterns in the data. The data that was modeled using 
rectangular kernels above is now illustrated using Gaussian kernels, in Figure 5.  
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Walter	
  Zucchini,	
  Part	
  1:	
  Kernel	
  Density	
  Estimation,	
  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	
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For the purposes of our data, we use kernel density estimation to obtain a 
density estimate of the drop locations (latitude and longitude), so we need to 
generalize the one dimensional kernel density estimation to be multidimensional.  
 
 

Consider the form of the one-dimensional estimation, where again b is the 
bandwidth around x0, and K is the kernel that controls the weight given to the 
point 𝑥! based on its proximity to x0:  
 

𝑓   𝑥! = !
!"

𝐾 !!!!!
!! . 5 

 
This form is the estimation can be generalized to the multidimensional situation, 
in which different bandwidths are allowed for each direction, where  
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  Zucchini,	
  Part	
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  Density	
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http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	
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Figure	
  5:	
  Gaussian	
  Kernel	
  Density	
  Estimation	
  of	
  Sample	
  of	
  
Longitudes	
  with	
  varying	
  bandwidths	
  (Appendix	
  lines	
  122-­‐167)	
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𝑓   𝑥 =    !
!

!
!!
𝐾(!!"!!!!

!!
!
!!!! ). 6 

 
We used built-in functions in the software package R to obtain the kernel density 
estimates of the drop densities. The R code used for these drop location density 
estimates is located on pages 33 and 34 of the Appendix, from line 461 to line 
473.  
 
 

B.	
  Generalized	
  Additive	
  Model	
  to	
  Smooth	
  Effort	
  Estimations	
  
 

In order to predict effort values at latitude and longitude values that were 
not sampled during data collection, we will be using the generalized additive 
model (gam) function in R. Within the gam function we will be using splines as 
our smoothing functions to better predict our values for effort. In order to better 
explain the Generalized Additive Models, or GAM, we will first look at the General 
Linear Model and the Generalized Linear Model. To begin, consider the task of 
exploring the association between effort, and latitude and longitude values.  

 
 
The general linear model, or least squares regression model refers to a 

situation in which we have a response variable (e.g. effort), that we believe to be 
some function of other variables (e.g. latitude and longitude). In this standard 
model, our explanatory variable is assumed to be normally distributed with mean 
µ and variance σ2, where the X’s are our predictor variables. These predictor 
variables are scaled by some coefficient βi (or bi in the context of a sample of 
data) and are summed, giving us the linear predictor that provides the estimated 
fitted y value according to the given X values. Symbolically, for a sample of data, 
this relationship looks like the following: 

 
y = b0 + b1X1 + b2X2. 

 
This linear regression model often is too simplified and limited to capture what is 
really going on with the data, which is why we will next look at a more extended 
version, which is a generalized linear model.  

 
 
 In exploring this association with the general linear model we are 

assuming that a function of effort is some linear combination of latitude and 
longitude. In the generalized linear model, the link function of your variable which 
relates your predictor variables to a function of your explanatory variable(s), is 
directly related to the linear combination of your predictors. This link function can 
also be expressed as the estimated fitted values of your variable, which in the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6	
  Patrick	
  Breheny,	
  Kernel	
  density	
  estimation,	
  Slide	
  22,	
  
http://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-­‐18.pdf	
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context of our example would be the estimated fitted values of effort. The linear 
combination of the predictor variables refers to, in our case, the values of latitude 
and longitude that are scaled by some coefficient bi that is determined by 
software when the regression is run. This linear relationship can be expressed 
generally as,  

 
g(µ)= b0 + b1X1 + b2X2. 

 
One of the biggest differences between the general linear model and the 
generalized linear model is that distributions other than Gaussian can be applied 
as the link functions. Thus, the important idea to note here is that the generalized 
linear model is just an expansion of the standard general linear model that most 
are familiar with.  
 
  

Taking the generalized linear model one step further results in the 
generalized additive model, which is the model that we are using in this analysis. 
The generalized additive model uses smooth functions of the predictor variables, 
which can take any number of forms. This model symbolically takes the form of,  

 
g(µ)= b0 + f(x1,x2).  

 
The incorporation of the link functions of the linear predictor variables is the key 
difference between the generalized linear model and the generalized additive 
model. The addition of the smoothing aspect of this equation allows for more 
accurate predictions of our effort values, based on a predictive function of latitude 
and of longitude. We will be using a spline smoother within the GAM function in 
R, to smooth and predict effort values based on the latitude and longitude.   
 
  
 The idea behind the GAM smoother is extremely similar to that of the 
kernel density estimators; for every x value, x0, we choose a neighborhood 
around it and fit some type of model, for example a linear regression on the data 
points captured in that neighborhood. Using the fitted model for the specified 
neighborhood, you end up with a fitted value corresponding to that specific x0, 
and if we repeat this process for every x0 in our sample we would end up with 
fitted values based on a rolling neighborhood that is relative to each x value.7 
Instead of fitting a linear regression, we can fit a polynomial regression or some 
other type of model that gives weight to the x values in a given neighborhood 
based off of their relative distances from x0. In the context of our analysis, the 
function we will use to weight our values is a spline smoother. Within these spline 
smoothers there are two categories, natural splines and b-splines; R uses b-
splines for its estimations, so that is the function that will be the basis of our 
resulting analyses.  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  Michael	
  Clark,	
  Generalized	
  Additive	
  Models,	
  Center	
  for	
  Social	
  Research	
  University	
  of	
  Notre	
  Dame,	
  
Page	
  7,	
  http://www3.nd.edu/~mclark19/learn/GAMS.pdf	
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 Splines are more complex 
smoothing functions because a spline 
curve is actually a piecewise 
polynomial curve that joins together 
two or more curves, or “basis 
functions”, at locations called “knots”. 
A spline is defined as being a 
piecewise m-1 degree polynomial that 
is continuous up to its first m-2 
derivatives; the continuity 
requirements allows for the curve to be 
as smooth as possible. On the 
following page, Figure 6 shows an 
example of two curves joined at a knot 
at x=10. This example is for illustrative 
purposes only, because this piecewise 
curve is not continuously differentiable, 
and this cannot be a true spline. More 
flexible curves can be obtained by 
increasing the degree of the spline and/or by increasing the number of knots.8  
 
 

However, as with the kernel density estimation, there are tradeoffs for 
increasing or decreasing the number of knots used: having too few knots results 
in the functions being too restrictive and not fitting the data well while having too 
many knots leads to the risk of over fitting your data.  
 
 

As with any estimation, it is important to also consider the error of these 
estimations, and is always helpful to construct confidence intervals illustrating the 
accuracy of your predictions. As stated previously, we will be working with the 
highly complicated but more stable and efficient spline in our R work and 
analyses, including the example the follows.  
 
 

To illustrate the workings of spline smoothing functions, we will look at a 
simplified example of what we are doing, by looking at predicting effort from just 
a single predictor, longitude. The equation that goes alone with the single 
predictor equation is  

 
𝑦 = 𝑓 𝑥 ,     
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  Patrick	
  Breheny,	
  Kernel	
  density	
  estimation,	
  
http://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-­‐18.pdf	
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Figure	
  6:	
  Piecewise	
  Curve	
  with	
  a	
  “Knot”	
  	
  
(Appendix	
  lines	
  178-­‐188)	
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where f is a smooth function, specifically a smooth function of longitude for the 
following example.  
 
 

The following images and analyses were based on the same sample of 20 
longitudes, and their corresponding 20 efforts values. Figure 7 shows a 
scatterplot of the sample of twenty longitudes and their corresponding efforts that 
are being used for this example.  

 

 
 
 
 
 
 

In Figure 8, the 20 sample longitude points are plotted against their 
relative predicted efforts (calculated with the spline function in R), as well as the 
spline curve that predicts the effort at all points between -121.4 and -120.6. 
Because these are predicted, or estimated, effort values it is important to show 
what the variability is around your estimations. The variability in the estimations is 
represented in this plot as the dotted lines that fall on either side of the prediction 
curve. These lines are the 95% confidence interval lines for the predictions, and 
you can see that the confidence lines show the most variability (are the farthest 
away from the line) in the places where there are little or no recorded effort 
values to base the predictions off of. Good illustrations of this occur at longitude 
values of about -121.2 and also around -120.6. On this graph there are also tick 
marks along the longitude axis that represent where the sample data points fall, 
and we can again look at the space where there are little or no tick marks and 
see that at those values the variability around the estimates is much higher.   
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Figure	
  7:	
  Scatterplot	
  of	
  Sample	
  of	
  Longitudes	
  with	
  
Corresponding	
  Effort	
  Values	
  	
  
(Appendix	
  lines	
  192-­‐211)	
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For our actual analyses, we will be carrying out the same basic process, 

however we will be predicting effort using an interactive spline model that 
includes a spline smoother that will be incorporating both longitude and latitude 
values, and the interaction between the two variables. This model is represented 
by,  

𝑦 = 𝑓(x1,x2), 
 

where x1 is the latitude and x2 is the longitude. This model will allow us to predict 
where and how often effort is being exerted while fishing for the Central Coast of 
California, both where we do and do not have existing data.  
 
 

As previously mentioned, it is extremely important to be able to include 
how much error is associated with your predictions. In order to predict this error, 
we will use a two-stage model with bootstrapping.   
 
 

C.	
  Two-­‐Stage	
  Bootstrapping	
  to	
  Estimate	
  Fishing	
  Effort	
  and	
  Variability	
  of	
  
Estimates	
  	
  
  

 The purpose of using bootstrapping is primarily to estimate the variability 
or uncertainty in the effort predictions. The bootstrap process is shown in Figure 
9 and is described as follows.  First, start with the original sample of data, of size 
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Figure	
  8:	
  Spline	
  Curve	
  to	
  Predict	
  Effort	
  from	
  Longitude	
  
with	
  95%	
  Confidence	
  Bands	
  
(Appendix	
  lines	
  216-­‐225)	
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n. Then, sample n observations from the original data, with replacement, and call 
this the “boot data”. The original sample size and thus the size of the boot data 
will change depending on the year that the analysis is being performed on. This 
boot data is now fit using the two-stage model as previously explained- KDE and 
splines. The KDE allows us to determine where the fisherman are fishing, the 
spline allows us to determine how often the fisherman are fishing in certain 
location, and together they allow us to determine the bootstrap estimate of 
annual effort at each location on our map. This annual estimate is calculated by  
 
𝑡𝑜𝑡𝑎𝑙  #  𝑑𝑟𝑜𝑝𝑠 ∗ 𝑝𝑟𝑜𝑏  𝑜𝑓  𝑑𝑟𝑜𝑝   𝑎𝑡  𝑒𝑎𝑐ℎ  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∗   𝑒𝑓𝑓𝑜𝑟𝑡   𝑎𝑡  𝑒𝑎𝑐ℎ  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 . 

 
In this equation, the probability of a drop at each location, or pixel, is determined 
by the KDE and the effort at each location/pixel, is determines by the spline.  
 
  
 We will repeat this process 5,000 times, which will result in 5,000 
estimates for annual effort at each location. To be able to create a single graph 
depicting the bootstrapped effort estimates and variability estimates, the final 
step is to take these 5,000 estimates and take the mean, which will result in the 
bootstrap estimate of effort, and take the standard deviation, which will result in 
the bootstrap estimate of variability.  
 
 
 
 

 

Figure	
  9:	
  Map	
  of	
  Bootstrap	
  Process	
  with	
  a	
  Two-­‐Stage	
  Model	
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IV.	
  Results	
  	
  
 

A.	
  Estimation	
  of	
  Effort	
  (KDE	
  and	
  Splines)	
  
	
  
 Using the bootstrapping as well as a combination of the kernel density 
estimation to estimate where fisherman were fishing, and splines to estimate how 
much effort was being put in at each location, the resulting images give a good 
picture of the fishing patterns along the central coast, from year to year. Figure 
10 shows an example of the images that will be looked at in the following 
sections; these two images show the estimated effort and estimated variability in 
effort for the year 2003.   
	
  
 

 
 
For all 9 years of data, an image of the estimated annual effort has been created 
with the estimated effort at each pixel being measured on a heat scale from 0 to 
80,000. In Figure 11 below, the estimated annual effort for 2003 for the whole 
Central Coast is placed next to a zoomed-in portion of the coast. This smaller 
portion of the Central Coast allows us to better see how these estimation are 
mapped and how the effort in this section is distributed; the enhanced image is 
also on a smaller heat scale (0 to 30,000) to better see how much effort is 
estimated at each pixel.  
 
 

Figure	
  10:	
  2003	
  Estimated	
  Annual	
  Effort	
  and	
  Estimated	
  Variability	
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  To investigate whether or not the fishing patterns have changed since the 
mpa’s were put in to place, we can compare the images in Figure 12, which 
depict the fishing patterns for the pre-mpa years, to the images in Figure 13, 
which depict the fishing patterns for the post-mpa years.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	
  11:	
  2003	
  Estimated	
  Annual	
  Effort	
  with	
  Enhanced	
  
Portion	
  to	
  Illustrate	
  Pixel-­‐Wise	
  Estimation	
  of	
  Effort	
  

(Appendix	
  lines	
  566-­‐576,	
  596-­‐604)	
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Figure	
  12:	
  Pre	
  MPA	
  (2003-­‐2006)	
  Estimated	
  Annual	
  Effort	
  
(Appendix	
  lines	
  568-­‐576	
  repeated	
  for	
  each	
  year)	
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Figure	
  13:	
  Post	
  MPA	
  (2008-­‐2012)	
  Estimated	
  Annual	
  Effort,	
  
Continues	
  on	
  page	
  20	
  

(Appendix	
  lines	
  568-­‐576	
  repeated	
  for	
  each	
  year)	
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 From looking at the nine images of annual effort, it is not perfectly clear 
whether or not the pattern of effort changed substantially after the marine 
protected areas were put in place. However, there are interesting patterns to note 
such as the effort generally getting larger from 2003 to 2005, which we can see 
based on the pixels becoming brighter. Also, in the post-mpa years the fishing 
effort is more condensed into specific locations, rather than being spread along 
the coast which could potentially be attributed to the areas where fishing was no 
longer allowed.  
 
 
 

B.	
  Estimation	
  of	
  Variability	
  (Bootstrapping)	
  
	
   Bootstrapping	
  our	
  data	
  through	
  the	
  two-­‐stage	
  model	
  of	
  KDE	
  and	
  Splines	
  
allows	
  for	
  the	
  estimation	
  of	
  the	
  variability	
  that	
  surrounds	
  the	
  effort	
  estimations	
  at	
  
each	
  location;	
  the	
  estimate	
  of	
  this	
  variability	
  for	
  each	
  year	
  is	
  shown	
  based	
  on	
  a	
  heat	
  
scale	
  ranging	
  from	
  0	
  to	
  22,000.	
  In	
  Figure	
  14,	
  the	
  estimated	
  variability	
  in	
  our	
  data	
  for	
  
2003	
  is	
  shown	
  next	
  to	
  a	
  zoomed	
  in	
  portion	
  of	
  the	
  Central	
  Coast	
  (the	
  same	
  portion	
  
that	
  was	
  provided	
  in	
  Figure11).	
  By	
  looking	
  at	
  the	
  selected	
  portion	
  of	
  the	
  coast	
  in	
  
Figure	
  14,	
  we	
  can	
  see	
  that	
  the	
  variability	
  around	
  these	
  estimates	
  is	
  moderately	
  high;	
  
the	
  fairly	
  high	
  standard	
  deviations	
  could	
  be	
  attributed	
  to	
  the	
  small	
  	
  amount	
  of	
  data	
  
that	
  we	
  have,	
  and	
  that	
  we	
  are	
  using	
  to	
  try	
  to	
  predict	
  effort	
  along	
  the	
  whole	
  Central	
  
Coast.	
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 In addition to looking at the patterns in estimated effort from year to year, 
looking at the estimated variability from year to year can tell us a lot about our 
data; to do this we will look at Figures 15 and 16 on the following pages. The 
years with the brightest pixels represent the years with the highest variability, and 
the ones that stand out are the years 2005 and 2009. These are also the years 
that were found to have higher estimated annual efforts. The trend appears to 
follow that the higher the estimated annual effort is, the higher the estimated 
variability will be also; this is an interesting observation to note because this is 
telling us that we can generally be less certain about the accuracy of our 
estimations when we are estimating higher values of effort. There does not 
appear to be any significant differences in the variability between the pre-mpa 
years and the post-mpa years, because the variability varies greatly within the 
pre-mpa and post-mpa groups individually.  
 
 
 
 
 
 
 
 
 

Figure	
  14:	
  2003	
  Estimated	
  Annual	
  Effort	
  with	
  Enhanced	
  
Portion	
  to	
  Illustrate	
  Pixel-­‐Wise	
  Estimation	
  of	
  Effort	
  

(Appendix	
  lines	
  579-­‐587,	
  607-­‐615)	
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Figure	
  15:	
  2003	
  Estimated	
  Standard	
  Deviation	
  of	
  Annual	
  Effort	
  
with	
  Enhanced	
  Portion	
  to	
  Illustrate	
  Pixel-­‐Wise	
  Estimation	
  of	
  Effort	
  

(Appendix	
  lines	
  579-­‐587	
  repeated	
  for	
  each	
  year)	
  
	
  



	
   24	
  

 
 
 
 
 

 
 

 

Figure	
  16:	
  Post	
  MPA	
  (2008-­‐2012)	
  Estimated	
  Standard	
  Deviation	
  of	
  
Annual	
  Effort,	
  Continues	
  on	
  page	
  24	
  

(Appendix	
  lines	
  579-­‐587	
  repeated	
  for	
  each	
  year)	
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C.	
  Annual	
  Effort	
  Pre	
  and	
  Post	
  MPA	
  
One of the driving forces for this project was the question of whether or 

not fishing effort has changed due to the implementation of the marine protected 
areas along the Central Coast. Another way to investigate this question is to look 
at the difference in average annual effort for the pre-mpa years and the post-mpa 
years. To do this we will compute a 95% confidence interval for the difference in 
average annual effort before and after the mpa implementation, using the 
following values: 

 
ti = total annual effort averaged over all locations, for i=2003-6, 2008-12 
 
 
𝑑 = -  𝑡2003+𝑡2004+𝑡2005+𝑡20064  + !""#!!""#!!!"#"!!!"##!!!"#!

!
 , the  

difference in average annual effort pre and post mpa  
 

 𝑆2
ti = (standard deviation of ti)2 , the variance of the bootstrapped annual  

  effort 
 

 𝑆d
2=(!!"##$  !!!"##$!!!"##$!!!"##$

!
+!!"##$!!!"##$!!!"#$#!!!"#$$!!!"#$"

!
)2 

the variance of the average difference in annual effort pre  
 and post mpa.  
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Finally, our 95% confidence interval will take the following form: 
 

𝑑 +/- 1.96 * 𝑆d. 
 
Using	
  the	
  code	
  provided	
  in	
  the	
  Appendix,	
  from	
  lines	
  621	
  to	
  670,	
  the	
  resulting	
  values	
  
are	
  𝑑 = 188080.2,  and	
  𝑆d = 45254.87. Using these numbers to plug in to the 
equation above, the resulting confidence interval is:  

 
188080.2 +/- 1.96 * 45254.87 = (99380.68, 276779.8). 

 
Based on this interval, we are 95% confidence that the average bootstrapped 
estimated annual effort after the mpa’s were put in place is between 99380.68 
and 276779.8 higher than the average bootstrapped estimated annual effort 
before the mpa’s were implemented. This information tells us that, regardless of 
where the fishermen are fishing, they have been fishing more since the mpa’s 
were implemented. The scope of our project does not allow us to determine why 
this is the case, however it could be speculated that this could be due to there 
being less fish outside of the mpa’s, which causes the fisherman to have to fish 
for longer (put in more effort) in order for everyone to catch the desired number 
of fish.  
	
  
	
  
	
  

D.	
  Limitations	
  
The major limitations that were come across during this project were the 

small proportion of total trips per year that we had data on, and the inability to 
calculate the average difference in annual fishing effort pre and post mpa, per 
pixel. The small amount of data did not pose an issue, other than the fact that it 
caused out estimated of effort for each location to be less accurate/have more 
variability than desired. The larger problem we had was when trying to calculate 
the difference in average effort between the two groups of years.  

 
When writing the code, we did not yet know that we would have enough 

time to be able to look at the difference between the groups of years, so the code 
was not written to be compatible with that procedure. In order to compute the 
difference pixel-wise, we would have had to specify a set range for latitudes and 
longitudes to be used within the bootstrap, which would ensure that the limits of 
all 9 years would match-up. Since we did not include this specified range, the 
latitude and longitude limits on the 9 years are non consistent, which keeps us 
form being able to compute the pixel by pixel difference in average annual effort. 
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V.	
  Appendix	
  	
  	
  	
  

A.	
  R	
  Code
	
  1	
  
################################# 2	
  
#                               # 3	
  
# KDE  examples                 # 4	
  
#                               # 5	
  
################################# 6	
  
 7	
  
 8	
  
# load required packages 9	
  
library(maps) 10	
  
library(MASS)   11	
  
library(mgcv) 12	
  
library(fields) 13	
  
library(akima) 14	
  
 15	
  
 16	
  
# sample of latitudes and longitudes n=20 and efforts 17	
  
lat = c(35.125, 34.91, 35.13667, 35.14867, 35.545, 34.93462, 18	
  
34.92433, 34.91, 34.91933, 35.42633, 35.427, 35.40567, 35.4315, 19	
  
35.4085, 35.1231, 35.12617, 35.6127, 35.61125, 35.63847, 20	
  
35.6975) 21	
  
 22	
  
long = c(-120.8113, -120.6903, -120.7817, -120.7903, -121.1159, -23	
  
120.7073, -120.7053, -120.6903, -120.6853, -120.9152, -120.9148, 24	
  
-120.938, -120.9198, -120.9412, -120.8107, -120.8015, -121.2105, 25	
  
-121.2109, -121.272, -121.3286) 26	
  
 27	
  
effort = c(528, 296, 195, 364, 528, 444, 325, 296, 296, 315, 175, 28	
  
245, 350, 245, 182, 224, 114, 228, 95, 100) 29	
  
#fishing hours, total hours all lines combined  30	
  
 31	
  
 32	
  
 33	
  
### Examples of Kernel Density Estimation to Estimate Drop 34	
  
Densities 35	
  
 36	
  
 37	
  
##EXAMPLE 1: Differences between bandwidths 38	
  
 39	
  
#create 2x2 grid for images 40	
  
par(mfrow=c(2,2)) 41	
  
 42	
  
#examples with different bandwidths and one smooth line 43	
  
#bin width = .4 44	
  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 45	
  
.4)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-46	
  



	
   28	
  

121.4,-120.6, by=.4), ylim=c(0,2.5)) 47	
  
 48	
  
 49	
  
#bin width = .1 50	
  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 51	
  
.1)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-52	
  
121.4,-120.6, by=.1), ylim=c(0,2.5)) 53	
  
 54	
  
 55	
  
#bin width = .025 56	
  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 57	
  
.05)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-58	
  
121.4,-120.6, by=.05), ylim=c(0,5)) 59	
  
 60	
  
 61	
  
#Example of kernel density estimate 62	
  
k1= density(long, bw=.1) 63	
  
plot(k1,type="l",main="Kernel Density Estimate") 64	
  
 65	
  
 66	
  
 67	
  
 68	
  
##EXAMPLE 2: Differences between bandwidths with rectangular 69	
  
kernels  70	
  
 71	
  
#create 2x2 grid for images 72	
  
par(mfrow=c(2,2)) 73	
  
 74	
  
#rectangular with bw=.025 75	
  
k2a= density(long, bw=.025, kernel="rectangular") 76	
  
plot(k2a,type="l",main="Rectangular Kernel Density Estimate") 77	
  
points(long, rep(0, length(long))) 78	
  
 79	
  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.025)", 80	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 81	
  
border="grey") 82	
  
#lines(k2a, lwd=2) 83	
  
 84	
  
 85	
  
#rectangular with bw=.05 86	
  
k2b= density(long, bw=.05, kernel="rectangular") 87	
  
plot(k2b,main="Rectangular Kernel Density Estimate") 88	
  
points(long, rep(0, length(long))) 89	
  
 90	
  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.05)", 91	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 92	
  
border="grey") 93	
  
#lines(k2b) 94	
  
#plot(k2b,type="l",main="Kernel Density Estimate") 95	
  
 96	
  
 97	
  
#rectangular with bw=.1 98	
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k2c= density(long, bw=.1, kernel="rectangular") 99	
  
plot(k2c, main="Rectangular Kernel Density Estimate") 100	
  
points(long, rep(0, length(long))) 101	
  
 102	
  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.1)", 103	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 104	
  
border="grey") 105	
  
#lines(k2c) 106	
  
 107	
  
 108	
  
#rectangular with bw=.2 109	
  
k2d= density(long, bw=.2, kernel="rectangular") 110	
  
plot(k2d,main="Rectangular Kernel Density Estimate") 111	
  
points(long, rep(0, length(long))) 112	
  
 113	
  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.2)", 114	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 115	
  
border="grey") 116	
  
#lines(k2d) 117	
  
 118	
  
 119	
  
 120	
  
 121	
  
##EXAMPLE 3: Differences in between bandwidths with Gaussian 122	
  
kernels 123	
  
 124	
  
#create 2x2 grid for images 125	
  
par(mfrow=c(2,2)) 126	
  
 127	
  
 128	
  
#gaussian with bw=.025 129	
  
k3a= density(long, bw=.025, kernel="gaussian") 130	
  
plot(k3a, main="Gaussian Kernel Density Estimate") 131	
  
points(long, rep(0, length(long))) 132	
  
 133	
  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.025)", 134	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 135	
  
#lines(k3a) 136	
  
 137	
  
 138	
  
#gaussian with bw=.05 139	
  
k3b= density(long, bw=.05, kernel="gaussian") 140	
  
plot(k3b, main="Gaussian Kernel Density Estimate") 141	
  
points(long, rep(0, length(long))) 142	
  
 143	
  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.05)", 144	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 145	
  
#lines(k3b) 146	
  
 147	
  
 148	
  
#gaussian with bw=.1 149	
  
k3c= density(long, bw=.1, kernel="gaussian") 150	
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plot(k3c, main="Gaussian Kernel Density Estimate") 151	
  
points(long, rep(0, length(long))) 152	
  
 153	
  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.1)", 154	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 155	
  
#lines(k3c) 156	
  
 157	
  
 158	
  
#gaussian with bw=.2 159	
  
k3d= density(long, bw=.2, kernel="gaussian") 160	
  
plot(k3d, main="Gaussian Kernel Density Estimate") 161	
  
points(long, rep(0, length(long))) 162	
  
 163	
  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.2)", 164	
  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6), 165	
  
border="light grey", col="grey") 166	
  
#lines(3d) 167	
  
 168	
  
 169	
  
 170	
  
 171	
  
################################# 172	
  
#                               # 173	
  
# Spline examples               # 174	
  
#                               # 175	
  
################################# 176	
  
 177	
  
### Examples for spline estimation of effort  178	
  
 179	
  
#Graph #1: generic example of knots in spline 180	
  
x1=seq(0,10,length=100) 181	
  
x2=seq(10,20,length=100) 182	
  
y1=3 + 2*x1 - x1^2 + .5*x1^3 183	
  
y2=423 + 2*x1 + x1^2 184	
  
 185	
  
 186	
  
plot(c(x1,x2), c(y1,y2), xlab="X", ylab="Y", main="Piecewise Spline 187	
  
with Knot at x=10", type="l") 188	
  
 189	
  
 190	
  
 191	
  
#sample of latitudes and longitudes n=20 and efforts 192	
  
 193	
  
lat = c(35.125, 34.91, 35.13667, 35.14867, 35.545, 34.93462, 194	
  
34.92433, 34.91, 34.91933, 35.42633, 35.427, 35.40567, 35.4315, 195	
  
35.4085, 35.1231, 35.12617, 35.6127, 35.61125, 35.63847, 35.6975) 196	
  
 197	
  
long = c(-120.8113, -120.6903, -120.7817, -120.7903, -121.1159, -198	
  
120.7073, -120.7053, -120.6903, -120.6853, -120.9152, -120.9148, -199	
  
120.938, -120.9198, -120.9412, -120.8107, -120.8015, -121.2105, -200	
  
121.2109, -121.272, -121.3286) 201	
  
 202	
  
effort = c(528, 296, 195, 364, 528, 444, 325, 296, 296, 315, 175, 203	
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245, 350, 245, 182, 224, 114, 228, 95, 100) 204	
  
#fishing hours, total hours all lines combined  205	
  
 206	
  
 207	
  
 208	
  
#Graph #2: Scatterplot of sample n=20 of data  209	
  
plot(long, effort, xlab="Longitude", ylab="Effort", 210	
  
main="Scatterplot of Effort by Longitude", pch=16) 211	
  
 212	
  
 213	
  
 214	
  
 215	
  
#Graph #3: Predicted effort by longitude 216	
  
 217	
  
y.pred = predict(effort.gam, data.frame(long=x.long), se=TRUE) 218	
  
plot(x.long, y.pred$fit, type="l", ylim=range(effort), 219	
  
xlab="Longitude", ylab="Predicted Effort", main="Predicted Effort 220	
  
by Longitude") 221	
  
lines(x.long, y.pred$fit-y.pred$se, lty=2) 222	
  
lines(x.long, y.pred$fit+y.pred$se, lty=2) 223	
  
points(long, effort) 224	
  
axis(1, at=long, labels=NA, tcl=.5) 225	
  
y.pred 226	
  
 227	
  
 228	
  
 229	
  
################################# 230	
  
#                               # 231	
  
#    Bar Graph                  # 232	
  
#                               # 233	
  
################################# 234	
  
 235	
  
#bar graph of total trips per year  236	
  
 237	
  
year=c("2003","2004","2005","2006","2007","2008","2009","2010","2011238	
  
","2012") 239	
  
TotalTrips=c(2731, 3580, 3213, 3556, 3329, 4114, 4188, 3790, 4239, 240	
  
3787) 241	
  
 242	
  
barplot(height=TotalTrips, names.arg=year, xlab="Year", ylab="Number 243	
  
of Trips", main="Total Trips per Year", col=c("springgreen3", 244	
  
"springgreen3", "springgreen3","springgreen3", "gray", "turquoise", 245	
  
"turquoise", "turquoise", "turquoise", "turquoise")) 246	
  
 247	
  
 248	
  
	
  249	
  
	
  250	
  
########################################### 251	
  
#                                         # 252	
  
# Part Boat Fishing                R Code # 253	
  
#                                         # 254	
  
########################################### 255	
  
 256	
  
 257	
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#load required packages  258	
  
library(maps) 259	
  
library(MASS)   260	
  
library(mgcv) 261	
  
library(fields) 262	
  
library(akima) 263	
  
 264	
  
#Read in data 265	
  
#setwd("/Volumes/USB/Senior Project") 266	
  
#setwd("F:/Senior Project") 267	
  
setwd("/Users/samdellinger/Documents/Cal Poly 2013-14/Senior 268	
  
Project") 269	
  
fishing.data<- read.table('FishingFullDataSet.csv', header= T, 270	
  
sep=",") 271	
  
 272	
  
##Run through all of analyses individually for each year 273	
  
 274	
  
# subset data into years; run invididually 275	
  
#remove outlier in 2005 subset of data 276	
  
fishing.data = subset(fishing.data, subset = Year == 2003)  277	
  
#fishing.data = subset(fishing.data, subset = Year == 2004)  278	
  
#fishing.data = subset(fishing.data, subset = Year == 2005&LongDD>-279	
  
250)  280	
  
#fishing.data = subset(fishing.data, subset = Year == 2006)  281	
  
#fishing.data = subset(fishing.data, subset = Year == 2008)  282	
  
#fishing.data = subset(fishing.data, subset = Year == 2009)  283	
  
#fishing.data = subset(fishing.data, subset = Year == 2010)  284	
  
#fishing.data = subset(fishing.data, subset = Year == 2011)  285	
  
#fishing.data = subset(fishing.data, subset = Year == 2012)  286	
  
  287	
  
  288	
  
#Plot data with scatterplot 289	
  
plot(fishing.data$LongDD, fishing.data$LatDD, main='Scatterplot of 290	
  
Lat vs. Long', xlab='LatDD', ylab='LongDD') 291	
  
 292	
  
 293	
  
#Useful base map for properly scaled plots  294	
  
# run this map without any graphics windows first, then 295	
  
# all subsequent graphics will be have aspect ratios  296	
  
# that are scaled properly 297	
  
 298	
  
 299	
  
# Ran alone creates simple image of CA coastlines 300	
  
map(database = "state", regions = "CA", xlim = 301	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 302	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 303	
  
'darkgreen') 304	
  
# add drops to above plot 305	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 306	
  
rgb(0,0,0,.1), cex = .2) 307	
  
 308	
  
 309	
  
# Store map info 310	
  
map.info =  map(database = "state", regions = "CA", xlim = 311	
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range(fishing.data$LongDD)+c(-.1,.1), ylim = 312	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 313	
  
'darkgreen') 314	
  
map.plot = cbind(x = map.info$x, y = map.info$y) 315	
  
  316	
  
# Plot of effort with circles proportional to effort 317	
  
map(database = "state", regions = "CA", xlim = 318	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 319	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 320	
  
'darkgreen') 321	
  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 322	
  
fishing.data$Effort, fg = rgb(0,0,0,.05), inches = .5, add = TRUE)  323	
  
 324	
  
 325	
  
 326	
  
 327	
  
######################################## 328	
  
#                                      # 329	
  
#     KDE to estimate drop denisty     # 330	
  
#                                      # 331	
  
######################################## 332	
  
 333	
  
#bandwidth previously determined using clutser analysis; median 334	
  
fishing spot size  335	
  
 336	
  
kde = with(fishing.data, kde2d(LongDD, LatDD, n=100, h=.0155)) 337	
  
image.plot(kde, col = heat.colors(50)) 338	
  
map(database = "state", regions = "CA", xlim = 339	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 340	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 341	
  
'darkgreen', add = TRUE) 342	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 343	
  
rgb(0,0,0,.1), cex = .2) 344	
  
 345	
  
#change years 346	
  
title("KDE (2003)")  347	
  
 348	
  
#total drops 349	
  
#different number of trips per year 350	
  
 351	
  
N = 2731 #2003 352	
  
#N = 3580 #2004 353	
  
#N = 2313 #2005 354	
  
#N = 3556 #2006 355	
  
#N = 4114 #2008 356	
  
#N = 4188 #2009 357	
  
#N = 3790 #2010 358	
  
#N = 4239 #2011 359	
  
#N = 3787 #2012 360	
  
 361	
  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 362	
  
tot.est.drops = N * kde$z/sum(kde$z * pixel.ar) * pixel.ar 363	
  
image.plot(kde$x, kde$y, tot.est.drops, col = heat.colors(50), xlim 364	
  
= range(fishing.data$LongDD)+c(-.1,.1), ylim = 365	
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range(fishing.data$LatDD)+c(-.1, .1)) 366	
  
map(database = "state", regions = "CA", fill = TRUE, col = 367	
  
'darkgreen', add = TRUE) 368	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 369	
  
rgb(0,0,0,.1), cex = .2) 370	
  
title("Total Estimated number of Drops in pixel")  371	
  
sum(tot.est.drops) 372	
  
# evidence of some bias, so divide kde$z by sum(kde$z) in calcs 373	
  
 374	
  
 375	
  
 376	
  
 377	
  
######################################## 378	
  
#                                      # 379	
  
#Spline (within GAM) to estimate effort# 380	
  
#                                      # 381	
  
######################################## 382	
  
 383	
  
gam.fit = gam(Effort ~ s(LongDD, LatDD), data = fishing.data) 384	
  
summary(gam.fit) 385	
  
vis.gam(gam.fit, plot.type = "contour", main = NULL) 386	
  
map(database = "state", regions = "CA", xlim = 387	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 388	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 389	
  
rgb(0,100/256,0,.1), add = TRUE) 390	
  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 391	
  
fishing.data$Effort, fg = rgb(0,0,0,.05), inches = .5, add = TRUE)  392	
  
title("Effort")  393	
  
 394	
  
 395	
  
#predicted values   396	
  
pred.vals = data.frame(expand.grid(LongDD = kde$x, LatDD = kde$y)) 397	
  
effort.pred = matrix(predict(gam.fit, pred.vals), ncol = 100) 398	
  
image.plot(kde$x, kde$y, effort.pred, col = heat.colors(50), 399	
  
xlab="Latitude", ylab="Longitude") 400	
  
map(database = "state", regions = "CA", xlim = 401	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 402	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 403	
  
rgb(0,100/256,0,.1), add = TRUE) 404	
  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 405	
  
fishing.data$Effort, fg = rgb(0,0,0,.1), inches = .5, add = TRUE)  406	
  
title("Effort")  407	
  
 408	
  
 409	
  
 410	
  
 411	
  
 412	
  
#################### 413	
  
#                  # 414	
  
#   TOTAL EFFORT   # 415	
  
#                  # 416	
  
#################### 417	
  
 418	
  
#different number of trips per year 419	
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 420	
  
N = 2731 #2003 421	
  
#N = 3580 #2004 422	
  
#N = 2313 #2005 423	
  
#N = 3556 #2006 424	
  
#N = 4114 #2008 425	
  
#N = 4188 #2009 426	
  
#N = 3790 #2010 427	
  
#N = 4239 #2011 428	
  
#N = 3787 #2012 429	
  
 430	
  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 431	
  
#change year in prods 432	
  
prods2003 = N * kde$z/sum(kde$z * pixel.ar) * pixel.ar * effort.pred 433	
  
 434	
  
#change year in titles and withing image.plot 435	
  
#par(mfrow=c(1,2)) 436	
  
 437	
  
#need heat scale the same on all years  438	
  
image.plot(kde$x, kde$y, prods2003, col = heat.colors(50), 439	
  
xlab="Latitude", ylab="Longitude", zlim=c(0,80000)) 440	
  
map(database = "state", regions = "CA", xlim = 441	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 442	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 443	
  
rgb(0,100/256,0,.1), add = TRUE) 444	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 445	
  
rgb(0,0,0,.1), cex = .2) 446	
  
title("Annual Effort (2003)") 447	
  
 448	
  
###zoomed in portion of the graph for better visualization  449	
  
#image.plot(kde$x, kde$y, prods2003, col = heat.colors(50), xlim=c(-450	
  
121.0, -120.65), ylim=c(35, 35.4), xlab="Latitude", 451	
  
ylab="Longitude") 452	
  
#map(database = "state", regions = "CA", xlim = c(-121.0,-120.5), 453	
  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 454	
  
TRUE) 455	
  
#points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 456	
  
rgb(0,0,0,.1), cex = .2) 457	
  
#title("Annual Effort (2003)") 458	
  
 459	
  
 460	
  
 461	
  
###################### 462	
  
#                    # 463	
  
#     Bootstrap      # 464	
  
#                    # 465	
  
###################### 466	
  
 467	
  
set.seed(226) 468	
  
B = 5000 # number of bootstraps 469	
  
# total number of drops made by fishing company (monitored + not) 470	
  
 471	
  
N = 2731 #2003 472	
  
#N = 3580 #2004 473	
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#N = 2313 #2005 474	
  
#N = 3556 #2006 475	
  
#N = 4114 #2008 476	
  
#N = 4188 #2009 477	
  
#N = 3790 #2010 478	
  
#N = 4239 #2011 479	
  
#N = 3787 #2012 480	
  
 481	
  
n = nrow(fishing.data) 482	
  
kde.n = 100 # resolution of model 483	
  
# fit kde just to get pixels and base pixels set 484	
  
kde = with(fishing.data, kde2d(LongDD, LatDD, n=kde.n, h=.0155)) 485	
  
kde.lims = c(range(fishing.data$LongDD), range(fishing.data$LatDD)) 486	
  
image.plot(kde, col = heat.colors(12)) 487	
  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 488	
  
 489	
  
 490	
  
#change year in prods.array and within bootstrap loop  491	
  
prods.array2012 = array(NA,c(kde.n,kde.n,B)) 492	
  
for(B.i in 1:B){ 493	
  
 bootdata = fishing.data[sample(1:n, replace = TRUE),] 494	
  
 kde.b = with(bootdata, kde2d(LongDD, LatDD, n=kde.n, lims = 495	
  
kde.lims, h=.0155)) 496	
  
 gam.b = gam(Effort ~ s(LongDD, LatDD), data = bootdata) 497	
  
 pred.b = data.frame(expand.grid(LongDD = kde$x, LatDD = kde$y)) 498	
  
 effort.b = matrix(predict(gam.b, pred.b), ncol = kde.n) 499	
  
 prods.array2012[,,B.i] = N * kde.b$z/sum(kde.b$z * pixel.ar) * 500	
  
pixel.ar * effort.b 501	
  
 } 502	
  
 503	
  
 504	
  
 505	
  
#change years  506	
  
effort.mean2012 = apply(prods.array2012, c(1,2), mean) 507	
  
effort.sd2012 = sqrt(apply(prods.array2012, c(1,2), var)) 508	
  
 509	
  
 510	
  
#save objects as .Rdata to avoid re-running bootstraps  511	
  
#change years 512	
  
save(prods.array2012, effort.mean2012, effort.sd2012, 513	
  
file="2012Boot5000Data.Rdata") 514	
  
 515	
  
 516	
  
##determine max range for mean and sd to set limits for image.plot 517	
  
 518	
  
#2003-2010 519	
  
load(file="/Volumes/USB/Senior Project/2005Boot5000Data.Rdata") 520	
  
#2011-2012 521	
  
load(file="/Users/samdellinger/Documents/Cal Poly 2013-14/Senior 522	
  
Project/2012Boot5000Data.Rdata") 523	
  
 524	
  
 525	
  
range(effort.mean2003) 526	
  
 527	
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#2003 mean range= 0, 30385.87 528	
  
#2004 mean range= 0, 33821.26 529	
  
#2005 mean range= 0, 74563.47 530	
  
#2006 mean range= 0, 49182.44 531	
  
#2008 mean range= 0, 39058.74 532	
  
#2009 mean range= 0, 79894.28 533	
  
#2010 mean range= 0, 40188.94 534	
  
#2011 mean range= 0, 65443.65 535	
  
#2012 mean range= 0, 43507.75 536	
  
 537	
  
##max mean range = (0, 79894.28) so set zlim=c(0,80000) 538	
  
 539	
  
 540	
  
range(effort.sd2003) 541	
  
 542	
  
#2003 sd range= 0, 7955.95 543	
  
#2004 sd range= 0, 5882.436 544	
  
#2005 sd range= 0, 16477.52 545	
  
#2006 sd range= 0, 8720.045 546	
  
#2008 sd range= 0, 12063.52 547	
  
#2009 sd range= 0, 21678.58 548	
  
#2010 sd range= 0, 8773.712 549	
  
#2011 sd range= 0, 1502.64 550	
  
#2012 sd range= 0, 9763.391 551	
  
 552	
  
##max sd range = (0, 21678.58) so set zlim=c(0,22000) 553	
  
 554	
  
 555	
  
 556	
  
################################# 557	
  
#                               # 558	
  
# Images of Bootstrap Estiamtes # 559	
  
# of Effort and Variability     # 560	
  
#                               # 561	
  
################################# 562	
  
 563	
  
 564	
  
#change years in effort.mean and effort.sd 565	
  
#par(mfrow=c(1,2)) 566	
  
 567	
  
image.plot(kde$x, kde$y, effort.mean2005, col = heat.colors(12), 568	
  
xlab="Latitude", ylab="Longitude", zlim=c(0, 80000)) 569	
  
map(database = "state", regions = "CA", xlim = 570	
  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 571	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 572	
  
rgb(0,100/256,0,.1), add = TRUE) 573	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 574	
  
rgb(0,0,0,.1), cex = .2) 575	
  
title("Estimated Annual Effort (2005)") 576	
  
 577	
  
 578	
  
image.plot(kde$x, kde$y, effort.sd2005, col = heat.colors(12), 579	
  
xlab="Latitude", ylab="Longitude",  zlim=c(0, 22000)) 580	
  
map(database = "state", regions = "CA", xlim = 581	
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range(fishing.data$LongDD)+c(-.1,.1), ylim = 582	
  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 583	
  
rgb(0,100/256,0,.1), add = TRUE) 584	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 585	
  
rgb(0,0,0,.1), cex = .2) 586	
  
title("Estimated SD of Annual Effort (2005)") 587	
  
 588	
  
 589	
  
 590	
  
 591	
  
##zoomed in portions of bootstrapped graphs  592	
  
#change years in effort.mean and effort.sd 593	
  
#par(mfrow=c(1,2)) 594	
  
 595	
  
image.plot(kde$x, kde$y, effort.mean2003, col = heat.colors(12), 596	
  
xlim = c(-121.0,-120.65), ylim = c(35,35.4), xlab="Latitude", 597	
  
ylab="Longitude") 598	
  
map(database = "state", regions = "CA", xlim = c(-121.0,-120.65), 599	
  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 600	
  
TRUE) 601	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 602	
  
rgb(0,0,0,.1), cex = .2) 603	
  
title("Estimated Annual Effort (2003)") 604	
  
 605	
  
 606	
  
image.plot(kde$x, kde$y, effort.sd2003, col = heat.colors(12), xlim 607	
  
= c(-121.0,-120.65), ylim = c(35,35.4), xlab="Latitude", 608	
  
ylab="Longitude") 609	
  
map(database = "state", regions = "CA", xlim = c(-121.0,-120.65), 610	
  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 611	
  
TRUE) 612	
  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 613	
  
rgb(0,0,0,.1), cex = .2) 614	
  
title("Estimated SD of Annual Effort (2003)") 615	
  
 616	
  
 617	
  
 618	
  
 619	
  
 620	
  
###DIFFERENCE IN (average) ANNUAL EFFORT pre-mpa and post-mpa 621	
  
 622	
  
#total effort per year  623	
  
t2003 = mean(apply(prods.array2003, 3, sum)) 624	
  
t2004 = mean(apply(prods.array2004, 3, sum)) 625	
  
t2005 = mean(apply(prods.array2005, 3, sum)) 626	
  
t2006 = mean(apply(prods.array2006, 3, sum)) 627	
  
 628	
  
t2008 = mean(apply(prods.array2008, 3, sum)) 629	
  
t2009 = mean(apply(prods.array2009, 3, sum)) 630	
  
t2010 = mean(apply(prods.array2010, 3, sum)) 631	
  
t2011 = mean(apply(prods.array2011, 3, sum)) 632	
  
t2012 = mean(apply(prods.array2012, 3, sum)) 633	
  
 634	
  
 635	
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#difference in total effort pre and post mpas 636	
  
d.hat = .2 * (t2008+t2009+t2010+t2011+t2012) - .25 * 637	
  
(t2003+t2004+t2005+t2006) 638	
  
 639	
  
 640	
  
#estimated variances of total effort  641	
  
s.hat.2003 = var(apply(prods.array2003, 3, sum)) 642	
  
s.hat.2004 = var(apply(prods.array2004, 3, sum)) 643	
  
s.hat.2005 = var(apply(prods.array2005, 3, sum)) 644	
  
s.hat.2006 = var(apply(prods.array2006, 3, sum)) 645	
  
 646	
  
s.hat.2008 = var(apply(prods.array2008, 3, sum)) 647	
  
s.hat.2009 = var(apply(prods.array2009, 3, sum)) 648	
  
s.hat.2010 = var(apply(prods.array2010, 3, sum)) 649	
  
s.hat.2011 = var(apply(prods.array2011, 3, sum)) 650	
  
s.hat.2012 = var(apply(prods.array2012, 3, sum)) 651	
  
 652	
  
 653	
  
#estimated variance for the difference in total effort 654	
  
#(1/5)^2 = .04   (1/4)^2 = .0625 655	
  
s.hat.d = sqrt(.04*s.hat.2003 + .04*s.hat.2004+ .04*s.hat.2005+ 656	
  
.04*s.hat.2006+ .0625*s.hat.2008+ .0625*s.hat.2009+ 657	
  
.0625*s.hat.2010+ .0625*s.hat.2011+ .0625*s.hat.2012) 658	
  
 659	
  
 660	
  
#create confidence interval 661	
  
d.ll = d.hat - (1.96 * s.hat.d) 662	
  
d.ul = d.hat + (1.96 * s.hat.d) 663	
  
 664	
  
 665	
  
#summary of parts to confidence interval  666	
  
d.hat 667	
  
s.hat.d 668	
  
d.ll 669	
  
d.ul 670	
  
 

B.	
  Record	
  of	
  Hours	
  	
  
 
Date	
   Start	
  Time	
   End	
  Time	
   Hours	
  

9/30/13	
   10:30	
  AM	
   11:30	
  AM	
   1	
  
10/4/13	
   10:00	
  AM	
   12:00	
  PM	
   2	
  
10/9/13	
   11:00	
  AM	
   12:00	
  PM	
   1	
  
10/24/13	
   2:00	
  PM	
   3:00	
  PM	
   1.5	
  
10/25/13	
   10:00	
  AM	
   12:00	
  PM	
   2	
  
10/26/13	
   1:30	
  PM	
   2:30	
  PM	
   1	
  
10/28/13	
   11:30	
  AM	
   12:00	
  PM	
   0.5	
  
11/1/13	
   10:00	
  AM	
   11:00	
  AM	
   1	
  
11/20/13	
   11:00	
  AM	
   1:00	
  PM	
   2	
  
11/23/13	
   9:00	
  AM	
   11:00	
  AM	
   2	
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12/1/13	
   7:00	
  PM	
   7:30	
  PM	
   0.5	
  
12/4/13	
   11:00	
  AM	
   12:00	
  PM	
   1	
  
12/7/13	
   12:00	
  PM	
   2:00	
  PM	
   2	
  
12/11/13	
   11:00	
  AM	
   12:00	
  PM	
   1	
  

1/8/14	
   11:00	
  AM	
   11:00	
  AM	
   1	
  
1/9/14	
   12:30	
  PM	
   2:00	
  PM	
   1.5	
  
1/14/14	
   1:00	
  PM	
   2:00	
  PM	
   1	
  
2/4/14	
   1:00	
  PM	
   2:00	
  PM	
   1	
  
2/5/14	
   9:00	
  AM	
   10:00	
  AM	
   1	
  
2/6/14	
   10:00	
  AM	
   11:00	
  AM	
   1	
  
2/7/14	
   11:00	
  AM	
   12:00	
  PM	
   1	
  
2/20/14	
   9:00	
  AM	
   10:00	
  AM	
   1	
  

	
  
7:30	
  PM	
   9:30	
  PM	
   2	
  

2/21/14	
   6:30	
  PM	
   9:30	
  PM	
   3	
  
3/4/14	
   9:30	
  AM	
   10:30	
  AM	
   1	
  
3/6/14	
   12:00	
  PM	
   3:30	
  PM	
   3.5	
  
3/13/14	
   9:00	
  AM	
   10:00	
  AM	
   1	
  
3/17/14	
   6:00	
  PM	
   10:00	
  PM	
   4	
  
3/18/14	
   9:00	
  AM	
   10:00	
  AM	
   1	
  
4/3/14	
   11:30	
  AM	
   1:00	
  PM	
   1.5	
  
4/7/14	
   3:00	
  PM	
   5:00	
  PM	
   2	
  
4/10/14	
   9:00	
  AM	
   10:00	
  AM	
   1	
  
4/16/14	
   1:00	
  PM	
   4:00	
  PM	
   3	
  
4/21/14	
   9:00	
  AM	
   12:00	
  PM	
   3	
  
4/24/14	
   10:00	
  AM	
   11:00	
  AM	
   1	
  

	
  
12:00	
  PM	
   2:00	
  PM	
   2	
  

4/28/14	
   3:00	
  PM	
   7:00	
  PM	
   4	
  
5/9/14	
   10:00	
  AM	
   2:30	
  PM	
   4.5	
  
5/13/14	
   10:00	
  AM	
   12:30	
  PM	
   2.5	
  
5/15/14	
   10:00	
  AM	
   11:00	
  AM	
   1	
  
5/20/14	
   11:30	
  AM	
   11:00	
  PM	
   1.5	
  
5/22/14	
   10:00	
  AM	
   11:00	
  AM	
   1	
  
5/25/14	
   9:00	
  AM	
   12:00	
  PM	
   3	
  
5/26/14	
   10:00	
  AM	
   1:30	
  PM	
   3.5	
  

	
  
5:00	
  PM	
   10:30	
  PM	
   5.5	
  

5/27/14	
   12:00	
  PM	
   1:30	
  PM	
   1.5	
  
28-­‐May	
   7:00	
  PM	
   12:00	
  PM	
   5	
  
5/29/14	
   10:00	
  AM	
   12:00	
  PM	
   2	
  

	
  
7:30	
  PM	
   10:00	
  PM	
   2.5	
  

5/30/14	
   11:00	
  AM	
   12:30	
  PM	
   1.5	
  
6/2/14	
   7:00	
  PM	
   9:30	
  PM	
   2.5	
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6/3/14	
   11:00	
  AM	
   4:00	
  PM	
   5	
  
6/4/14	
   12:30	
  PM	
   2:00	
  PM	
   1.5	
  
6/7/14	
   9:30	
  AM	
   11:00	
  PM	
   1.5	
  
6/8/14	
   4:30	
  PM	
   8:00	
  PM	
   3.5	
  

	
   	
   	
   	
  
	
   	
   	
   	
  
	
   	
  

Total:	
   109	
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