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I.	  Introduction	  	  

A.	  Background	  
	  
 In 2007, in hopes of protecting 
the two species of fish rockfish and 
lingcod, the government 
implemented marine protected areas 
(or mpa’s), in the South Central 
Coast. In these protected areas 
shown in Figure 1,1 the capabilities 
of the captains that lead the party 
boat fishing trips were limited, which 
raised the question of how the 
fishing has changed since the 
marine protected areas were put in 
place. It is a common hypothesis that 
the fisherman will fish on the edge of 
the specified marine protected areas, 
in hopes that fishing extremely close 
to the protected areas will lead to 
them catching bigger and better fish.  
 
 

Party boat fishing consists of a captain, who owns a commercial 
passenger fishing vessel, being paid to take others on an agreed upon number of 
trips, or until all of the people on the vessel have reached their bag limit (the legal 
maximum number fish an individual can catch). For the South Central Coast, 
these fishing trips come out of Morro Bay and Port San Luis, and are primarily 
booked through Virg’s Sport Fishing, Patriot Sport Fishing, and Central Coast 
Sport Fishing.  
 
 

B.	  The	  Data	  	  
	  

When Dr. Andrew Schaffner and I met with Biology grad student Morgan 
Ivens-Duran for the first time, she came to us with a data set that included 
information pertaining to party boat fishing on the South Central Coast of 
California that covered eleven past years. This data collection began in 2003, 
when Morgan’s lab, the Center for Coastal Marine Sciences, became interested 
in where fisherman on the South Central Coast were fishing, and how the 
rockfish and lingcod cohabitate. As natural in a sample, this data set included 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  California	  Marine	  Protected	  Areas,	  Central	  Coast	  MPA	  Region,	  
http://www.californiampas.org/pages/regions/centralcoast.html	  (January	  2014).	  	  

Figure	  1:	  Map	  of	  the	  Central	  Coast	  
MPA’	  
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information on a small proportion of the boat trips that were made each year, only 
about 6 to 22 percent. For each trip that was sampled, we have information on 
three variables: the latitude and longitude of every drop that was made, and the 
effort that was made at each drop (cumulative time per drop that all fishing lines 
are in the water). 

 
 
In 2007, the marine protected areas were put in place, and as a result, the 

data is split into pre-mpa data from 2003-2006, and post-mpa data from 2008-
2012. For the purpose of our analyses, we will leave out the year 2007 because it 
was the year that the marine protected areas were put in place, and thus has 
mixed pre and most mpa data. Below, Figure 2 shows a bar graph of the total 
number of trips that were made per year, showing the divide between pre-mpa 
years (green) and post-mpa year (blue) with 2007 as a buffer year in gray.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pre and Post MPA data can be compared to investigate how the spatial 
pattern and intensity of fishing effort had changed in the South Central Coast 
region over the 10 year time period, and specifically how it has changed as a 
result of the implementation of the marine protected areas. 
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Figure	  2:	  Bar	  Graph	  of	  Total	  Trips	  Made	  per	  Year	  
(Appendix	  lines	  285-‐295)	  	  
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C.	  Analytics	  	  
	  

In order to assist Morgan in exploring her research question, we created 
estimates of the fishing effort along the Central Coast for each year, allowing her 
to get a clear picture of where the most effort was located. Furthermore, we 
provide estimates of the uncertainty in our effort estimates along the Central 
Coast. To do this we applied several estimation techniques to the data including 
Kernel Density Estimation and Splines to estimate effort, and Bootstrapping to 
estimate the uncertainty in our estimates.  

 
 

The Kernel Density estimation will allow us to estimate the spatial 
distribution (density) of drops to gain a better understanding of where the 
fisherman are fishing and how often. In addition to where and how often these 
fisherman were fishing, we needed to also include the amount of effort that was 
being put forth each time fishing lines were dropped at each location. We 
estimated the effort using two-dimensional splines. Finally, to estimate the 
variability (uncertainty) of these estimates we used bootstrapping. This process 
was repeated separately for each of the 10 years of pre-mpa and post-mpa data 
to create a clear picture could be drawn about how the fishing location effort 
changes from year to year.  
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III.	  Tools	  for	  Analysis	  
 

A.	  Kernel	  Density	  Estimation	  to	  Estimate	  Drop	  Densities	  
 

Kernel Density Estimation is a nonparametric way to estimate the 
probability density of a random variable. In the simplest terms, Kernel Density 
Estimation is a density smoother calculated using a weighted moving average. 
This concept applies really well to a simple histogram: for a set value of x, we 
compute the (scaled by bandwidth) proportion of the data that falls within a 
specific neighborhood (determined by the bandwidth) of x. To illustrate this idea, 
we can first look at the definition of the pdf, 𝑓(𝑥), of a random variable X, 

 𝑃 𝑥 − 𝑏 < 𝑋 < 𝑥 + 𝑏 = 𝑓 𝑡 𝑑𝑡!!!
!!!  ≈ 2b  𝑓(𝑥),  

 
and thus,  

𝑓 𝑥 ≈
1
2𝑏 𝑃 𝑥 − 𝑏 < 𝑋 < 𝑥 + 𝑏  

 
where b represents the bandwidth parameter2. This probability can also be 
estimated by a frequency in the sample, so  
 

𝑓 𝑥 =   
1
2𝑏

number of observations in   𝑥 − 𝑏, 𝑥 + 𝑏
𝑛    . 3 

 
 

The selection of the bandwidth, b, will have a significant effect on the 
kernel density estimations; choosing a b too large will result in an overly smooth 
and non descriptive curve, whereas choosing a b that is too small will result in a 
highly irregular and overly specific smoothing curve. The following histograms in 
Figure 3 are of a sample of 20 longitude values modeled with different values of 
b, and a possible kernel density estimate curve using the bandwidth b=0.1.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Walter	  Zucchini,	  Part	  I:	  Kernel	  Density	  Estimation,	  Applied	  Smoothing	  Techniques,	  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	  
3	  Walter	  Zucchini,	  Part	  1:	  Kernel	  Density	  Estimation,	  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	  
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You can visualize the kernel density estimate by smoothing a histogram 
with bins of width 2b. Imagine that you have a rectangle, with height !

!!
 and width 

2𝑏, that is placed over each point in the sample on the x-axis. The estimate of 
𝑓(𝑥) at a given point is !

!
 times the sum of the heights of all of the rectangles that 

include that point. This method would be using the rectangular “weighting” 
function, in which all of points in the rectangle are given an equal weight when 
calculating the estimate of 𝑓(𝑥) at that given point. Figure 4 shows an example of 
the effect that changing b (denoted bw in the image) has when using a 
rectangular kernel estimate.  
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Figure	  3:	  Sample	  of	  Longitudes	  plotted	  with	  varying	  bandwidths	  
(Appendix	  lines	  38-‐64)	  
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This series of images (Figure 4) shows the importance of choosing a value for b, 
which controls the degree of smoothing that is appropriate for the data. You can 
see that a value of b=0.025 results in very scattered peaks that do not do much 
smoothing of the data at all, where as a value of b=0.2 creates more smoothing 
in the data, but is slightly too large due to the flat and non-descript nature of the 
smoothing curve.  
 
 

In the context of estimating the density of fishing locations (lat/long), we 
chose an appropriate bandwidth (b=.0155) using a cluster analysis of the 
latitudes and longitudes that were fished to identify clusters that would represent 
fishing spots. The median size of the fishing spots was used to choose the 
bandwidth.   
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Figure	  4:	  Rectangular	  Kernel	  Density	  Estimates	  of	  Sample	  of	  Longitudes	  
with	  varying	  bandwidths	  (Appendix	  lines	  69-‐117)	  
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As important as it is to choose an appropriate bandwidth for your data, it is 
also important to consider the type of kernel that you want to use. In the example 
above the type of kernel is rectangular, while other common types of kernels 
include triangular, Epanechnikov, and Gaussian. The important idea to note 
about these kernels is that they are all functions that weight the data and that 
follow the form,  
 

𝑤 𝑡, 𝑏 =   
1
ℎ𝐾

𝑡
𝑏    

 
where 𝐾 !

!
   is a function of the kernel4; the kernel density will determine the 

shape of your smoothing function. For the purposes of our analyses, we applied 
a Gaussian kernel, which will put more weight on the points in the middle of our 
kernels and less weight on the points in the tails of the kernel, and will resemble 
a normal curve.  
 
 

Because the weights are applied to the points that are encapsulated in 
each kernel, the effect of a bandwidth that is too small is amplified and the curve 
will result in having too many peaks. On the other end of the spectrum, a 
bandwidth that is too large will result in a very shallow and normal-looking curve 
that does not illustrate any patterns in the data. The data that was modeled using 
rectangular kernels above is now illustrated using Gaussian kernels, in Figure 5.  
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Walter	  Zucchini,	  Part	  1:	  Kernel	  Density	  Estimation,	  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	  
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For the purposes of our data, we use kernel density estimation to obtain a 
density estimate of the drop locations (latitude and longitude), so we need to 
generalize the one dimensional kernel density estimation to be multidimensional.  
 
 

Consider the form of the one-dimensional estimation, where again b is the 
bandwidth around x0, and K is the kernel that controls the weight given to the 
point 𝑥! based on its proximity to x0:  
 

𝑓   𝑥! = !
!"

𝐾 !!!!!
!! . 5 

 
This form is the estimation can be generalized to the multidimensional situation, 
in which different bandwidths are allowed for each direction, where  
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Walter	  Zucchini,	  Part	  1:	  Kernel	  Density	  Estimation,	  
http://isc.temple.edu/economics/Econ616/Kernel/ast_part1.pdf	  
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Figure	  5:	  Gaussian	  Kernel	  Density	  Estimation	  of	  Sample	  of	  
Longitudes	  with	  varying	  bandwidths	  (Appendix	  lines	  122-‐167)	  
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𝑓   𝑥 =    !
!

!
!!
𝐾(!!"!!!!

!!
!
!!!! ). 6 

 
We used built-in functions in the software package R to obtain the kernel density 
estimates of the drop densities. The R code used for these drop location density 
estimates is located on pages 33 and 34 of the Appendix, from line 461 to line 
473.  
 
 

B.	  Generalized	  Additive	  Model	  to	  Smooth	  Effort	  Estimations	  
 

In order to predict effort values at latitude and longitude values that were 
not sampled during data collection, we will be using the generalized additive 
model (gam) function in R. Within the gam function we will be using splines as 
our smoothing functions to better predict our values for effort. In order to better 
explain the Generalized Additive Models, or GAM, we will first look at the General 
Linear Model and the Generalized Linear Model. To begin, consider the task of 
exploring the association between effort, and latitude and longitude values.  

 
 
The general linear model, or least squares regression model refers to a 

situation in which we have a response variable (e.g. effort), that we believe to be 
some function of other variables (e.g. latitude and longitude). In this standard 
model, our explanatory variable is assumed to be normally distributed with mean 
µ and variance σ2, where the X’s are our predictor variables. These predictor 
variables are scaled by some coefficient βi (or bi in the context of a sample of 
data) and are summed, giving us the linear predictor that provides the estimated 
fitted y value according to the given X values. Symbolically, for a sample of data, 
this relationship looks like the following: 

 
y = b0 + b1X1 + b2X2. 

 
This linear regression model often is too simplified and limited to capture what is 
really going on with the data, which is why we will next look at a more extended 
version, which is a generalized linear model.  

 
 
 In exploring this association with the general linear model we are 

assuming that a function of effort is some linear combination of latitude and 
longitude. In the generalized linear model, the link function of your variable which 
relates your predictor variables to a function of your explanatory variable(s), is 
directly related to the linear combination of your predictors. This link function can 
also be expressed as the estimated fitted values of your variable, which in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Patrick	  Breheny,	  Kernel	  density	  estimation,	  Slide	  22,	  
http://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-‐18.pdf	  
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context of our example would be the estimated fitted values of effort. The linear 
combination of the predictor variables refers to, in our case, the values of latitude 
and longitude that are scaled by some coefficient bi that is determined by 
software when the regression is run. This linear relationship can be expressed 
generally as,  

 
g(µ)= b0 + b1X1 + b2X2. 

 
One of the biggest differences between the general linear model and the 
generalized linear model is that distributions other than Gaussian can be applied 
as the link functions. Thus, the important idea to note here is that the generalized 
linear model is just an expansion of the standard general linear model that most 
are familiar with.  
 
  

Taking the generalized linear model one step further results in the 
generalized additive model, which is the model that we are using in this analysis. 
The generalized additive model uses smooth functions of the predictor variables, 
which can take any number of forms. This model symbolically takes the form of,  

 
g(µ)= b0 + f(x1,x2).  

 
The incorporation of the link functions of the linear predictor variables is the key 
difference between the generalized linear model and the generalized additive 
model. The addition of the smoothing aspect of this equation allows for more 
accurate predictions of our effort values, based on a predictive function of latitude 
and of longitude. We will be using a spline smoother within the GAM function in 
R, to smooth and predict effort values based on the latitude and longitude.   
 
  
 The idea behind the GAM smoother is extremely similar to that of the 
kernel density estimators; for every x value, x0, we choose a neighborhood 
around it and fit some type of model, for example a linear regression on the data 
points captured in that neighborhood. Using the fitted model for the specified 
neighborhood, you end up with a fitted value corresponding to that specific x0, 
and if we repeat this process for every x0 in our sample we would end up with 
fitted values based on a rolling neighborhood that is relative to each x value.7 
Instead of fitting a linear regression, we can fit a polynomial regression or some 
other type of model that gives weight to the x values in a given neighborhood 
based off of their relative distances from x0. In the context of our analysis, the 
function we will use to weight our values is a spline smoother. Within these spline 
smoothers there are two categories, natural splines and b-splines; R uses b-
splines for its estimations, so that is the function that will be the basis of our 
resulting analyses.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  Michael	  Clark,	  Generalized	  Additive	  Models,	  Center	  for	  Social	  Research	  University	  of	  Notre	  Dame,	  
Page	  7,	  http://www3.nd.edu/~mclark19/learn/GAMS.pdf	  
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 Splines are more complex 
smoothing functions because a spline 
curve is actually a piecewise 
polynomial curve that joins together 
two or more curves, or “basis 
functions”, at locations called “knots”. 
A spline is defined as being a 
piecewise m-1 degree polynomial that 
is continuous up to its first m-2 
derivatives; the continuity 
requirements allows for the curve to be 
as smooth as possible. On the 
following page, Figure 6 shows an 
example of two curves joined at a knot 
at x=10. This example is for illustrative 
purposes only, because this piecewise 
curve is not continuously differentiable, 
and this cannot be a true spline. More 
flexible curves can be obtained by 
increasing the degree of the spline and/or by increasing the number of knots.8  
 
 

However, as with the kernel density estimation, there are tradeoffs for 
increasing or decreasing the number of knots used: having too few knots results 
in the functions being too restrictive and not fitting the data well while having too 
many knots leads to the risk of over fitting your data.  
 
 

As with any estimation, it is important to also consider the error of these 
estimations, and is always helpful to construct confidence intervals illustrating the 
accuracy of your predictions. As stated previously, we will be working with the 
highly complicated but more stable and efficient spline in our R work and 
analyses, including the example the follows.  
 
 

To illustrate the workings of spline smoothing functions, we will look at a 
simplified example of what we are doing, by looking at predicting effort from just 
a single predictor, longitude. The equation that goes alone with the single 
predictor equation is  

 
𝑦 = 𝑓 𝑥 ,     

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8	  Patrick	  Breheny,	  Kernel	  density	  estimation,	  
http://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-‐18.pdf	  
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Figure	  6:	  Piecewise	  Curve	  with	  a	  “Knot”	  	  
(Appendix	  lines	  178-‐188)	  
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where f is a smooth function, specifically a smooth function of longitude for the 
following example.  
 
 

The following images and analyses were based on the same sample of 20 
longitudes, and their corresponding 20 efforts values. Figure 7 shows a 
scatterplot of the sample of twenty longitudes and their corresponding efforts that 
are being used for this example.  

 

 
 
 
 
 
 

In Figure 8, the 20 sample longitude points are plotted against their 
relative predicted efforts (calculated with the spline function in R), as well as the 
spline curve that predicts the effort at all points between -121.4 and -120.6. 
Because these are predicted, or estimated, effort values it is important to show 
what the variability is around your estimations. The variability in the estimations is 
represented in this plot as the dotted lines that fall on either side of the prediction 
curve. These lines are the 95% confidence interval lines for the predictions, and 
you can see that the confidence lines show the most variability (are the farthest 
away from the line) in the places where there are little or no recorded effort 
values to base the predictions off of. Good illustrations of this occur at longitude 
values of about -121.2 and also around -120.6. On this graph there are also tick 
marks along the longitude axis that represent where the sample data points fall, 
and we can again look at the space where there are little or no tick marks and 
see that at those values the variability around the estimates is much higher.   
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Figure	  7:	  Scatterplot	  of	  Sample	  of	  Longitudes	  with	  
Corresponding	  Effort	  Values	  	  
(Appendix	  lines	  192-‐211)	  
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For our actual analyses, we will be carrying out the same basic process, 

however we will be predicting effort using an interactive spline model that 
includes a spline smoother that will be incorporating both longitude and latitude 
values, and the interaction between the two variables. This model is represented 
by,  

𝑦 = 𝑓(x1,x2), 
 

where x1 is the latitude and x2 is the longitude. This model will allow us to predict 
where and how often effort is being exerted while fishing for the Central Coast of 
California, both where we do and do not have existing data.  
 
 

As previously mentioned, it is extremely important to be able to include 
how much error is associated with your predictions. In order to predict this error, 
we will use a two-stage model with bootstrapping.   
 
 

C.	  Two-‐Stage	  Bootstrapping	  to	  Estimate	  Fishing	  Effort	  and	  Variability	  of	  
Estimates	  	  
  

 The purpose of using bootstrapping is primarily to estimate the variability 
or uncertainty in the effort predictions. The bootstrap process is shown in Figure 
9 and is described as follows.  First, start with the original sample of data, of size 
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Figure	  8:	  Spline	  Curve	  to	  Predict	  Effort	  from	  Longitude	  
with	  95%	  Confidence	  Bands	  
(Appendix	  lines	  216-‐225)	  
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n. Then, sample n observations from the original data, with replacement, and call 
this the “boot data”. The original sample size and thus the size of the boot data 
will change depending on the year that the analysis is being performed on. This 
boot data is now fit using the two-stage model as previously explained- KDE and 
splines. The KDE allows us to determine where the fisherman are fishing, the 
spline allows us to determine how often the fisherman are fishing in certain 
location, and together they allow us to determine the bootstrap estimate of 
annual effort at each location on our map. This annual estimate is calculated by  
 
𝑡𝑜𝑡𝑎𝑙  #  𝑑𝑟𝑜𝑝𝑠 ∗ 𝑝𝑟𝑜𝑏  𝑜𝑓  𝑑𝑟𝑜𝑝   𝑎𝑡  𝑒𝑎𝑐ℎ  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∗   𝑒𝑓𝑓𝑜𝑟𝑡   𝑎𝑡  𝑒𝑎𝑐ℎ  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 . 

 
In this equation, the probability of a drop at each location, or pixel, is determined 
by the KDE and the effort at each location/pixel, is determines by the spline.  
 
  
 We will repeat this process 5,000 times, which will result in 5,000 
estimates for annual effort at each location. To be able to create a single graph 
depicting the bootstrapped effort estimates and variability estimates, the final 
step is to take these 5,000 estimates and take the mean, which will result in the 
bootstrap estimate of effort, and take the standard deviation, which will result in 
the bootstrap estimate of variability.  
 
 
 
 

 

Figure	  9:	  Map	  of	  Bootstrap	  Process	  with	  a	  Two-‐Stage	  Model	  	  
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IV.	  Results	  	  
 

A.	  Estimation	  of	  Effort	  (KDE	  and	  Splines)	  
	  
 Using the bootstrapping as well as a combination of the kernel density 
estimation to estimate where fisherman were fishing, and splines to estimate how 
much effort was being put in at each location, the resulting images give a good 
picture of the fishing patterns along the central coast, from year to year. Figure 
10 shows an example of the images that will be looked at in the following 
sections; these two images show the estimated effort and estimated variability in 
effort for the year 2003.   
	  
 

 
 
For all 9 years of data, an image of the estimated annual effort has been created 
with the estimated effort at each pixel being measured on a heat scale from 0 to 
80,000. In Figure 11 below, the estimated annual effort for 2003 for the whole 
Central Coast is placed next to a zoomed-in portion of the coast. This smaller 
portion of the Central Coast allows us to better see how these estimation are 
mapped and how the effort in this section is distributed; the enhanced image is 
also on a smaller heat scale (0 to 30,000) to better see how much effort is 
estimated at each pixel.  
 
 

Figure	  10:	  2003	  Estimated	  Annual	  Effort	  and	  Estimated	  Variability	  	  
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  To investigate whether or not the fishing patterns have changed since the 
mpa’s were put in to place, we can compare the images in Figure 12, which 
depict the fishing patterns for the pre-mpa years, to the images in Figure 13, 
which depict the fishing patterns for the post-mpa years.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	  11:	  2003	  Estimated	  Annual	  Effort	  with	  Enhanced	  
Portion	  to	  Illustrate	  Pixel-‐Wise	  Estimation	  of	  Effort	  

(Appendix	  lines	  566-‐576,	  596-‐604)	  
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Figure	  12:	  Pre	  MPA	  (2003-‐2006)	  Estimated	  Annual	  Effort	  
(Appendix	  lines	  568-‐576	  repeated	  for	  each	  year)	  
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Figure	  13:	  Post	  MPA	  (2008-‐2012)	  Estimated	  Annual	  Effort,	  
Continues	  on	  page	  20	  

(Appendix	  lines	  568-‐576	  repeated	  for	  each	  year)	  
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 From looking at the nine images of annual effort, it is not perfectly clear 
whether or not the pattern of effort changed substantially after the marine 
protected areas were put in place. However, there are interesting patterns to note 
such as the effort generally getting larger from 2003 to 2005, which we can see 
based on the pixels becoming brighter. Also, in the post-mpa years the fishing 
effort is more condensed into specific locations, rather than being spread along 
the coast which could potentially be attributed to the areas where fishing was no 
longer allowed.  
 
 
 

B.	  Estimation	  of	  Variability	  (Bootstrapping)	  
	   Bootstrapping	  our	  data	  through	  the	  two-‐stage	  model	  of	  KDE	  and	  Splines	  
allows	  for	  the	  estimation	  of	  the	  variability	  that	  surrounds	  the	  effort	  estimations	  at	  
each	  location;	  the	  estimate	  of	  this	  variability	  for	  each	  year	  is	  shown	  based	  on	  a	  heat	  
scale	  ranging	  from	  0	  to	  22,000.	  In	  Figure	  14,	  the	  estimated	  variability	  in	  our	  data	  for	  
2003	  is	  shown	  next	  to	  a	  zoomed	  in	  portion	  of	  the	  Central	  Coast	  (the	  same	  portion	  
that	  was	  provided	  in	  Figure11).	  By	  looking	  at	  the	  selected	  portion	  of	  the	  coast	  in	  
Figure	  14,	  we	  can	  see	  that	  the	  variability	  around	  these	  estimates	  is	  moderately	  high;	  
the	  fairly	  high	  standard	  deviations	  could	  be	  attributed	  to	  the	  small	  	  amount	  of	  data	  
that	  we	  have,	  and	  that	  we	  are	  using	  to	  try	  to	  predict	  effort	  along	  the	  whole	  Central	  
Coast.	  	  
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 In addition to looking at the patterns in estimated effort from year to year, 
looking at the estimated variability from year to year can tell us a lot about our 
data; to do this we will look at Figures 15 and 16 on the following pages. The 
years with the brightest pixels represent the years with the highest variability, and 
the ones that stand out are the years 2005 and 2009. These are also the years 
that were found to have higher estimated annual efforts. The trend appears to 
follow that the higher the estimated annual effort is, the higher the estimated 
variability will be also; this is an interesting observation to note because this is 
telling us that we can generally be less certain about the accuracy of our 
estimations when we are estimating higher values of effort. There does not 
appear to be any significant differences in the variability between the pre-mpa 
years and the post-mpa years, because the variability varies greatly within the 
pre-mpa and post-mpa groups individually.  
 
 
 
 
 
 
 
 
 

Figure	  14:	  2003	  Estimated	  Annual	  Effort	  with	  Enhanced	  
Portion	  to	  Illustrate	  Pixel-‐Wise	  Estimation	  of	  Effort	  

(Appendix	  lines	  579-‐587,	  607-‐615)	  
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Figure	  15:	  2003	  Estimated	  Standard	  Deviation	  of	  Annual	  Effort	  
with	  Enhanced	  Portion	  to	  Illustrate	  Pixel-‐Wise	  Estimation	  of	  Effort	  

(Appendix	  lines	  579-‐587	  repeated	  for	  each	  year)	  
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Figure	  16:	  Post	  MPA	  (2008-‐2012)	  Estimated	  Standard	  Deviation	  of	  
Annual	  Effort,	  Continues	  on	  page	  24	  

(Appendix	  lines	  579-‐587	  repeated	  for	  each	  year)	  
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C.	  Annual	  Effort	  Pre	  and	  Post	  MPA	  
One of the driving forces for this project was the question of whether or 

not fishing effort has changed due to the implementation of the marine protected 
areas along the Central Coast. Another way to investigate this question is to look 
at the difference in average annual effort for the pre-mpa years and the post-mpa 
years. To do this we will compute a 95% confidence interval for the difference in 
average annual effort before and after the mpa implementation, using the 
following values: 

 
ti = total annual effort averaged over all locations, for i=2003-6, 2008-12 
 
 
𝑑 = -  𝑡2003+𝑡2004+𝑡2005+𝑡20064  + !""#!!""#!!!"#"!!!"##!!!"#!

!
 , the  

difference in average annual effort pre and post mpa  
 

 𝑆2
ti = (standard deviation of ti)2 , the variance of the bootstrapped annual  

  effort 
 

 𝑆d
2=(!!"##$  !!!"##$!!!"##$!!!"##$

!
+!!"##$!!!"##$!!!"#$#!!!"#$$!!!"#$"

!
)2 

the variance of the average difference in annual effort pre  
 and post mpa.  
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Finally, our 95% confidence interval will take the following form: 
 

𝑑 +/- 1.96 * 𝑆d. 
 
Using	  the	  code	  provided	  in	  the	  Appendix,	  from	  lines	  621	  to	  670,	  the	  resulting	  values	  
are	  𝑑 = 188080.2,  and	  𝑆d = 45254.87. Using these numbers to plug in to the 
equation above, the resulting confidence interval is:  

 
188080.2 +/- 1.96 * 45254.87 = (99380.68, 276779.8). 

 
Based on this interval, we are 95% confidence that the average bootstrapped 
estimated annual effort after the mpa’s were put in place is between 99380.68 
and 276779.8 higher than the average bootstrapped estimated annual effort 
before the mpa’s were implemented. This information tells us that, regardless of 
where the fishermen are fishing, they have been fishing more since the mpa’s 
were implemented. The scope of our project does not allow us to determine why 
this is the case, however it could be speculated that this could be due to there 
being less fish outside of the mpa’s, which causes the fisherman to have to fish 
for longer (put in more effort) in order for everyone to catch the desired number 
of fish.  
	  
	  
	  

D.	  Limitations	  
The major limitations that were come across during this project were the 

small proportion of total trips per year that we had data on, and the inability to 
calculate the average difference in annual fishing effort pre and post mpa, per 
pixel. The small amount of data did not pose an issue, other than the fact that it 
caused out estimated of effort for each location to be less accurate/have more 
variability than desired. The larger problem we had was when trying to calculate 
the difference in average effort between the two groups of years.  

 
When writing the code, we did not yet know that we would have enough 

time to be able to look at the difference between the groups of years, so the code 
was not written to be compatible with that procedure. In order to compute the 
difference pixel-wise, we would have had to specify a set range for latitudes and 
longitudes to be used within the bootstrap, which would ensure that the limits of 
all 9 years would match-up. Since we did not include this specified range, the 
latitude and longitude limits on the 9 years are non consistent, which keeps us 
form being able to compute the pixel by pixel difference in average annual effort. 
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V.	  Appendix	  	  	  	  

A.	  R	  Code
	  1	  
################################# 2	  
#                               # 3	  
# KDE  examples                 # 4	  
#                               # 5	  
################################# 6	  
 7	  
 8	  
# load required packages 9	  
library(maps) 10	  
library(MASS)   11	  
library(mgcv) 12	  
library(fields) 13	  
library(akima) 14	  
 15	  
 16	  
# sample of latitudes and longitudes n=20 and efforts 17	  
lat = c(35.125, 34.91, 35.13667, 35.14867, 35.545, 34.93462, 18	  
34.92433, 34.91, 34.91933, 35.42633, 35.427, 35.40567, 35.4315, 19	  
35.4085, 35.1231, 35.12617, 35.6127, 35.61125, 35.63847, 20	  
35.6975) 21	  
 22	  
long = c(-120.8113, -120.6903, -120.7817, -120.7903, -121.1159, -23	  
120.7073, -120.7053, -120.6903, -120.6853, -120.9152, -120.9148, 24	  
-120.938, -120.9198, -120.9412, -120.8107, -120.8015, -121.2105, 25	  
-121.2109, -121.272, -121.3286) 26	  
 27	  
effort = c(528, 296, 195, 364, 528, 444, 325, 296, 296, 315, 175, 28	  
245, 350, 245, 182, 224, 114, 228, 95, 100) 29	  
#fishing hours, total hours all lines combined  30	  
 31	  
 32	  
 33	  
### Examples of Kernel Density Estimation to Estimate Drop 34	  
Densities 35	  
 36	  
 37	  
##EXAMPLE 1: Differences between bandwidths 38	  
 39	  
#create 2x2 grid for images 40	  
par(mfrow=c(2,2)) 41	  
 42	  
#examples with different bandwidths and one smooth line 43	  
#bin width = .4 44	  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 45	  
.4)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-46	  
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121.4,-120.6, by=.4), ylim=c(0,2.5)) 47	  
 48	  
 49	  
#bin width = .1 50	  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 51	  
.1)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-52	  
121.4,-120.6, by=.1), ylim=c(0,2.5)) 53	  
 54	  
 55	  
#bin width = .025 56	  
hist(long, prob=TRUE, main="Histogram of Longitudes (bandwidth= 57	  
.05)",xlab="Longitude (n=20)", ylab="Density", breaks=seq(-58	  
121.4,-120.6, by=.05), ylim=c(0,5)) 59	  
 60	  
 61	  
#Example of kernel density estimate 62	  
k1= density(long, bw=.1) 63	  
plot(k1,type="l",main="Kernel Density Estimate") 64	  
 65	  
 66	  
 67	  
 68	  
##EXAMPLE 2: Differences between bandwidths with rectangular 69	  
kernels  70	  
 71	  
#create 2x2 grid for images 72	  
par(mfrow=c(2,2)) 73	  
 74	  
#rectangular with bw=.025 75	  
k2a= density(long, bw=.025, kernel="rectangular") 76	  
plot(k2a,type="l",main="Rectangular Kernel Density Estimate") 77	  
points(long, rep(0, length(long))) 78	  
 79	  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.025)", 80	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 81	  
border="grey") 82	  
#lines(k2a, lwd=2) 83	  
 84	  
 85	  
#rectangular with bw=.05 86	  
k2b= density(long, bw=.05, kernel="rectangular") 87	  
plot(k2b,main="Rectangular Kernel Density Estimate") 88	  
points(long, rep(0, length(long))) 89	  
 90	  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.05)", 91	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 92	  
border="grey") 93	  
#lines(k2b) 94	  
#plot(k2b,type="l",main="Kernel Density Estimate") 95	  
 96	  
 97	  
#rectangular with bw=.1 98	  
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k2c= density(long, bw=.1, kernel="rectangular") 99	  
plot(k2c, main="Rectangular Kernel Density Estimate") 100	  
points(long, rep(0, length(long))) 101	  
 102	  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.1)", 103	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 104	  
border="grey") 105	  
#lines(k2c) 106	  
 107	  
 108	  
#rectangular with bw=.2 109	  
k2d= density(long, bw=.2, kernel="rectangular") 110	  
plot(k2d,main="Rectangular Kernel Density Estimate") 111	  
points(long, rep(0, length(long))) 112	  
 113	  
#hist(long, prob=TRUE, main="Rectangular Kernel (bw=.2)", 114	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3), 115	  
border="grey") 116	  
#lines(k2d) 117	  
 118	  
 119	  
 120	  
 121	  
##EXAMPLE 3: Differences in between bandwidths with Gaussian 122	  
kernels 123	  
 124	  
#create 2x2 grid for images 125	  
par(mfrow=c(2,2)) 126	  
 127	  
 128	  
#gaussian with bw=.025 129	  
k3a= density(long, bw=.025, kernel="gaussian") 130	  
plot(k3a, main="Gaussian Kernel Density Estimate") 131	  
points(long, rep(0, length(long))) 132	  
 133	  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.025)", 134	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 135	  
#lines(k3a) 136	  
 137	  
 138	  
#gaussian with bw=.05 139	  
k3b= density(long, bw=.05, kernel="gaussian") 140	  
plot(k3b, main="Gaussian Kernel Density Estimate") 141	  
points(long, rep(0, length(long))) 142	  
 143	  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.05)", 144	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 145	  
#lines(k3b) 146	  
 147	  
 148	  
#gaussian with bw=.1 149	  
k3c= density(long, bw=.1, kernel="gaussian") 150	  
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plot(k3c, main="Gaussian Kernel Density Estimate") 151	  
points(long, rep(0, length(long))) 152	  
 153	  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.1)", 154	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6)) 155	  
#lines(k3c) 156	  
 157	  
 158	  
#gaussian with bw=.2 159	  
k3d= density(long, bw=.2, kernel="gaussian") 160	  
plot(k3d, main="Gaussian Kernel Density Estimate") 161	  
points(long, rep(0, length(long))) 162	  
 163	  
#hist(long, prob=TRUE, main="Gaussian Kernel (bw=.2)", 164	  
xlab="Longitude (n=20)", ylab="Density", ylim=c(0,3.6), 165	  
border="light grey", col="grey") 166	  
#lines(3d) 167	  
 168	  
 169	  
 170	  
 171	  
################################# 172	  
#                               # 173	  
# Spline examples               # 174	  
#                               # 175	  
################################# 176	  
 177	  
### Examples for spline estimation of effort  178	  
 179	  
#Graph #1: generic example of knots in spline 180	  
x1=seq(0,10,length=100) 181	  
x2=seq(10,20,length=100) 182	  
y1=3 + 2*x1 - x1^2 + .5*x1^3 183	  
y2=423 + 2*x1 + x1^2 184	  
 185	  
 186	  
plot(c(x1,x2), c(y1,y2), xlab="X", ylab="Y", main="Piecewise Spline 187	  
with Knot at x=10", type="l") 188	  
 189	  
 190	  
 191	  
#sample of latitudes and longitudes n=20 and efforts 192	  
 193	  
lat = c(35.125, 34.91, 35.13667, 35.14867, 35.545, 34.93462, 194	  
34.92433, 34.91, 34.91933, 35.42633, 35.427, 35.40567, 35.4315, 195	  
35.4085, 35.1231, 35.12617, 35.6127, 35.61125, 35.63847, 35.6975) 196	  
 197	  
long = c(-120.8113, -120.6903, -120.7817, -120.7903, -121.1159, -198	  
120.7073, -120.7053, -120.6903, -120.6853, -120.9152, -120.9148, -199	  
120.938, -120.9198, -120.9412, -120.8107, -120.8015, -121.2105, -200	  
121.2109, -121.272, -121.3286) 201	  
 202	  
effort = c(528, 296, 195, 364, 528, 444, 325, 296, 296, 315, 175, 203	  
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245, 350, 245, 182, 224, 114, 228, 95, 100) 204	  
#fishing hours, total hours all lines combined  205	  
 206	  
 207	  
 208	  
#Graph #2: Scatterplot of sample n=20 of data  209	  
plot(long, effort, xlab="Longitude", ylab="Effort", 210	  
main="Scatterplot of Effort by Longitude", pch=16) 211	  
 212	  
 213	  
 214	  
 215	  
#Graph #3: Predicted effort by longitude 216	  
 217	  
y.pred = predict(effort.gam, data.frame(long=x.long), se=TRUE) 218	  
plot(x.long, y.pred$fit, type="l", ylim=range(effort), 219	  
xlab="Longitude", ylab="Predicted Effort", main="Predicted Effort 220	  
by Longitude") 221	  
lines(x.long, y.pred$fit-y.pred$se, lty=2) 222	  
lines(x.long, y.pred$fit+y.pred$se, lty=2) 223	  
points(long, effort) 224	  
axis(1, at=long, labels=NA, tcl=.5) 225	  
y.pred 226	  
 227	  
 228	  
 229	  
################################# 230	  
#                               # 231	  
#    Bar Graph                  # 232	  
#                               # 233	  
################################# 234	  
 235	  
#bar graph of total trips per year  236	  
 237	  
year=c("2003","2004","2005","2006","2007","2008","2009","2010","2011238	  
","2012") 239	  
TotalTrips=c(2731, 3580, 3213, 3556, 3329, 4114, 4188, 3790, 4239, 240	  
3787) 241	  
 242	  
barplot(height=TotalTrips, names.arg=year, xlab="Year", ylab="Number 243	  
of Trips", main="Total Trips per Year", col=c("springgreen3", 244	  
"springgreen3", "springgreen3","springgreen3", "gray", "turquoise", 245	  
"turquoise", "turquoise", "turquoise", "turquoise")) 246	  
 247	  
 248	  
	  249	  
	  250	  
########################################### 251	  
#                                         # 252	  
# Part Boat Fishing                R Code # 253	  
#                                         # 254	  
########################################### 255	  
 256	  
 257	  
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#load required packages  258	  
library(maps) 259	  
library(MASS)   260	  
library(mgcv) 261	  
library(fields) 262	  
library(akima) 263	  
 264	  
#Read in data 265	  
#setwd("/Volumes/USB/Senior Project") 266	  
#setwd("F:/Senior Project") 267	  
setwd("/Users/samdellinger/Documents/Cal Poly 2013-14/Senior 268	  
Project") 269	  
fishing.data<- read.table('FishingFullDataSet.csv', header= T, 270	  
sep=",") 271	  
 272	  
##Run through all of analyses individually for each year 273	  
 274	  
# subset data into years; run invididually 275	  
#remove outlier in 2005 subset of data 276	  
fishing.data = subset(fishing.data, subset = Year == 2003)  277	  
#fishing.data = subset(fishing.data, subset = Year == 2004)  278	  
#fishing.data = subset(fishing.data, subset = Year == 2005&LongDD>-279	  
250)  280	  
#fishing.data = subset(fishing.data, subset = Year == 2006)  281	  
#fishing.data = subset(fishing.data, subset = Year == 2008)  282	  
#fishing.data = subset(fishing.data, subset = Year == 2009)  283	  
#fishing.data = subset(fishing.data, subset = Year == 2010)  284	  
#fishing.data = subset(fishing.data, subset = Year == 2011)  285	  
#fishing.data = subset(fishing.data, subset = Year == 2012)  286	  
  287	  
  288	  
#Plot data with scatterplot 289	  
plot(fishing.data$LongDD, fishing.data$LatDD, main='Scatterplot of 290	  
Lat vs. Long', xlab='LatDD', ylab='LongDD') 291	  
 292	  
 293	  
#Useful base map for properly scaled plots  294	  
# run this map without any graphics windows first, then 295	  
# all subsequent graphics will be have aspect ratios  296	  
# that are scaled properly 297	  
 298	  
 299	  
# Ran alone creates simple image of CA coastlines 300	  
map(database = "state", regions = "CA", xlim = 301	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 302	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 303	  
'darkgreen') 304	  
# add drops to above plot 305	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 306	  
rgb(0,0,0,.1), cex = .2) 307	  
 308	  
 309	  
# Store map info 310	  
map.info =  map(database = "state", regions = "CA", xlim = 311	  
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range(fishing.data$LongDD)+c(-.1,.1), ylim = 312	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 313	  
'darkgreen') 314	  
map.plot = cbind(x = map.info$x, y = map.info$y) 315	  
  316	  
# Plot of effort with circles proportional to effort 317	  
map(database = "state", regions = "CA", xlim = 318	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 319	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 320	  
'darkgreen') 321	  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 322	  
fishing.data$Effort, fg = rgb(0,0,0,.05), inches = .5, add = TRUE)  323	  
 324	  
 325	  
 326	  
 327	  
######################################## 328	  
#                                      # 329	  
#     KDE to estimate drop denisty     # 330	  
#                                      # 331	  
######################################## 332	  
 333	  
#bandwidth previously determined using clutser analysis; median 334	  
fishing spot size  335	  
 336	  
kde = with(fishing.data, kde2d(LongDD, LatDD, n=100, h=.0155)) 337	  
image.plot(kde, col = heat.colors(50)) 338	  
map(database = "state", regions = "CA", xlim = 339	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 340	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 341	  
'darkgreen', add = TRUE) 342	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 343	  
rgb(0,0,0,.1), cex = .2) 344	  
 345	  
#change years 346	  
title("KDE (2003)")  347	  
 348	  
#total drops 349	  
#different number of trips per year 350	  
 351	  
N = 2731 #2003 352	  
#N = 3580 #2004 353	  
#N = 2313 #2005 354	  
#N = 3556 #2006 355	  
#N = 4114 #2008 356	  
#N = 4188 #2009 357	  
#N = 3790 #2010 358	  
#N = 4239 #2011 359	  
#N = 3787 #2012 360	  
 361	  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 362	  
tot.est.drops = N * kde$z/sum(kde$z * pixel.ar) * pixel.ar 363	  
image.plot(kde$x, kde$y, tot.est.drops, col = heat.colors(50), xlim 364	  
= range(fishing.data$LongDD)+c(-.1,.1), ylim = 365	  
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range(fishing.data$LatDD)+c(-.1, .1)) 366	  
map(database = "state", regions = "CA", fill = TRUE, col = 367	  
'darkgreen', add = TRUE) 368	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 369	  
rgb(0,0,0,.1), cex = .2) 370	  
title("Total Estimated number of Drops in pixel")  371	  
sum(tot.est.drops) 372	  
# evidence of some bias, so divide kde$z by sum(kde$z) in calcs 373	  
 374	  
 375	  
 376	  
 377	  
######################################## 378	  
#                                      # 379	  
#Spline (within GAM) to estimate effort# 380	  
#                                      # 381	  
######################################## 382	  
 383	  
gam.fit = gam(Effort ~ s(LongDD, LatDD), data = fishing.data) 384	  
summary(gam.fit) 385	  
vis.gam(gam.fit, plot.type = "contour", main = NULL) 386	  
map(database = "state", regions = "CA", xlim = 387	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 388	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 389	  
rgb(0,100/256,0,.1), add = TRUE) 390	  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 391	  
fishing.data$Effort, fg = rgb(0,0,0,.05), inches = .5, add = TRUE)  392	  
title("Effort")  393	  
 394	  
 395	  
#predicted values   396	  
pred.vals = data.frame(expand.grid(LongDD = kde$x, LatDD = kde$y)) 397	  
effort.pred = matrix(predict(gam.fit, pred.vals), ncol = 100) 398	  
image.plot(kde$x, kde$y, effort.pred, col = heat.colors(50), 399	  
xlab="Latitude", ylab="Longitude") 400	  
map(database = "state", regions = "CA", xlim = 401	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 402	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 403	  
rgb(0,100/256,0,.1), add = TRUE) 404	  
symbols(fishing.data$LongDD, fishing.data$LatDD, circles = 405	  
fishing.data$Effort, fg = rgb(0,0,0,.1), inches = .5, add = TRUE)  406	  
title("Effort")  407	  
 408	  
 409	  
 410	  
 411	  
 412	  
#################### 413	  
#                  # 414	  
#   TOTAL EFFORT   # 415	  
#                  # 416	  
#################### 417	  
 418	  
#different number of trips per year 419	  
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 420	  
N = 2731 #2003 421	  
#N = 3580 #2004 422	  
#N = 2313 #2005 423	  
#N = 3556 #2006 424	  
#N = 4114 #2008 425	  
#N = 4188 #2009 426	  
#N = 3790 #2010 427	  
#N = 4239 #2011 428	  
#N = 3787 #2012 429	  
 430	  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 431	  
#change year in prods 432	  
prods2003 = N * kde$z/sum(kde$z * pixel.ar) * pixel.ar * effort.pred 433	  
 434	  
#change year in titles and withing image.plot 435	  
#par(mfrow=c(1,2)) 436	  
 437	  
#need heat scale the same on all years  438	  
image.plot(kde$x, kde$y, prods2003, col = heat.colors(50), 439	  
xlab="Latitude", ylab="Longitude", zlim=c(0,80000)) 440	  
map(database = "state", regions = "CA", xlim = 441	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 442	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 443	  
rgb(0,100/256,0,.1), add = TRUE) 444	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 445	  
rgb(0,0,0,.1), cex = .2) 446	  
title("Annual Effort (2003)") 447	  
 448	  
###zoomed in portion of the graph for better visualization  449	  
#image.plot(kde$x, kde$y, prods2003, col = heat.colors(50), xlim=c(-450	  
121.0, -120.65), ylim=c(35, 35.4), xlab="Latitude", 451	  
ylab="Longitude") 452	  
#map(database = "state", regions = "CA", xlim = c(-121.0,-120.5), 453	  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 454	  
TRUE) 455	  
#points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 456	  
rgb(0,0,0,.1), cex = .2) 457	  
#title("Annual Effort (2003)") 458	  
 459	  
 460	  
 461	  
###################### 462	  
#                    # 463	  
#     Bootstrap      # 464	  
#                    # 465	  
###################### 466	  
 467	  
set.seed(226) 468	  
B = 5000 # number of bootstraps 469	  
# total number of drops made by fishing company (monitored + not) 470	  
 471	  
N = 2731 #2003 472	  
#N = 3580 #2004 473	  
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#N = 2313 #2005 474	  
#N = 3556 #2006 475	  
#N = 4114 #2008 476	  
#N = 4188 #2009 477	  
#N = 3790 #2010 478	  
#N = 4239 #2011 479	  
#N = 3787 #2012 480	  
 481	  
n = nrow(fishing.data) 482	  
kde.n = 100 # resolution of model 483	  
# fit kde just to get pixels and base pixels set 484	  
kde = with(fishing.data, kde2d(LongDD, LatDD, n=kde.n, h=.0155)) 485	  
kde.lims = c(range(fishing.data$LongDD), range(fishing.data$LatDD)) 486	  
image.plot(kde, col = heat.colors(12)) 487	  
pixel.ar = diff(kde$x[1:2]) * diff(kde$y[1:2]) 488	  
 489	  
 490	  
#change year in prods.array and within bootstrap loop  491	  
prods.array2012 = array(NA,c(kde.n,kde.n,B)) 492	  
for(B.i in 1:B){ 493	  
 bootdata = fishing.data[sample(1:n, replace = TRUE),] 494	  
 kde.b = with(bootdata, kde2d(LongDD, LatDD, n=kde.n, lims = 495	  
kde.lims, h=.0155)) 496	  
 gam.b = gam(Effort ~ s(LongDD, LatDD), data = bootdata) 497	  
 pred.b = data.frame(expand.grid(LongDD = kde$x, LatDD = kde$y)) 498	  
 effort.b = matrix(predict(gam.b, pred.b), ncol = kde.n) 499	  
 prods.array2012[,,B.i] = N * kde.b$z/sum(kde.b$z * pixel.ar) * 500	  
pixel.ar * effort.b 501	  
 } 502	  
 503	  
 504	  
 505	  
#change years  506	  
effort.mean2012 = apply(prods.array2012, c(1,2), mean) 507	  
effort.sd2012 = sqrt(apply(prods.array2012, c(1,2), var)) 508	  
 509	  
 510	  
#save objects as .Rdata to avoid re-running bootstraps  511	  
#change years 512	  
save(prods.array2012, effort.mean2012, effort.sd2012, 513	  
file="2012Boot5000Data.Rdata") 514	  
 515	  
 516	  
##determine max range for mean and sd to set limits for image.plot 517	  
 518	  
#2003-2010 519	  
load(file="/Volumes/USB/Senior Project/2005Boot5000Data.Rdata") 520	  
#2011-2012 521	  
load(file="/Users/samdellinger/Documents/Cal Poly 2013-14/Senior 522	  
Project/2012Boot5000Data.Rdata") 523	  
 524	  
 525	  
range(effort.mean2003) 526	  
 527	  
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#2003 mean range= 0, 30385.87 528	  
#2004 mean range= 0, 33821.26 529	  
#2005 mean range= 0, 74563.47 530	  
#2006 mean range= 0, 49182.44 531	  
#2008 mean range= 0, 39058.74 532	  
#2009 mean range= 0, 79894.28 533	  
#2010 mean range= 0, 40188.94 534	  
#2011 mean range= 0, 65443.65 535	  
#2012 mean range= 0, 43507.75 536	  
 537	  
##max mean range = (0, 79894.28) so set zlim=c(0,80000) 538	  
 539	  
 540	  
range(effort.sd2003) 541	  
 542	  
#2003 sd range= 0, 7955.95 543	  
#2004 sd range= 0, 5882.436 544	  
#2005 sd range= 0, 16477.52 545	  
#2006 sd range= 0, 8720.045 546	  
#2008 sd range= 0, 12063.52 547	  
#2009 sd range= 0, 21678.58 548	  
#2010 sd range= 0, 8773.712 549	  
#2011 sd range= 0, 1502.64 550	  
#2012 sd range= 0, 9763.391 551	  
 552	  
##max sd range = (0, 21678.58) so set zlim=c(0,22000) 553	  
 554	  
 555	  
 556	  
################################# 557	  
#                               # 558	  
# Images of Bootstrap Estiamtes # 559	  
# of Effort and Variability     # 560	  
#                               # 561	  
################################# 562	  
 563	  
 564	  
#change years in effort.mean and effort.sd 565	  
#par(mfrow=c(1,2)) 566	  
 567	  
image.plot(kde$x, kde$y, effort.mean2005, col = heat.colors(12), 568	  
xlab="Latitude", ylab="Longitude", zlim=c(0, 80000)) 569	  
map(database = "state", regions = "CA", xlim = 570	  
range(fishing.data$LongDD)+c(-.1,.1), ylim = 571	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 572	  
rgb(0,100/256,0,.1), add = TRUE) 573	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 574	  
rgb(0,0,0,.1), cex = .2) 575	  
title("Estimated Annual Effort (2005)") 576	  
 577	  
 578	  
image.plot(kde$x, kde$y, effort.sd2005, col = heat.colors(12), 579	  
xlab="Latitude", ylab="Longitude",  zlim=c(0, 22000)) 580	  
map(database = "state", regions = "CA", xlim = 581	  
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range(fishing.data$LongDD)+c(-.1,.1), ylim = 582	  
range(fishing.data$LatDD)+c(-.1, .1), fill = TRUE, col = 583	  
rgb(0,100/256,0,.1), add = TRUE) 584	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 585	  
rgb(0,0,0,.1), cex = .2) 586	  
title("Estimated SD of Annual Effort (2005)") 587	  
 588	  
 589	  
 590	  
 591	  
##zoomed in portions of bootstrapped graphs  592	  
#change years in effort.mean and effort.sd 593	  
#par(mfrow=c(1,2)) 594	  
 595	  
image.plot(kde$x, kde$y, effort.mean2003, col = heat.colors(12), 596	  
xlim = c(-121.0,-120.65), ylim = c(35,35.4), xlab="Latitude", 597	  
ylab="Longitude") 598	  
map(database = "state", regions = "CA", xlim = c(-121.0,-120.65), 599	  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 600	  
TRUE) 601	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 602	  
rgb(0,0,0,.1), cex = .2) 603	  
title("Estimated Annual Effort (2003)") 604	  
 605	  
 606	  
image.plot(kde$x, kde$y, effort.sd2003, col = heat.colors(12), xlim 607	  
= c(-121.0,-120.65), ylim = c(35,35.4), xlab="Latitude", 608	  
ylab="Longitude") 609	  
map(database = "state", regions = "CA", xlim = c(-121.0,-120.65), 610	  
ylim = c(35,35.4), fill = TRUE, col = rgb(0,100/256,0,.1), add = 611	  
TRUE) 612	  
points(fishing.data$LongDD, fishing.data$LatDD, pch = 16, col = 613	  
rgb(0,0,0,.1), cex = .2) 614	  
title("Estimated SD of Annual Effort (2003)") 615	  
 616	  
 617	  
 618	  
 619	  
 620	  
###DIFFERENCE IN (average) ANNUAL EFFORT pre-mpa and post-mpa 621	  
 622	  
#total effort per year  623	  
t2003 = mean(apply(prods.array2003, 3, sum)) 624	  
t2004 = mean(apply(prods.array2004, 3, sum)) 625	  
t2005 = mean(apply(prods.array2005, 3, sum)) 626	  
t2006 = mean(apply(prods.array2006, 3, sum)) 627	  
 628	  
t2008 = mean(apply(prods.array2008, 3, sum)) 629	  
t2009 = mean(apply(prods.array2009, 3, sum)) 630	  
t2010 = mean(apply(prods.array2010, 3, sum)) 631	  
t2011 = mean(apply(prods.array2011, 3, sum)) 632	  
t2012 = mean(apply(prods.array2012, 3, sum)) 633	  
 634	  
 635	  
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#difference in total effort pre and post mpas 636	  
d.hat = .2 * (t2008+t2009+t2010+t2011+t2012) - .25 * 637	  
(t2003+t2004+t2005+t2006) 638	  
 639	  
 640	  
#estimated variances of total effort  641	  
s.hat.2003 = var(apply(prods.array2003, 3, sum)) 642	  
s.hat.2004 = var(apply(prods.array2004, 3, sum)) 643	  
s.hat.2005 = var(apply(prods.array2005, 3, sum)) 644	  
s.hat.2006 = var(apply(prods.array2006, 3, sum)) 645	  
 646	  
s.hat.2008 = var(apply(prods.array2008, 3, sum)) 647	  
s.hat.2009 = var(apply(prods.array2009, 3, sum)) 648	  
s.hat.2010 = var(apply(prods.array2010, 3, sum)) 649	  
s.hat.2011 = var(apply(prods.array2011, 3, sum)) 650	  
s.hat.2012 = var(apply(prods.array2012, 3, sum)) 651	  
 652	  
 653	  
#estimated variance for the difference in total effort 654	  
#(1/5)^2 = .04   (1/4)^2 = .0625 655	  
s.hat.d = sqrt(.04*s.hat.2003 + .04*s.hat.2004+ .04*s.hat.2005+ 656	  
.04*s.hat.2006+ .0625*s.hat.2008+ .0625*s.hat.2009+ 657	  
.0625*s.hat.2010+ .0625*s.hat.2011+ .0625*s.hat.2012) 658	  
 659	  
 660	  
#create confidence interval 661	  
d.ll = d.hat - (1.96 * s.hat.d) 662	  
d.ul = d.hat + (1.96 * s.hat.d) 663	  
 664	  
 665	  
#summary of parts to confidence interval  666	  
d.hat 667	  
s.hat.d 668	  
d.ll 669	  
d.ul 670	  
 

B.	  Record	  of	  Hours	  	  
 
Date	   Start	  Time	   End	  Time	   Hours	  

9/30/13	   10:30	  AM	   11:30	  AM	   1	  
10/4/13	   10:00	  AM	   12:00	  PM	   2	  
10/9/13	   11:00	  AM	   12:00	  PM	   1	  
10/24/13	   2:00	  PM	   3:00	  PM	   1.5	  
10/25/13	   10:00	  AM	   12:00	  PM	   2	  
10/26/13	   1:30	  PM	   2:30	  PM	   1	  
10/28/13	   11:30	  AM	   12:00	  PM	   0.5	  
11/1/13	   10:00	  AM	   11:00	  AM	   1	  
11/20/13	   11:00	  AM	   1:00	  PM	   2	  
11/23/13	   9:00	  AM	   11:00	  AM	   2	  
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12/1/13	   7:00	  PM	   7:30	  PM	   0.5	  
12/4/13	   11:00	  AM	   12:00	  PM	   1	  
12/7/13	   12:00	  PM	   2:00	  PM	   2	  
12/11/13	   11:00	  AM	   12:00	  PM	   1	  

1/8/14	   11:00	  AM	   11:00	  AM	   1	  
1/9/14	   12:30	  PM	   2:00	  PM	   1.5	  
1/14/14	   1:00	  PM	   2:00	  PM	   1	  
2/4/14	   1:00	  PM	   2:00	  PM	   1	  
2/5/14	   9:00	  AM	   10:00	  AM	   1	  
2/6/14	   10:00	  AM	   11:00	  AM	   1	  
2/7/14	   11:00	  AM	   12:00	  PM	   1	  
2/20/14	   9:00	  AM	   10:00	  AM	   1	  

	  
7:30	  PM	   9:30	  PM	   2	  

2/21/14	   6:30	  PM	   9:30	  PM	   3	  
3/4/14	   9:30	  AM	   10:30	  AM	   1	  
3/6/14	   12:00	  PM	   3:30	  PM	   3.5	  
3/13/14	   9:00	  AM	   10:00	  AM	   1	  
3/17/14	   6:00	  PM	   10:00	  PM	   4	  
3/18/14	   9:00	  AM	   10:00	  AM	   1	  
4/3/14	   11:30	  AM	   1:00	  PM	   1.5	  
4/7/14	   3:00	  PM	   5:00	  PM	   2	  
4/10/14	   9:00	  AM	   10:00	  AM	   1	  
4/16/14	   1:00	  PM	   4:00	  PM	   3	  
4/21/14	   9:00	  AM	   12:00	  PM	   3	  
4/24/14	   10:00	  AM	   11:00	  AM	   1	  

	  
12:00	  PM	   2:00	  PM	   2	  

4/28/14	   3:00	  PM	   7:00	  PM	   4	  
5/9/14	   10:00	  AM	   2:30	  PM	   4.5	  
5/13/14	   10:00	  AM	   12:30	  PM	   2.5	  
5/15/14	   10:00	  AM	   11:00	  AM	   1	  
5/20/14	   11:30	  AM	   11:00	  PM	   1.5	  
5/22/14	   10:00	  AM	   11:00	  AM	   1	  
5/25/14	   9:00	  AM	   12:00	  PM	   3	  
5/26/14	   10:00	  AM	   1:30	  PM	   3.5	  

	  
5:00	  PM	   10:30	  PM	   5.5	  

5/27/14	   12:00	  PM	   1:30	  PM	   1.5	  
28-‐May	   7:00	  PM	   12:00	  PM	   5	  
5/29/14	   10:00	  AM	   12:00	  PM	   2	  

	  
7:30	  PM	   10:00	  PM	   2.5	  

5/30/14	   11:00	  AM	   12:30	  PM	   1.5	  
6/2/14	   7:00	  PM	   9:30	  PM	   2.5	  
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6/3/14	   11:00	  AM	   4:00	  PM	   5	  
6/4/14	   12:30	  PM	   2:00	  PM	   1.5	  
6/7/14	   9:30	  AM	   11:00	  PM	   1.5	  
6/8/14	   4:30	  PM	   8:00	  PM	   3.5	  

	   	   	   	  
	   	   	   	  
	   	  

Total:	   109	  
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