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Trajectories created with n-body orbit models were propagated in geocentric and 

interplanetary test cases. The n-body models were created in MATLAB
® 

using numerical 

integration. In the geocentric test case, the n-body codes were compared to a two-body orbit 

model and to the default HPOP model used in Satellite Tool Kit
®
. The interplanetary test 

case compared the n-body model to the HORIZONS ephemeris data from JPL and an 

equation for ephemeris propagation. Both cases used the same initial positions and velocities 

and were propagated for the same duration. The results of the analysis showed that while n-

body models are capable of creating complex orbits that two-body models cannot create, 

common perturbations such as drag and non-uniform gravity are still necessary to produce 

accurate trajectory models. 

 

Nomenclature 

 
HPOP  = High Precision Orbit Propagator 

ICRF = International Celestial Reference Frame 

STK = Satellite Tool Kit 

n = Number of bodies 

r = Position, km 

μ = Gravitational parameter, km
3
/s

2
 

  

Introduction 

Spacecraft trajectories can be modeled in many ways. The basis of all trajectories is that the gravitational 

attraction of one or multiple bodies creates an acceleration that results in a specific path through space, called a 

trajectory. The most simple model is the two-body problem, which consists of a small body such as a spacecraft and 

a larger body that it orbits about. The mass of the spacecraft is assumed to be negligible compared to the mass of the 

body it is orbiting, meaning it imparts no acceleration on it. The equations of motion for this model can be directly 

solved and the result is the four conic section orbits: circle, ellipse, parabola, and hyperbola.  

The two body model will provide a rough idea of a spacecraft’s trajectory, but in most cases, these trajectories 

are of low accuracy. For example, a trajectory of a satellite orbiting the Earth is mostly due to the acceleration due to 

Earth’s gravity, but the Sun and Moon also will affect the trajectory of the spacecraft. The resulting trajectory still 

will have the same shape as the trajectory predicted by the two-body model, but it will not remain fixed and will 

change with time, due to the gravitational acceleration from the Sun and Moon. 

N-body models consist of systems that contain more than one large body. The n-body problem was not 

specifically developed for orbit propagation nor is it a new mathematical model. The problem can just be applied to 

model the motion of planets and other orbiting bodies and their affect on the trajectory of smaller bodies. These 

models can have two large bodies (three-body model) or as many bodies as can be computed, such as models of the 

universe
1
. N-body models do provide a way to model much more complex and exotic trajectories though. 

Trajectories such as halo orbits and lunar trajectories could not be modeled with a two-body trajectory model. Figure 

1 shows an example of this idea. Both trajectories in this figure have the same initial position and velocity, but the 

red dashed trajectory was modeled in with a two-body model and the black trajectory used a three-body model, 

which is an n-body model where n=3. Because the Earth is the only large body in the two-body model, the trajectory 

is not affected by the moon and resembles an escape trajectory from the Earth. In the three-body model, the moon is 

included and the resulting trajectory leaves the earth, passes the moon, and returns back to the Earth. 
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Figure 1. A two-body trajectory and a circular 

restricted three-body trajectory are modeled. Both 

trajectories have the same initial conditions, but 

due to different accelerations in each model, the 

resulting trajectories differ. Units are canonical. 

 

Gravitational acceleration is not the only property that 

affects spacecraft trajectories. Perturbations must be 

accounted for to produce trajectories of greater accuracy. 

Common perturbations include a non-spherical body, solar 

radiation pressure, and atmospheric drag. These forces, 

unlike the gravitational forces, depend on external factors 

such as the shape of the spacecraft and location of the 

spacecraft, but they can have a significant effect on the 

trajectory of the spacecraft. A satellite that orbits the earth 

in Low Earth Orbit will receive a greater affect on its 

trajectory from atmospheric drag than from the 

gravitational acceleration of the moon. Also, the effect of 

the Earth having a non-uniform mass distribution will also 

have a much greater effect on the spacecraft’s trajectory 

than the gravitational accelerations of the Sun or Moon. 

This objective of this analysis is to cover the extent to 

which additional bodies alter trajectories and to see if their 

effect is more significant than the perturbations discussed 

in the previous paragraph. The multiple-body system is 

modeled in an n-body model developed in MATLAB® 

with geocentric and interplanetary versions. To evaluate 

the accuracy of this model and determine its effect 

compared to the perturbations, the n-body code will be 

compared to the simple two-body model and the HPOP (high-precision orbit propagator) that is used in Satellite 

Tool Kit (STK
®
) software. Trajectories from the HPOP model will be the basis of comparison between the two-body 

model and the n-body model. 

 
 

Analysis 
Many models were considered and tested for this analysis. The n-body model has no limit to the number of 

bodies present in a system, but due to computational considerations, the maximum number of bodies simulated was 

nine, which was a simulation of the eight planets and Pluto. Algorithms to reduce computing time from Aarseth 

were considered, but because the nine-body system model code ran in less than one minute, the extra coding of the 

algorithms was deemed unnecessary
1
. The first model was the two-body model, which was numerically integrated as 

well as calculated with universal variables as a check. For geocentric trajectories, three-body and four-body models 

were created, with the Sun and Moon acting as the second and third bodies. The interplanetary trajectories used a 

nine-body model as previously described. A general n-body model was attempted, which would allow for an input 

of any number of bodies, but was not completed. This would have allowed for one code to run the two, three, four 

 
Figure 2. Example results from the HPOP model in STK. 

 



Table 1. Details of the HPOP model used in STK
®
. 

Property/Perturbation Details 

Integration Method Runge-Kutta-Fehlberg 7th order 

Oblate Earth Earth Model with max degree and order of 21 

Solar Radiation Pressure Spherical Model 

Drag Jacchia-Roberts Atmosphere, Cd of 2.2 

3rd Body Sun and Moon 

Other Perturbations Solar Flux, Geomagnetic, Solid Tides, Shadowing 

 

and nine body models, but a problem with the indexing inside of the handle function that ode45 called could not be 

solved. 

 The two-body model was the most basic model used, and consisted of the Earth and the spacecraft. The Earth is 

fixed in the two-body frame and is modeled as a uniform, point mass to simplify the equation of motion. The mass 

of the spacecraft is assumed to be so small that it is negligible compared to the mass of the main body. Also, the 

trajectory of the spacecraft is only altered by the acceleration due to gravity of the main body. The equation of 

motion for this model reduces to Eq. 1. 
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In the n-body model, this main equation still holds true, except that the acceleration, denoted as the second 

derivative of the position in Eq. 1, is equal to a summation of the gravitational forces of all bodies included in the 

system. Equation 2 shows the equation of motion of an n-body system. The biggest change compared to the two- 
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body system is that the main bodies that alter the trajectory of the spacecraft create gravitational accelerations on 

each other, meaning that their positions relative to the spacecraft change. This means that the acceleration of the 

spacecraft is a function of the changing positions of the large bodies. 

Each of the models was numerically integrated in MATLAB
®
 using the ode45 function. The two-body problem 

could also be solved without numerical integration using methods such as universal variables. With exception to the 

restricted three-body problem, any system with more than two bodies had to be numerically integrated to create a 

solution to the problem. In the integration, the absolute and relative tolerances used for all models were both 10
-8

. 

No perturbations were added to the models. Only one instance of the HPOP propagator in STK
®
 included 

perturbations for the sake of comparison. 

STK
®
 was used to analyze the accuracy of the n-body models in orbit propagation. STK

®
 has multiple 

propagation options, including a two-body model almost identical to the two-body code created in MATLAB
®
. 

HPOP is a unique propagator to STK
®
 and has many propagation schemes available within it. A summary of the 

propagation options in HPOP is included in Table 1. For the analysis, three versions of HPOP were used. The first 

two used were an attempt to compare the three-body and four-body models created in MATLAB
®
. All perturbations 

such as drag, solar radiation, geomagnetic, and tides were turned off and the maximum degree and order of the 

harmonics of the oblateness effects was set to zero. The third-body effects of the Sun and the Moon were included 

though. The third version used was the default HPOP used in STK
®
. All available perturbations were used and the 

Sun and Moon were included for third body effects. 

 

 

 

 



Table 2. Summary of the GEO test case. 

Item Details 

Initial Position [42164 0 0] km,  ICRF coordinates 

Initial Velocity [0 3.07467 0] km/s, ICRF coordinates 

Start Date June 13, 2011 12:00 

Durations 12 h, 1 d, 3 d, 5 d, 7 d, 2 w, 3 w, 1 m 

Propagators 2-body, 3-body, 4-body, HPOP (all perturbations) 

 

Discussion 

The accuracy of the MATLAB
®
 models was compared with a test case replicating the orbit of a GEO satellite. 

Table 2 shows the details of the test case. Each propagator in STK
®
 and MATLAB

®
 used the same initial position 

and velocity conditions as well as the same duration to propagate. The resulting position and velocity at the end of 

the propagation duration was recorded and compared to the value calculated by the HPOP model with all 

perturbations. Figure 3 shows the results from the test case. The three-body and four-body models, both in STK
®
 

and MATLAB
®
 deviated the most from the perturbed HPOP model. After thirty days of propagation the deviation of 

both the unperturbed STK
®
 model with Sun and Moon effects and the three-body MATLAB

®
 model from the 

perturbed HPOP model was over 200 km in the Y component. The two-body models never exceeded 100 km in 

deviation though.  

The large error can be attributed to the fact that the propagation schemes do not have any perturbations and the 

HPOP model they are compared to does. Even though the n-body schemes differ from the perturbed HPOP model, 

they have the same trends in error and only differ from each other slightly. The three-body model from MATLAB 

and the HPOP model with Sun effects in particular followed similar trends and had similar error values. It is 

possible that the accelerations due to the perturbations and accelerations due to the gravity of the Sun and Moon 

differ in direction, causing the error to increase if only n-body effects are considered over the two-body model. In 

addition, though the maximum deviation reaches over 200 km after thirty days, that deviation is still less than 1 % of 

 
Figure 3. Results from the GEO test case. The values are the deviations in the X, Y, and Z ICRF 

components from the HPOP results with all perturbations and Sun and Moon third body effects. 

 



 
Figure 5. Results from the nine-body propagation. The two graphs show the trajectories of the planets 

propagated 50 years from June 13, 2011. 

 

 

 
Figure 4. Deviation from HORIZONS positions after 90 days. 

 

the radius of the orbit and may be expected if no perturbations are considered over the course of a month. The 

results still show that the addition of extra bodies actually increased the deviation from the perturbed HPOP values 

in the case of a GEO satellite. 

The interplanetary model used a nine-body model to simulate the motion of the planets. Each planet imparted 

and received a gravitational acceleration from every other planet. The model used relative and absolute accuracies of 

10
-10

 in integration and still could propagate the positions of the planets forward 10 years in less than one minute of 

computing time. This model was compared a two-body model, HORIZONS ephemeris data from JPL, and an 

ephemeris equation found in Curtis, which came from Standish et al. (1992)
2
. HORIZONS was chosen to be the 

basis of comparison of the propagation models. The same trends in deviation as the GEO test case were observed in 

the results of the comparison. The trajectory results from the nine-body equation still differed from the other 

trajectories tested. For durations of a year and less, the nine-body results deviates little from the HORIZONS 

positions and deviates less than the ephemeris code, but for durations longer than a year, the other methods are 

closer to HORIZONS. Figures 5 and 6 show the inertial X, Y, and Z components of position for Mars for a 

propagation of 90 days forward and a propagation of 10 years forward. 

The results of both of the cases show that more than an n-body model is necessary for accurate propagation of 

trajectories. The n-body models allow for the creation of complex orbits that two-body schemes cannot model, but 

the analysis shows that perturbations need to be included to have an accurate trajectory model. 

 



 
Figure 6. Deviation from HORIZONS positions after 10 years. 

 

 

 

Conclusion 
N-body trajectories were calculated for a geocentric case and an interplanetary case. The trajectories were 

compared to trajectories created by a two-body model in deviation from either the perturbed HPOP results from 

STK or the ephemeris results from JPL’s HORIZONS, which served as a baseline for comparison. The results from 

the analysis showed that though n-body trajectories follow the same trends as the HPOP or HORIZONS data, they 

still deviated significantly. Though some error could possibly be in the MATLAB
®
 code, the n-body trajectory 

results differed from the baseline results, sometimes in greater magnitude than the two-body model. The results 

show that to produce accurate trajectories, perturbations, as well as the gravitational effects of other bodies, are 

required. 
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