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1 Introduction
Subspace Identification (from here on out SI) is a field of applied mathematics that takes collected
experimental time-history data and gives out information about the system that produced the data
[6]. Another variant of Subspace Identification is Stochastic Subspace Identification (SSI), which
only means that there was no input forcing function or white noise input, with only system re-
sponse output is recorded. SSI is typically used in control analysis but here we apply the methods
to the modal analysis of structures.

There are freely available SSI algorithms online that take in data and spit out system data
[7]. This senior project didn’t involve theory - instead much of the work was in research behind
how Subspace Identification works, implementing the algorithm in MATLAB, and applying the
program to shake table data to validate the program. In other words, building the framework
to make SSI a usable tool and practical learning experience for other undergraduate engineering
students.

2 Motivation For SSI Use in Structural Applications

2.1 Pros and Cons
Traditional modal analysis techniques involve mass shakers which can be costly and troubling to
move, or large and expensive shake tables. The structure is physically shaken with hydraulics
or mass, which can be problematic for larger structures or structures with high damping. SSI
algorithms can instead utilize ambient shaking to push a structure, gathering structural data with
only accelerometers. While SSI based processes shouldn’t by any means be a replacement for tra-
ditional analyses, but the strength of SSI is the simplicity and ease of the process. At the least,
SSI provides a good ballpark estimate for structures [1].

SSI Analysis Traditional Analysis
Forcing: + Range of freq’s or ambient − Specific freq’s & time to resonate
Modes Observed: + All modes and freq’s at once − Excited modes one at a time
Damping: + All modes atonce − Snapback tests typically required
Accuracy: − Unsure, need more info. + Good
Reliability: −− Largely untested ++ Tried, true, and recognized by code

2.2 Applications
One key application of SSI is in structural health monitoring. One major problem in earthquake
engineering is the difficulty in assessing damage to buildings after an earthquake [5]. Structural
damage is often hidden deep inside walls or concrete. The basis behind health monitoring is to
analyze a structure before and after an earthquake, and depending on any changes in structural

1



properties assess damage. SSI can be useful because of it’s broad description of a structure and
speed of data collection. Accelerometers can be left in a building and data continually downloaded
for analysis - without engineers ever entering the building. This saves people from entering a po-
tentially dangerous structure, as well as giving results back more quickly.

Another application of SSI is in redundancy and support of other analyses. With SSI, all fre-
quencies are tagged, greatly decreasing the chance that an operator missed a mode. Also, torsional
modes or other unpredicted structural irregularities may appear, suggesting further investigation.
Finally, SSI can be a quick double-check that other analyses are on the right track. At the least
SSI is a quick analysis that doesn’t require much investment to supplement other analyses.

3 Overview of How Subspace Identification Works

3.1 Framework
To understand SI, we first look at the framework within which SI operates. SI uses a common
language in control theory: State Space. State Space can be described as a set of two differential
equations and corresponding system matrices that dictate how a system will respond to any input
function, and what information will be output [4].

~̇x(t) = A~x(t) +B~f(t)

~y(t) = C~x(t) +D~f(t)

A,B,C,D System Matrices
~f(t) Forcing Function
~x(t) State Vector
~y(t) System Response

("What you can sense")

System Matrices A,B,C,D contain all the information of how the system will operate [4].
These four matrices fully determine and define the system. The forcing function ~f(t) is the only
input into the system. For shake table models, this can be a single function f(t), at the ground
level corresponding to the direction of shaking. This response is "translated" through system ma-
trix B, and effects state vector ~x(t). Note, the state vector can be much larger or smaller than the
input: in other words, the order of the system is independent of the input and output order.

System matrix A is where the focus of the SSI algorithm lies. Within an unforced system
(stochastic), ~̇x(t) = A~x(t) is a first order differential equation, and the structure outputs its nat-
ural response of exponential growth/decay depending on the eigenvalues and eigenvectors of A
[4]. Matrix A holds all information about the structural properties of whatever structure is being
analyzed.

Similarly to matrix B, matrix C "translates" information about the system state back into a
system response vector ~y(t), which is readily observable [4]. These can be thought of as sensible
information, or the information collected by accelerometers or other means. The length of ~y(t) will
usually be the number of accelerometers. Matrix D can be ignored for the most part for seismic
applications.
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Figure 1: Information Traveling Though State Space

3.2 The Process
State Space can readily replicate traditional analysis results. The typical engineering equation
governing structural dynamics is given by:

M~̈y(t) + J~̇y(t) +K~y(t) = ~f(t)

The translation to state space is given by [2]:

~x(t) =

{
~y(t)

~̇y(t)

}

A =

[
0 I

−M−1K −M−1J

]
B =

[
0

M−1

]
C =

[
I I

]
D =

[
0
]

With vector ~y(t) being observed accelerometer time history data and ~f(t) forcing at ground level.

The idea behind the SSI algorithm is, given ~y(t) and ~f(t) can we find system matricesA,B,C,D?
The answer is yes, but only once we decide on what system order to make the internal state vector
~x(t) [2]. This can be arbitrarily small or large, but should be able to capture relevant information.
On the later analyzed shake table model, 3 accelerometers were input into the algorithm. Since
~x(t) takes both velocity and displacement into account, this suggests a system order of 6 is needed
to capture system dynamics. This number can (and should) be varied and experimented with.

Given data, the SSI algorithm will give out matrices A,B,C,D, of which we only care about
matrix A. Strangely matrix A will not look anything like the clean derivation of A (we will call
A∗) we reached above. Instead of direct comparison, we only take note of the eigenvalues of A;
these eigenvalues should appear in symmetric pairs [1]. If all goes well, these eigenvalues should be
the same as in A∗. Another way to think of this is that the Singular Value Decomposition (SVD)
of A and A∗ should be similar, or that A and A∗ should be the same up to change of basis. This
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is one method used to validate the written MATLAB program.

Once A is found, by SVD it’s decomposed [2]:

A = ΨΛΨ−1

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


Here Λ is the matrix of eigenvalues, which is then used to find [2]:

ωi =

∣∣∣∣ ln(λi)

∆t

∣∣∣∣
fi =

ωi

2π

ζi =
Re(λi)

|λi|
Φ = CΨ

Here, ∆t is the time-step, fi is the frequency of mode i, ζi is the damping of mode i, and Φ is the
modal matrix. For more details see [2]. Also, it is possible to find estimates of mass and stiffness
matrices M and K (although one must be known to find the other) via:

M−1K = Φ


ω1 0 . . . 0
0 ω2 . . . 0
...

...
. . .

...
0 0 . . . ωn

Φ−1

For a given system order n, n mode shapes and frequencies are output often with duplicate
modes. To resolve this issue, duplicate modes are cut out. Another error arises from strong high-
frequency modes that are introduced as a artifact of the algorithm – these modes are probably
introduced from the discrete time steps jolting the data around. These modes should be trimmed
away.

3.3 The Algorithm
What is missing from this explanation thus far is a description of the SSI algorithm itself. SSI uses
lots of high-powered linear algebra that is, unfortunately, difficult to understand and explain. For
more information, see [6] [3]

Briefly, the SSI algorithm projects different chunks of data at one time ti onto chunks from a
different time tj (in a sense averaging them) [3]. Over a range of time lags ti−tj , the corresponding
covariances are collected, measuring the "closeness" one data chunk is to the other. These are used
to define "Kalman States," or a set of rules for estimating a future state from a given state. The
difference in Kalman State and a "shifted" state by one time step gives an estimate of system
matrix A - the final A matrix is then found by linear regression. By similar process B,C,D are
found.
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4 Implementing on Shake Table Model

4.1 The Set-Up
As a validation of the SSI program, accelerometer data from a shake table model was pushed
through the program and compared to results found from traditional modal analysis. The tradi-
tional analysis involved resonating the structure at specific frequencies. This other group was led
by Karen, Carla and Jen, and worked in parallel with this project.

Figure 2: Shake Table Model

The model had 10 accelerometers attached, but for simplicity only 3 accelerometers (one at
each floor and pointing in direction of forcing) were observed to find modes. El-Centro earthquake
was used to force the structure. Surprisingly, SSI was able to find all mode shapes with a messy
signal (that doesn’t cleanly rest at any frequency).

4.2 Results
The SSI method was able to match the traditional analysis results almost exactly. The low 2-
4% error can easily be from user estimation (since the frequencies were found by looking at the
resonating structure for a maximum deflection). Additionally the Mode shapes line up perfectly.

SSI Results K & C Results % Error
Frequency 1 3.4 Hz 3.3 Hz 3%
Frequency 2 12.6 Hz 12.4 Hz 2%
Frequency 3 12.7 Hz 24.4 Hz 4%

For all purposes, the modes and frequencies lined up exactly the same, additionally SSI provided
damping per mode. These results can be used for future analysis.

SSI Damping
Frequency 1 4.5%
Frequency 2 8%
Frequency 3 35%

5



Figure 3: Experimentally Found Mode Shapes

Figure 4: SSI Found Mode Shapes

6



As a test, the found frequencies were used to roughly recreate the accelerometer data. In the
following figure, the model is subjected to a impulse displacement (not El-Centro), while power
from each mode and different damping is neglected. By no means is the resulting wave an accurate
replication; this broadly shows the potential use of SSI in recreating realistic building behavior.

Figure 5: Sample Recreated Accelerometer Data

5 Conclusion
Stochastic Subspace Identification is a fast and valuable modal analysis technique. It’s easy to use
and seems (initially) to give accurate results. There is good potential for use of SSI as a learning
tool in the ARCE department as well as potential for future senior projects to investigate the
process further.

Future potential topics of study include:

• Shake CM Building and analyze using SSI

• Develop method to find best system order

• Investigate using ambient shaking and white noise to collect data

• Combine and mix up selected input accelerometers (torsional modes?)
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A Matlab Code
%The following progam is a implimentation of a Stochastic Subspace
%Identification Algorithm on a Shake Table Model in the ARCE Seismic Lab.
%Although the current Code is set to inport a specific set of data,
%modifications should be easily made to inport any other accelorometer data
%set.

%This uses the Subspace Identification Toolbox written by Peter Van
%Overschee and BL De Moor. The key function used is subid, although another
%versions of the program can be found in the toolbox. In the EXAMPLES
%folder there are two tutorial programs to guide the user through
%applications and instructions for using subid.

%Title: Implimenting Subspace Identification on Shake Table Model
%Author: Zoe Cooperband
%Date: June 20, 2017
%Advisor: Peter Laursen
%
%California Polytechnic State University, San Luis Obispo
%Architectural Engineering Department

clc
clear all

%---Importing Data & Variables---%

%The following code can be swapped for importing a specific dataset from
%the home computer. Note that in a deterministic system (non-zero forcing),
%the size of the input forcing array should be the same as the input
%data array with unused spaces filled with 0s.Here, there are 3 degrees of
%freedom being observed.
addpath(’XXX\vanoverschee\SUBFUN’);
X=importdata(’XXX\ElCentro5SpanDapmpedX.mat’)
Data=X.cordata;
Time=X.time;

%Organizing data
Accel=Data(:,10);
look=[2,5,8];
Ga=[0;0;1];
Degree=length(look);
View=zeros(size(Data,1),Degree);
for i=1:Degree

View(:,i)=Data(:,look(i));
end
F=zeros(size(View));
F=(Ga*Accel’)’;

%Timestep: tj
tj=1/2048;

%i is a parameter that changes the size of the window subid looks at.
%Typically i should be larger than 2*Degree. See subid for more info.
i=Degree*15;
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%---End of User Input---%

[A,B,C,D,M,N] = subid(View,F,i,6);
%SVD decomp
[V,P]=eig(A);
SO=size(P,1);
lam=zeros(SO,1);
for i=1:SO

lam(i)=log(P(i,i))/tj;
end
w=abs(lam);

%Frequency: fe
fe=w/2/pi;
%Damping: ze
ze=real(lam)./abs(lam);

%Trimming Duplicate and Extreme Modes
wnew=[];
Vnew=[];
zenew=[];
for i=1:length(w)

if w(i) < 1/tj && w(i) > 1 %&& abs(ze(i)) < .5
if length(wnew) == 0 || abs(w(i)-wnew(end)) > 1

wnew=[wnew;w(i)];
Vnew=[Vnew,V(:,i)];
zenew=[zenew,ze(i)];

end
end

end
fenew=wnew/2/pi;

%Transform Eigenvectors of A into Mode Shapes
Cn=C*Vnew;
Mode=zeros(size(Cn,1),size(Cn,2));
numM=size(Mode,2);
W=zeros(length(wnew),length(wnew));
for i=1:size(Mode,1)

for j=1:numM;
Mode(i,j)=Cn(i,j)

end
end

%Normalizing Modes
ModeNorm=Mode;
for i=1:numM

ModeNorm(:,i)=Mode(:,i)/norm(Mode(:,i));
end

%Sorting Modes by Frequency
[feSort,IN]=sort(fenew);
ModeSort=ModeNorm;
zeSort=zenew;
for i=1:numM

ModeSort(:,i)=ModeNorm(:,IN(i));
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zeSort(i)=zenew(IN(i));
end

%---Output---%

%Plotting Modes for Visualization
figure
hold on
for i=1:numM

dist=.9;
plot(dist*i+[ModeSort(:,i)’,0],[3,2,1,0])
scatter(dist*i+[ModeSort(:,i)’,0],[3,2,1,0])
plot(dist*i+[0,0],[0,3])
text(dist*i,1-.6,strcat(’Mode ’,num2str(i)));
text(dist*i,1-.6-.12,strcat(num2str(round(feSort(i),1)),’ Hz’))
text(dist*i,1-.6-.24,strcat(’Damp: ’,num2str(round(-zeSort(i)*100,0)),’%’))

end
xlabel(’Normalized Modes’)
ylabel(’Story’)
hold off

%Output Final Modes & Frequencies Found
disp(’ ’); disp(’ ’); disp(’Output: ’);
disp(strcat(num2str(numM),’ modes’));
ModeSort
feSort

%The following is a possible method to extract stiffness matrix from
%results:

% TestM=[100,0,0;
% 0,100,0;
% 0,0,50];
% SY=Mode*W*Mode^-1;
% SY=SY^-1;
% TestM*SY
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