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ABSTRACT 
 
Western monarch butterflies (sp. Danaus plexippus) are undergoing a severe decline that 
rivals those occurring among insects across the globe. Despite the estimation of 
population abundance, growth rates, and extinction probabilities, no analyses have 
investigated spatiotemporal patterns of decline in the western monarch population. I 
performed occupancy modeling of Western Monarch Thanksgiving Count (WMTC) data. 
The data was constrained spatially and temporally, with sites grouped into occupancy bins 
by latitude and year. Occupancy probabilities (psi) were estimated for each intersection of 
a latitude and time bin and detection probabilities (p) were estimated for each time bin. 
Psi increased slightly and non-significantly from northern to southern latitude bins. 
However, the dataset was unable to support any models with >3 latitude bins or the 
intersection of latitude and time bins because the dataset contained unequal sampling 
distributions across both space and time and a high proportion of missing observations. 
These constraints are likely driven by the reliance upon citizen science for WMTC data 
collection, and thus those constraints may be present in other citizen science datasets. 
Despite inconclusion regarding my original research questions, I concluded that 
occupancy modeling requires robust datasets that are more complete and equally 
distributed across the relevant parameters than the WMTC data. As species begin to 
decline, datasets with these characteristics may be harder to generate, suggesting that 
occupancy modeling may not be suitable for western monarch butterflies or other insect 
populations in the future.  
 
 
INTRODUCTION 
 
Insects are highly abundant and occupy important ecological niches such as pollinating 
flowering plant species, decomposing detritus to organic matter, and serving as prey for 
higher level consumers. This makes them highly important to both natural ecosystems and 
human economies. However, recent evidence has indicated drastic and universal declines 
in insect species across the globe (Moller 2018). Western monarchs, sp. Danaus plexippus, 
are facing equally or potentially more dramatic declines (Leong et al. 2004; Moller 2018; 
Pelton et al. 2019; Schultz et al. 2017). Population abundance estimates place the 2000-
2016 mean at 3.5% of 1980-1989 levels and a 95% confidence interval places this ratio 
between 2.4%-6.7% (Schultz et al. 2017). A similar ratio emerges when contemporary 
maximum estimates of 300,000 monarchs are compared to the 1980s maximum of 4.5 
million (Schultz et al. 2017). Beyond simple abundance, declines have also been noted in 
other metrics. Western monarchs have plummeted in raw day positives—the number of 
days in which a monarch sighting is reported at various sites (Espeset et al. 2016)—and in 
population growth rate, which was significantly negative for the period 1980-2016 (Schultz 
et al. 2017). Monitoring of overwintering sites reveals that 41% of sites that were occupied 
prior to 1990 are now unoccupied (Leong et al. 2004). These declines place western 
monarchs at an extinction risk of 50-75% within 20 years and 65-85% within 50 years 



(Schultz et al. 2017). Furthermore, the population is at heightened risk of suffering severe 
consequences from Allee effects and environmental stochasticity, factors which would 
presumably increase extinction risks (Pelton et al. 2019). These declines seem to be located 
earlier in the breeding season, which suggests a correlation between declines and 
overwintering (Espeset et al. 2016).  
 
Data from the Western Monarch Thanksgiving Count, a citizen science project involving 
annual counts of overwintering sites across the California coast, reveals that 2019 
abundance estimates were less than 1% of 1980s estimates (Pelton et al. 2019). This 
dataset has been analyzed to show a significant positive correlation between proportion of 
declining sites with distance from the overwintering range center (Griffiths and Villablanca 
2014). However, no analysis of spatial and temporal patterns within this dataset has yet 
been performed. Such an analysis would reveal patterns of western monarch abundance 
and distribution and inform conservation efforts.  
 
I used occupancy modeling to analyze the WMTC dataset and identify both spatial and 
temporal heterogeneity in the occupancy rates of overwintering monarchs in California. I 
hypothesized that patterns of abundance and distribution of overwintering monarchs in 
the west can inform the temporal and spatial patterns of decline. I predicted that monarchs 
may be i) declining uniformly across the range; ii) shifting North—indicating a climate 
change response; iii) contracting towards the range center; or iv) shifting bimodally 
towards the range extremes. These predictions were tested by encoding them into 
occupancy models and performing model selection to determine those that best modeled 
the data. 
 
 
METHODS 
 
Data 
The publicly available Western Monarch Thanksgiving Count data 
(westernmonarchcount.org) from the Xerces Society for Invertebrate Conservation was 
used for the analysis. The database contains georeferenced overwintering grove locations 
and associated annual population size estimates. Data are collected by citizen scientists 
with coordination by the Xerces Society, with the current time period spanning from 1997 
to 2019. Though this is the best dataset available, it comes with important constraints. The 
number of sites counted per year is variable, and not all sites are counted in every year. 
Furthermore, the number of sites recognized and counted each year has increased over 
time. Therefore only 41.77% of the 7567 total possible observations (329 sites x 23 year) 
were actually made. Schultz et al. 2017 also recognize this constraint and had to develop 
a multi-state model in order to analyze the data set. My analytical method attempts to 
accomplish something comparable. 



 

Figure 1. Comprehensive map of 
western monarch overwintering sites  
(N = 329). 
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Figure 2. Differences between ELAT and CLAT bin models where ELAT bins represent equal latitudinal 
ranges while CLAT bins represent equal distributions of counts. Maps depict a zoomed in segment of the 
California and Baja California coasts, including all sites present in the dataset (N=329). (a) Map of 3 ELAT 
bin model; (b) map of 3 CLAT bin model; (c) count distribution for 3 ELAT bins (map a); (d) count 
distribution for 3 CLAT bins (map b).  
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Experimental Analysis 
Overwintering sites outside of California (U.S.) and Baja California (Mexico) were 
excluded, with 329 sites remaining. The data were then matched by Site ID with latitude 
coordinates provided by Emma Pelton of the Xerces Society (Figure 1). Sites were ordered  
latitudinally, from north to south, and grouped into latitude bins (to evaluate spatial 
correlations with occupancy; Figure 2). In preliminary groupings, these latitude bins were 
evenly sized according to the total latitude range of sites present in the dataset and named 
ELAT bins for equal latitude (Figure 2a). Analyses of the ELAT bins revealed that the data 
were distributed unequally across space such that models did not reach stationarity (see 
below), especially for bins at the extreme northern and southern latitudes. As seen in 
Figure 2c, a model with 3 ELAT bins resulted in a distribution with the overwhelming 
majority of counts in the central bin. The solution was to group the latitude bins according 
to the total number of counts (N = 3161) present in the entire dataset, creating CLAT bins 
named for counts-based latitude bins (Figure 2b). This was achieved by shifting the 
latitudinal boundaries until each bin was approximately equal to the bin size (n) 
calculated as n = 3161 counts/number of bins. This ensured that the data were equally 
distributed across space and improved the likelihood that model estimates reached 
stationarity (Figure 2d). While the latitudinal cutoffs varied from model to model, the 
CLAT bins were still ordered sequentially from North to South and thus allowed for an 
analysis of the correlation of occupancy with space.  Time bins (to evaluate temporal 
correlations with occupancy) grouped multiple years into single bins according to the 
number of counts and could thus similarly be approximated by the expression n = 3161 
counts/number of bins. This grouping also ensured an equal distribution of data across 
time to promote the likelihood of estimate stationarity.  
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Figure 3. Maps of CLAT bins of equal count distributions (each shown in a distinct color) depicting model 
designs containing (a) 2 bins, (b) 3 bins, (c) 4 bins, and (d) 5 bins. Maps depict a zoomed in segment of the 
California and Baja California coasts, including all sites present in the dataset (N=329).  
 
 
Occupancy Modeling 
Abundance values were converted to presence data in R 1.4.11. Occupancy models were 
constructed by combining various latitude and time bins, with every combination of 1-5 
CLAT bins (Figure 3) and 1-2 time bins tested. The bins were then binarily encoded as 



sample covariates and run in PRESENCE (MacKenzie et al. 2003). Occupancy 
probabilities (psi) were estimated for each CLAT bin, revealing potential spatial differences 
in the population distribution. Detection probabilities (p) were estimated for each time bin 
and used by PRESENCE to improve the accuracy of psi estimates. Models thus varied from 
a total of 2 parameters [(psi(.)p(.)] to 7 parameters [psi(5Clat)p(2time)]. PRESENCE was 
then utilized to perform model selection by calculating AIC scores and rank-ordering the 
models accordingly. All models that reached complete stationarity with a ∆AIC < 2.00 
were selected and averaged by model weight (MacKenzie et al. 2003) to produce the final 
parameter estimates for psi and p.  
 
 
RESULTS 
 

Model selection results yielded three occupancy models for which the ∆AIC < 2.00 and 
all parameter estimates reached stationarity (Table 1). Stationarity was defined as a model 
in which no parameter estimates included confidence intervals of 0.00-1.00. One model 
with ∆AIC < 2.00 was excluded because the psi estimate for the southernmost latitude bin 
included such a confidence interval and thus did not reach stationarity. 
 
 

Model AIC ∆AIC AIC Wgt No. Par. 
Psi(.)p(2time) 3623.01 0.00 0.5579 3 
Psi(3Clat)p(2time) 3624.74 1.73 0.2349 5 
Psi(2Clat)p(2time) 3624.99 1.98 0.2073 4 

Table 1. Model selection results. Model names describe the number and type of bins used for both psi and p. 
For example, model Psi(3Clat)p(2time) included 3 equal-counts latitude bins (North, Central, South) and 2 
time bins (1997-2011 and 2012-2019). AIC scores represent the fitness of the model to the dataset, with 
∆AIC depicting the difference in AIC scores between the model of interest and the top-ranking model. AIC 
Wgt displays the statistical weight that the model holds, which is related to the ∆AIC score, and is used to 
weight the estimates for a particular model when averaging multiple models.  

 
 

Model Lat bin(s) psi(estimate) ± CI Time bin(s) p(estimate) ± CI 
Psi(.)p(2time) 1 0.972 ± 0.052 1997 – 2011  0.793 ± 0.024 

- -  2012 – 2019  0.678 ± 0.024 
Psi(3Clat)p(2time) 1N 0.961 ± 0.052 1997 – 2011  0.793 ± 0.024 

2C 0.973 ± 0.052 2012 – 2019  0.679 ± 0.024 
3S 0.996*± 0.270 -  -  

Psi(2Clat)p(2time) 1N 0.976 ± 0.052 1997 – 2011  0.793 ± 0.024 
2S 0.978 ± 0.052 2012 – 2019  0.678 ± 0.024 

Table 2. Psi parameter estimates for model equal-counts latitude bins (CLAT) and p estimates for model time 
bins (1997-2011 and 2012-2019). Models differed by the number of CLAT bins with either the whole range 
pooled, north (N) and south (S) distinguished, or north (N), center (C), and south (S) distinguished. 
Confidence intervals noted are the maximum intervals for values in the column (e.g. all psi CIs ≤ value ± 
0.052). One interval (*) was an outlier.  



The psi estimates were relatively similar with overlapping confidence intervals (Table 2). 
Occupancy increased slightly from northern to southern latitude bins. However, 
southernmost bins were also the most likely to have confidence intervals that were either 
wide or did not reach stationarity. The confidence interval for the southern psi estimate of 
the psi(3Clat)p(2time) model was an outlier when compared to the other intervals, which  
reinforces the aforementioned pattern. P estimates were more disparate, with the early 
time bin (1997-2011) reliably producing a higher detection probability than the late time 
bin (2012-2019). Furthermore, the confidence intervals for p estimates were much tighter 
and did not overlap. Model averaged psi estimates (Table 3) were, as observed below, 
highly similar but increased from north to south. Averaged p estimates (Table 3) were 
disparate, with the early estimate being greater than the late.   
 
 

Parameter Bin Value 

psi 
 
 

North 0.9704 
Central 0.9735 
South 0.9792 

p 

 

1997-2011 0.7934 

2012-2019 0.6783 
Table 3. Model averaging results based on results in Table 2. Parameters included both psi and p, with both 
latitude (psi) and time (p) bins represented. Psi results averaged to three latitude bins—North, Central, and 
Southern—with three average psi estimates resulting. P results averaged to two time bins—early and late—
with two p estimates resulting. Estimates were averaged according to the model weight.  
 
 
DISCUSSION 
 
The top models included between 1-3 equal-counts latitude bins and 2 time bins each, 
with no confluence of latitude and time bins. Psi estimates—both raw and averaged—and 
their confidence intervals were highly similar but did increase slightly from North to 
South. P estimates were higher for the early time bin (1997-2011) than the late time bin 
(2012-2019). The differences in estimated values for p are consistent with my predictions.  
 
These results are somewhat inconclusive to my original questions. The psi estimates did 
not reveal large or significant spatial differences in occupancy. Furthermore, no models 
were able to test for changes in occupancy with time. These inconclusive results are 
largely due to the unequal distribution of data across both space and time and the large 
proportion of missing data. Of the 7567 potential observations (329 sites x 23 years), only 
3161 have actually been counted; thus, 58.23% of the potential data is nonexistent. A 
majority of sites (53.22%) have been counted for less than 8 of the 23 potential years and 
only 33.36% have been counted for more than half of these years. The spatially unequal 
data distribution led to occupancy estimates that did not reach stationarity at the range 
extremes. This necessitated an expansion of latitude bins to ensure that all bins—
especially those at the range extremes—included enough data to yield estimates that 



reached stationarity. When the total number of counts across the 23-year period are sorted 
by latitude, most of the data is located within the central coast between the 34.5 – 35.5 
latitude range. The southern portion of the range, from 31.5˚ – 34.5˚ latitude, is 
particularly lacking in both counts and sites. This relative lack of data explains why the 
confidence intervals for psi estimates of southern bins were higher and often large enough 
to prevent estimates from reaching stationarity.  
 
Additionally, there is a temporal disparity in the data distribution. The total number of sites 
counted per year is inconsistent, with most years prior to 2010 falling between 80-120 
sites counted. In the last decade, this number has risen dramatically, peaking at 263 sites 
in 2017. However, this disparity in the number of sites counted across time presents a 
challenge for analysis. The lack of repeat counts within any given year mean that 
detection probabilities must be estimated across multiple years, which both confounds the 
attempt to find differences in occupancy between those years and restricts the ability to 
vary the detection probability across space and time (Mackenzie and Royle 2005). 
Furthermore, the addition of new sites in recent years inherently means that those sites 
have been counted few times and that those counts occur in the late time bin only. Thus, 
while the early time bin has fewer sites counted, those sites are counted more frequently 
and regularly. By contrast, the addition of sites with only a few counts increased the 
proportion of missing data in the late time bin, yielding a lower p estimate.  
 
The trend for both psi estimates and the associated confidence intervals to be higher for 
southernmost bins is slight, and potentially interesting. It may be that the southern region 
indeed does display the highest occupancy. However, this result may be an artifact of the 
incompleteness of the dataset. The southern region lacked both sites and counts relative to 
the other regions, which may have given “present” observations a disproportionate 
influence upon the occupancy estimate. This may also be explained by the proclivity for 
sites in the central region to be counted the most frequently, which seemingly resulted in 
more absences being detected than in the southern region. Both may have resulted in the 
higher occupancy rates observed in the South. The detection probability is also likely an 
artifact of the recent addition of sites that were counted infrequently and 
nonconsecutively, reducing the p estimate in the late time bin.  
 
While the results are inconclusive to my original questions, they are conclusive for 
occupancy modeling and the data required to perform such modeling. It is clear that 
datasets with large proportions of missing data and large disparities in its distribution are 
not suitable for fine-scaled occupancy modeling, as is the case with my analysis. This is 
evident in my inability to test models with >3 latitude bins and the inability to test for 
changes in psi across time. Furthermore, the gross amount of data is also highly important. 
For example, when initially trying to decrease the amount of missing data, I set a threshold 
number of counts per site and excluded sites below that threshold. However, that left too 
few sites for the analyses to reach stationarity. Thus, it is clear that an ideal dataset must 
be abundant, evenly distributed, and contain multiple counts per year or season.  
 



Producing datasets with these qualities may be inherently difficult for citizen science 
projects, including the Western Monarch Thanksgiving Counts. Citizen science projects 
introduce human biases into the datasets and may have a proclivity to produce disparities 
in the distribution of data across its parameters (Mackenzie and Royle 2005). For example, 
the WMTC dataset reveals a clear bias towards counting sites in the central coast—where 
the monarchs are typically the most abundant—probably because it is more rewarding to 
count sites where there are likely to be thousands or potentially millions of monarchs. As a 
result, the WMTC will almost certainly continue to be unsuitable for occupancy modeling 
into the future and for performing the analysis I attempted.  
 
These dataset challenges will be further exacerbated by decreases in the population size 
and predictability of western monarchs. In 2017, the Xerces Society added a second 
annual count to the Western Monarch Thanksgiving Count project that begins on New 
Year’s Eve. This will improve the ability to estimate detection probabilities (Mackenzie 
and Royle 2005). However, given the current rate of population decline, it may already be 
too late for this change to enable crucial analyses that inform conservation efforts. 
Furthermore, the Western Monarch Thanksgiving Count will likely continue to produce 
data that is uneven in spatial and temporal distributions because of the natural human 
biases of its citizen scientists.  
 
Similar challenges can be expected for insects at large as populations and species 
continue to decline rapidly. Spatial and temporal stochasticity will likely increase, 
particularly when populations cross the size threshold for Allee effects. This will make it 
more difficult to collect large datasets and to ensure that they are distributed evenly across 
the relevant parameters. Furthermore, population unpredictability reduces the likelihood 
that data collection efforts will be successful and may necessitate budgeting decisions to 
cut resources to particular populations or species. The challenges outlined above may 
drive a natural shift in data analyses away from occupancy modeling because of the strict 
requirements in the data attributes.  
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