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INTRODUCTION: 

 Mentor eData is a start-up company interested in enhancing driver safety with predicative 

analytics and seeking solutions for insurance telematics and dynamic risk assessment. According 

to their website (Mentor eData, 2012), their Mission is to: “Improve driver performance and 

safety with an automated system that provides routine and objective feedback and assessment of 

actual driving tendencies and risks.” In short, their primary goal is to create safe drivers. They 

intend to do this via analyzing data collected from their DrivingBuddy application for smart 

phones. Mentor collects second-by second data with over thirty variables and 35 phases. My job 

as a Data Analyst was to create a Gold Methodology and a Scoring System that could help 

explain an Expert/Student classification. 

 

DATA : 

 The DrivingBuddy application collects a large amount of data. For the simplification of 

this project, I chose to do the analysis based on the 35 phases that were created. I also 

communicated with Steve Lakoswke, (head of Mentor eData) to figure out the applicable 

variables that could be used at the current time. Some variables were eliminated because they do 

not make sense in context or are not being collected at this time (i.e. Steve plans to collect 

biometric data in the future). We came up with 21 applicable variables to be used in this initial 

analysis. [Table 1 and Table 2] contain a list of the 21 Applicable Variables used and the 35 

phases collected. 
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Table 1: 21 Applicable Variables 

 
 

 

Table 2: 35 Phases 

 
 

GOLD STANDARD: 

Preliminary analysis began by looking at a sample of ten gold driver trips and one student 

trip. Ultimately, we were looking for a process to see how the student driver compares to the 

gold drivers. Despite the fact that all eleven trips were made by one driver and is not a large 

enough sample size, these accumulated trips will be used to simulate the desired process and 

provide a starting point for creating a methodology. 

var varname units var varname units

1 4 lat degrees 12 27 obd_speed mph

2 5 lon degrees 13 29 rpm rpm

3 6 alt meters 14 35 gasPedal %

4 7 gps_speed mph 15 38 massAirFlow units

5 8 gps_heading degrees 16 45 userEvent 1=unsafe

6 18 laccelx g's 17 46 rtEventsid rtevent_detected

7 19 laccely g's 18 52 mpg mpg

8 20 laccelz g's 19 53 distance kilometers

9 21 gyrox degrees/sec 20 54 deltaheading degrees/sec

10 22 gyroy degrees/sec 21 55 turnradius ft

11 23 gyroz degrees/sec

phasenums phasetitle phasenums phase title

1 0 Moderate Straight 19 26 Fast Right Curve Accelerating

2 1 Slow Straight 20 32 Moderate Left Curve

3 2 Fast Straight 21 33 Slow Left Curve

4 3 Idle, Speed=0 mph 22 34 Fast Left Curve

5 4 Moderate Straight Decelerating 23 36 Moderate Left Curve Decelerating

6 5 Slow Straight Decelerating 24 37 Slow Left Curve Decelerating

7 6 Fast Straight Decelerating 25 38 Fast left Curve Decelerating

8 8 Moderate Straight Accelerating 26 40 Moderate Left Curve Accelerating

9 9 Slow Straight Accelerating 27 41 Slow Left Curve Accelerating

10 10 Fast and Accelerating 28 42 Fast Left Curve Accelerating

11 16 Moderate Right Curve 29 80 Moderate Right Turn

12 17 Slow Right Curve 30 81 Slow Right Turn

13 18 Fast Right Curve 31 82 Fast Right Turn

14 20 Moderate Right Curve Decelerating 32 160 Moderate Left Turn

15 21 Slow Right Curve Decelerating 33 161 Slow Left Turn

16 22 Fast Right Curve Decelerating 34 162 Fast Left Turn

17 24 Moderate Right Curve Accelerating 35 255 Idle

18 25 Slow Right Curve Decelerating
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The purpose of data analysis was to provide feedback about driving safety, based on data 

collected during a trip.  In the longer term, we should be able to assess collision risk from trip 

data.  Statistical methods can be used for estimating risks of rare events from voluminous 

associated categorical and numerical data.  Methods available include mining transactional data 

(Berberidis et al., 2004; Weiss, 2004; Weiss and Hirsh, 1998), Bayesian Network modeling 

(Cheon et al., 2009; Meel and Seider, 2008; Meel and Seider, 2006), Logistic Regression 

(Maalouf and Trafalis, 2011) and other approaches.  All of the cited methods require the 

occurrence of events within the data set in order to make likelihood estimates.  As we began 

mining trip data to assess driving safety, there were no collision events, so none of the cited 

approaches could be used. 

Unfortunately due to the nature of the data, we were unable to perform typical methods 

such as Linear Regression or Principal Components Analysis due to the lack of any real response 

(y) variable. For example, a simple binary variable of crash or no crash is not sufficient in 

explaining whether someone is a good or bad driver (i.e. a good driver may  be involved in an 

accident but is not at fault; yet on the other hand, a bad driver may drive recklessly, but still 

avoid an accident). We were also unable to use a simple method like Step-wise Regression in the 

variable selection process because of this lack of response variable. Instead, we were obligated to 

initially analyze every variable that is reasonable in context and holds some potential predictive 

value, only excluding raw variables that are used to create more accurate derived variables (i.e. 

linear acceleration without the influence of gyros is not very useful). 

We proposed to develop statistical models from “Gold Driver” trip data, and then assess 

student driver safety by comparing a student’s trip data with the “Gold Driver” models.  We 
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decided to look at phases and chose to use the idea of a phase with different variables during 

each phase as a base for the analysis. 

Our first goal was to combine the gold driver trips and work to create a “Gold Standard” 

or “Gold Profile” that could be the criterion on which a given student could be compared to. This 

was done by creating a histogram for each variable of each phase and fitting a model to the data. 

[see figure 1: plot 1] 

We viewed the Gold Profile as a population distribution, and a student’s trip data as a 

sample from the population.  We suggested that driving safety will diminish whenever the 

student performs maneuvers that lie in the fringes of the Gold population.  For each phase of a 

student trip, we can determine the location of the phase within the Gold population model using 

the Central Limit Theorem.  We then took data from a student driver’s trip and created plots that 

contain the normal distribution with the gold mean and gold standard deviation divided by the 

square root of the duration of one instance of a given phase during the student trip [mean=gold 

mean; std. dev = gold sd/sqrt(n), where n is the duration]. We then plotted each instance of each 

phase and calculate a corresponding p-value. [see figure 1: plot 2-4] 

For any sample mean above the Gold mean (as in the first and third instance below), we 

took 1 - pnorm (sample mean, Normal Mean, Normal St Dev/sqrt (n)) [see plot 2 and 4].  

But for any sample mean below the Gold mean, we took pnorm (sample mean, Normal Mean, 

Normal St Dev/sqrt (n). This method applies to the second instance, where the p-value 

corresponds to the area to the left of the sample mean [see plot 3]. Through this approach, then 

the maximum p-value is 0.5 
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Figure 1: 

 

 

The next goal was to calculate a p-value for every phase of a student trip where there is a 

Gold Data model.  We started by making a histogram of p-values in the trip, and calculated 

sample means, and sample st devs. We wanted to try to make a comparison between the sample 

mean and 0.5. and thought about what more we could do with the p-values for a trip in the future. 

In the short term, we planned to have the final results use the p-values to make a trip score that 

ranges from 0% to 100%. The process of implementing these ideas is shown below in [Figure 2: 

Implementing Gold Methodology]. The R code is also provided in Appendix A. 
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Figure 2: 

 

Implementing Gold Methodology 

The Process (in words) 

1. Gold Standard Data is read in 

2. The following process is iterated for all phases and variable combinations 

 a. corresponding  goldmu and goldsd are found 

b. Student mean is calculated 

 c. n= length of student mean data/number of data points for given phase 

 z-score is calculated using: z=(studentmean-goldmu)/(goldsd/(sqrt(n))) 

 This z-score can then be used to find an appropriate p-value, based on the z-score table 

 http://en.wikipedia.org/wiki/Normal_cumulative_distribution_function#Numerica

l_approximations_for_the_normal_CDF 

 ideally, theses p-values would be stored in a 35x21 matrix 

3. Row Statistics could then be performed on this matrix of p-values. 

 a. find the mean of the p-values for each row/phase (outcome: 35 means) 

 b. multiply each row mean by 2 for a ‘phase score’ (outcome: 35 scores) 

 c. find the (column) mean of phase scores (outcome: 1 score) 

 This single score will equate to an overall score, between 0 and 1 [or a percentage 

between 0% and 100%]. 

 

 

This was our first shot at a scoring system. We did not do any substantial tests to see how 

accurate it assesses driving ability. However, a student score of 60.76%, or grade ‘D’ did not 

seem to be too far off. In the future, it would be useful to test other ‘student driver trips’ or even 

expert trips to see how their scores compare. 

See [Figure 3] which shows one example (with made up numbers) of what we might provide 

to users and instructors via the app. That way they could see their overall score and which phases 

they did well, poorly on etc., to give them a better idea of where their score came from. 

 

 

 

 

 

http://www2.parkland.edu/businesstraining/documents/zscoretable.pdf
http://en.wikipedia.org/wiki/Normal_cumulative_distribution_function#Numerical_approximations_for_the_normal_CDF
http://en.wikipedia.org/wiki/Normal_cumulative_distribution_function#Numerical_approximations_for_the_normal_CDF
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Figure 3: 

 
 

QAUDRATIC DISCRIMINANT ANALYSIS: 

 In addition to using the Gold Standard Methodology to assess driver ability, we 

implemented Quadratic Discriminant Analysis in order to obtain a scoring system. Below, 

[Figure 4] gives an overview of how a score is obtained. 

Figure 4: 
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The statistical model provides a method to answer the question: “Does a trip look more 

like a Gold Driver or a Student Driver?” That is, for any single trip, data from the trip will be 

input into the model, and the model will determine the likelihood that the trip was made by a 

Gold Driver or a Student Driver. Higher (better) trip scores will be produced when the data 

indicate that the trip is closer to a Gold Driver. The model is based on a method called Quadratic 

Discriminant Analysis (QDA). This method characterizes the pattern among many variables 

recorded during a trip; the trip’s pattern characterization is then compared to how the same 

variables are patterned in both Gold Driver and Student Driver trips. Since many variables are 

used to characterize trips, QDA provides a highly effective capability to discern a trip’s 

association with Gold or Student populations. 

A QDA model is built from accumulated Gold Driver and Student Driver data. The 

model is built offline, using R and data stored in a large database. The model produces trip 

characterizations in the form of data vector Means and Standard Deviations for each population, 

and a Covariance Matrix inverse. The means, standard deviations and covariance matrix inverse 

are small, and are stored as part of the application on a driver’s phone/PDA. The driver’s 

phone/PDA application then takes data from a single trip, and assesses the trip using the stored 

QDA model values. 

The assessment of a single trip will include an overall trip score, in the range 0% to 

100%, representing the likelihood that the trip was made by a Gold Driver. In addition to the 

overall trip score, each phase within the trip can also be assessed individually. Using phase 

scores, also in the range of 0% to 100%, it will be possible to identify the reason(s) for a low 

overall trip score. Feedback about which aspects of a driver’s performance are good, and which 
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aren’t so good, can be provided by ranking phase scores. A detailed trip report card can be 

assembled by showing all phase scores. 

This process required six new derived variables based off of our current 21 applicable 

variables and 35 phases. These six new variables are Min, Max, Time at Min, Time at Max, 

Ratio of Area for Min, and Ratio of Area for Max. Below [Figure 5] shows the time warping 

process and explains how these derived variables are found. 

Figure 5: 

How to Time Warp: 
given: a vector of values for one instance of phase 
how to find the following values:  

1. Min Value: min(vector) 
2. Max Value: max(vector) 

3. MinWarpedTime: wmin=(t-t0) / (tn-t0) (where wmin corresponds to the warped time 
(wi) of the min value  of the vector) 

4. MaxWarpedTime: wmax=(t-t0) / (tn-t0) 
5. MinRatio: Ratio=(Area before tmin/ Total Area) 
6. MaxRatio: Ratio=(Area before tmax/ Total Area) 

 

example: 
one instance of (phase 38 + variable 7) @ time t=7-12 = 15.347, 20.789, 17.269, 18.345, 
21.975, 20.7 

n=6, t=7-12, t0=7, tn=12 

Real Time (ti) 7 8 9 10 11 12 

Warped Time (wi) 0 
 

 

.2 
 

 

.4 

wmin 

.6 .8 

wmax 

1 

Value @ time, w 17.269 20.789 15.347 18.345 21.975 20.7 

Min=15.347 
Max=21.975 
MinWarpedTime=9 
MaxWarpedTime=11 
Minratio=(17.269+20.789+15.347)/ (114.425) =0.4667 

Maxratio=(17.269+20.789+15.347+18.345) / (114.425)= .627 
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The analysis requires two datasets: one for the expert drivers, and one for the student 

drivers. Each dataset contains the six variables as well as the corresponding phase and variable. 

From this we would create a multi-dimensional dataset that is 35 X 126, or 35 x 21 with each cell 

containing the six derived variables. From this dataset we would extract thirty-five 1x26 vectors 

for each of the thirty-five phases. We would also have another multi-dimensional dataset for the 

student data that is identical in structure. Once created one time with accurate student and expert 

driver data, these datasets would not need to be repeatedly updated. Instead they would serve as 

the Gold Standard vs. Student Data that is stored on Mentor eData’s Database (Server).  

After the datasets are stored in the main database, offline analysis can begin. The offline 

Analysis was done in R. The programming language R is used to find the covariance matrix and 

the means to be used in the Quadratic Discriminant Function [Figure 6]. These covariance 

matrices and mean vectors only need to be computed once and stored so they can be used when 

called upon for the scoring process. 

Figure 6: 

 

S1 and S2= Gold and Student Covariance Matrices, respectively  
(note S -1 indicates the inverse covariance matrix).  

x-bar1 and x-bar2= mean vectors for Gold and Student, respectively. 
x= the 1 x 26 mean vector for each instance of a given phase, for every phase 
 

For any given trip we would obtain n number of g(x) values, (where n=# of instances of a 

given phase, for every phases). See Figure 6 (Morrison, 2005) for explicit variable explanations. 

A mean (1x26) vector would be found for each instance of a given phase, for every phase. From 

this a g-value would be calculated of each instance of a given phase, for all phases. This g(x) 

value is a log(likelihood ratio). From this we would get a lambda value by taking the exp(g(x)), 
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so lambda =exp(g(x)). Finally, to obtain a score, we can calculate lambda/(lambda+1)=score. See 

Appendix B for more details. 

 

CONCLUSION: 

 When applying these methods there are a few things to consider. Prior to my analysis, 

there was only one current method of scoring based on crash data which was not very accurate. 

My analysis is a first take on trying to come up with a reliable and explanatory model and 

scoring system to compare driving ability. Both the gold standard methodology and the scoring 

system based on the Quadratic Discriminant Analysis are based on phases. These phases were 

quickly created by Mentor’s former programmer, Mike Maggee and may not accurately and fully 

describe driving behavior. Perhaps these phase definitions could be tested for accuracy and 

updated if necessary. A more in-depth method of describing driving behavior may be needed in 

order to provide an accurate base for the methods I created. More could be done with Events or 

other things that are now or will be collected by the app. The more accurate the data that is being 

collected the better predictive power of the models. 

 

 Future work with this data and trying to accurately assess drivers’ ability could include 

exploring more derived variables. The six derived variables discussed above are initial ideas to 

work with the Quadratic Discriminant Function, but there are many more potential variables that 

could be used to replace or be in addition to the current six. Further analysis could be utilized to 

see which (if not all) variables are useful to the model. Perhaps some variables should have more 

weight than others. Finally, the validity of the models/methods should be tested to see how they 

compare to each other, as well as other existing methods. 
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Appendix A: 

 

##hypertables csv.files (named alyssa.zip) are read in; 

#following corresponding line converts Unix time to real time; 

#student driver; 

student= read.table(unz("alyssa.zip", "b217.csv"), header=T, sep=","); 

 student$realtime=as.POSIXct(c(student$datetime), origin="1970-01-01", tz="GMT"); 

#gold ("expert") driver; 

gold1= read.table(unz("alyssa.zip", "g208.csv"), header=T, sep=","); 

 gold1$realtime=as.POSIXct(c(gold1$datetime), origin="1970-01-01", tz="GMT"); 

gold2= read.table(unz("alyssa.zip", "g239.csv"), header=T, sep=","); 

 gold2$realtime=as.POSIXct(c(gold2$datetime), origin="1970-01-01", tz="GMT"); 

gold3= read.table(unz("alyssa.zip", "g296.csv"), header=T, sep=","); 

 gold3$realtime=as.POSIXct(c(gold3$datetime), origin="1970-01-01", tz="GMT"); 

gold4= read.table(unz("alyssa.zip", "g306.csv"), header=T, sep=","); 

 gold4$realtime=as.POSIXct(c(gold4$datetime), origin="1970-01-01", tz="GMT"); 

gold5= read.table(unz("alyssa.zip", "g401.csv"), header=T, sep=","); 

 gold5$realtime=as.POSIXct(c(gold5$datetime), origin="1970-01-01", tz="GMT"); 

gold6= read.table(unz("alyssa.zip", "g404.csv"), header=T, sep=","); 

 gold6$realtime=as.POSIXct(c(gold6$datetime), origin="1970-01-01", tz="GMT"); 

gold7= read.table(unz("alyssa.zip", "g437.csv"), header=T, sep=","); 

 gold7$realtime=as.POSIXct(c(gold7$datetime), origin="1970-01-01", tz="GMT"); 

gold8= read.table(unz("alyssa.zip", "g455.csv"), header=T, sep=","); 

 gold8$realtime=as.POSIXct(c(gold8$datetime), origin="1970-01-01", tz="GMT"); 

gold9= read.table(unz("alyssa.zip", "g500.csv"), header=T, sep=","); 

 gold9$realtime=as.POSIXct(c(gold9$datetime), origin="1970-01-01", tz="GMT"); 

gold10= read.table(unz("alyssa.zip", "g528.csv"), header=T, sep=","); 

 gold10$realtime=as.POSIXct(c(gold10$datetime), origin="1970-01-01", tz="GMT"); 

 

###creating a matrix for VARIABLE info### 

var=c(4,5,6,7,8,18,19,20,21,22,23,27,29,35,38,45,46,52,53,54,55) 

applicable=as.data.frame(var) 

phasenamesapp=gold1[c(4,5,6,7,8,18,19,20,21,22,23,27,29,35,38,45,46,52,53,54,55)] 

applicablephasenames=names(phasenamesapp) 

applicable[,"varname"]=applicablephasenames 

unit=c("degrees","degrees","meters", "mph", "degrees", "g's", "g's","g's", "degrees/sec", 

"degrees/sec", "degrees/sec","mph","rpm","%", "units", 

"1=unsafe","rtevent_detected","mpg","kilometers", "degrees/sec", "ft") 

applicable[,"units"]=unit 

revunit=c("degrees","degrees","meters", "hours per mile", "degrees", "g's", "g's","g's", 

"sec/degrees", "sec/degrees", "sec/degrees","hours per mile","minutes per revolution","%", 

"units", "1=unsafe","rtevent_detected","gallons per mile","kilometers", "sec/degrees", "ft") 

applicable[,"reverseunits"]=revunit 

 

###creating a matrix for PHASE info### 
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phasenums=c(0,1,2,3,4,5,6,8,9,10,16,17,18,20,21,22,24,25,26,32,33,34,36,37,38,40,41,42,80,81,

82,160,161,162,255) 

PhaseNums=as.data.frame(phasenums) 

 

for(itor in 1:35){ 

if (PhaseNums[itor,1]=="0"){ 

  PhaseNums[itor,2]="Moderate Straight" 

 } else if (PhaseNums[itor,1]=="1"){ 

  PhaseNums[itor,2]="Slow Straight" 

 } else if (PhaseNums[itor,1]=="2"){ 

  PhaseNums[itor,2]="Fast Straight" 

 } else if (PhaseNums[itor,1]=="3"){ 

  PhaseNums[itor,2]="Idle, Speed=0 mph" 

 } else if (PhaseNums[itor,1]=="4"){ 

  PhaseNums[itor,2]="Moderate Straight Decelerating" 

 } else if (PhaseNums[itor,1]=="5"){ 

  PhaseNums[itor,2]="Slow Straight Decelerating" 

 } else if (PhaseNums[itor,1]=="6"){ 

  PhaseNums[itor,2]="Fast Straight Decelerating" 

 } else if (PhaseNums[itor,1]=="8"){ 

  PhaseNums[itor,2]="Moderate Straight Accelerating" 

 } else if (PhaseNums[itor,1]=="9"){ 

  PhaseNums[itor,2]="Slow Straight Accelerating" 

 } else if (PhaseNums[itor,1]=="10"){ 

  PhaseNums[itor,2]="Fast and Accelerating" 

 } else if (PhaseNums[itor,1]=="16"){ 

  PhaseNums[itor,2]="Moderate Right Curve" 

 } else if (PhaseNums[itor,1]=="17"){ 

  PhaseNums[itor,2]="Slow Right Curve" 

 } else if (PhaseNums[itor,1]=="18"){ 

  PhaseNums[itor,2]="Fast Right Curve" 

 } else if (PhaseNums[itor,1]=="20"){ 

  PhaseNums[itor,2]="Moderate Right Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="21"){ 

  PhaseNums[itor,2]="Slow Right Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="22"){ 

  PhaseNums[itor,2]="Fast Right Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="24"){ 

  PhaseNums[itor,2]="Moderate Right Curve Accelerating" 

 } else if (PhaseNums[itor,1]=="25"){ 

  PhaseNums[itor,2]="Slow Right Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="26"){ 

  PhaseNums[itor,2]="Fast Right Curve Accelerating" 

 } else if (PhaseNums[itor,1]=="32"){ 

  PhaseNums[itor,2]="Moderate Left Curve" 

 } else if (PhaseNums[itor,1]=="33"){ 
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  PhaseNums[itor,2]="Slow Left Curve" 

 } else if (PhaseNums[itor,1]=="34"){ 

  PhaseNums[itor,2]="Fast Left Curve" 

 } else if (PhaseNums[itor,1]=="36"){ 

  PhaseNums[itor,2]="Moderate Left Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="37"){ 

  PhaseNums[itor,2]="Slow Left Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="38"){ 

  PhaseNums[itor,2]="Fast left Curve Decelerating" 

 } else if (PhaseNums[itor,1]=="40"){ 

  PhaseNums[itor,2]="Moderate Left Curve Accelerating" 

 } else if (PhaseNums[itor,1]=="41"){ 

  PhaseNums[itor,2]="Slow Left Curve Accelerating" 

 } else if (PhaseNums[itor,1]=="42"){ 

  PhaseNums[itor,2]="Fast Left Curve Accelerating" 

 } else if (PhaseNums[itor,1]=="80"){ 

  PhaseNums[itor,2]="Moderate Right Turn" 

 } else if (PhaseNums[itor,1]=="81"){ 

  PhaseNums[itor,2]="Slow Right Turn" 

 } else if (PhaseNums[itor,1]=="82"){ 

  PhaseNums[itor,2]="Fast Right Turn" 

 } else if (PhaseNums[itor,1]=="160"){ 

  PhaseNums[itor,2]="Moderate Left Turn" 

 } else if (PhaseNums[itor,1]=="161"){ 

  PhaseNums[itor,2]="Slow Left Turn" 

 } else if (PhaseNums[itor,1]=="162"){ 

  PhaseNums[itor,2]="Fast Left Turn" 

 } else if (PhaseNums[itor,1]=="255"){ 

  PhaseNums[itor,2]="Idle" 

 } 

} 

 

names(PhaseNums)[2]="phasetitle" 

 

 

#creates a data frame with all means and then for the standard deviations; 

means=matrix(nrow=35, ncol=21)  

rownames(means)=PhaseNums$phasetitle 

colnames(means)=applicable$varname 

standard=matrix(nrow=35, ncol=21)  

rownames(standard)=PhaseNums$phasetitle 

colnames(standard)=applicable$varname 

 

for(vitor in 1:21){ 

for(pitor in 1:35){ 
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phasenum=PhaseNums[pitor,1] 

var=applicable[vitor,1] 

varname=applicable[vitor,2] 

maintitle=PhaseNums[pitor,2] 

labelx=applicable[vitor,3] 

reverselablex=applicable[vitor,4] 

labely=c(paste("Frequency Density (",reverselablex,")")) 

labely2=c(paste("Probability Density (",reverselablex,")")) 

 

#creating subsets for the phase for each gold driver trip; 

phase.gold1=gold1[gold1$phase==phasenum,] 

phase.gold2=gold2[gold2$phase==phasenum,] 

phase.gold3=gold3[gold3$phase==phasenum,] 

phase.gold4=gold4[gold4$phase==phasenum,] 

phase.gold5=gold5[gold5$phase==phasenum,] 

phase.gold6=gold6[gold6$phase==phasenum,] 

phase.gold7=gold7[gold7$phase==phasenum,] 

phase.gold8=gold8[gold8$phase==phasenum,] 

phase.gold9=gold9[gold9$phase==phasenum,] 

phase.gold10=gold10[gold10$phase==phasenum,] 

 

#extracts gps_speed 

one=phase.gold1[,var] 

two=phase.gold2[,var] 

three=phase.gold3[,var] 

four=phase.gold4[,var] 

five=phase.gold5[,var] 

six=phase.gold6[,var] 

seven=phase.gold7[,var] 

eight=phase.gold8[,var] 

nine=phase.gold9[,var] 

ten=phase.gold10[,var] 

 

#creates a vector that contains data from all gold driver trips 

puregold=c(one, two, three, four, five, six, seven, eight, nine, ten) 

 

#finds student mean; 

#phasestud=student[student$phase==phasenum,] 

#studentmean=mean(phasestud[,var]) 

 

goldensort=sort(puregold) 

x=goldensort 

mu=mean(goldensort) 

n=length(goldensort) 

#stddev=sd(goldensort) 

stddev=(sd(goldensort))/(sqrt(n)) 
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means[pitor,vitor]=mu; 

standard[pitor,vitor]=stddev; 

} 

} 

 

#creates a table for the means and standard deviations for the gold standard 

write.csv(means, "gold.mean.csv") 

write.csv(standard, "gold.stddev.csv") 

 

write.csv(PhaseNums, "Phases.csv") 

write.csv(applicable, "Variables.csv") 
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Appendix B: 

 

setwd("G:/Mentor"); 

 

#reads in the two data sets for "good" and "bad" drivers; 

baddrive=read.csv("baddrivers.csv") 

bad=(baddrive[,-1]) 

badvector=factor(c(rep("bad",1606))) 

bad[,"Driver"]=badvector 

gooddrive=read.csv("gooddrivers.csv") 

good=(gooddrive[,-1]) 

goodvector=factor(c(rep("good",1606))) 

good[,"Driver"]=goodvector 

 

#recombines good and bad driver data; 

QDAta=rbind(bad,good) 

 

 

Q.Data.split=split(QDAta[,1:6], QDAta$Driver) 

 

meanbar=lapply(Q.Data.split, colMeans, na.rm=TRUE) 

S=lapply(lapply(Q.Data.split, var, na.rm=TRUE),solve) 

 

#student-gold 

#student=x2 

#gold=x1 

#lambda/1+lambda 

 

studentarray=array(c(20,17,.67,.348,1.547,3.9)) 

studentarray=array(c(40,39,.55,.56,1.8,4.5)) 

studentarray=array(c(34.52,31.985,.5908,.58365,1.6,3.21666)) 

studentarray=array(c(15,12,.3,.2,.6,.4)) 

 

studenttranspose=as.matrix(t(studentarray-meanbar$bad)) 

stud=as.matrix((studentarray-meanbar$bad)) 

Sstudinv=solve(S$bad) 

S1=S$bad 

goldtranspose=t(studentarray-meanbar$good) 

gold=(studentarray-meanbar$good) 

Sgoldinv=solve(S$good) 

S2=S$good 

gOFx=(studenttranspose%*%Sstudinv%*%stud)-(goldtranspose%*%Sgoldinv%*%gold)-

(log((det(S1))/(det(S2)))) 

lambda=exp(log(abs(gOFx))) 

lambda/(1+lambda) 

 


