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Introduction 

After being presented the opportunity to work with cameras of multiple wavelengths, I 

decided to use one in my senior project. It was brought to my attention that Infrared cameras 

specifically are commonly used to detect pedestrians. A 2-camera system available to use was 

able to take visible images and infrared images simultaneously. Another more recent 

phenomenon is the concept of blending visible images with infrared images. This idea of image 

blending became a motivating idea that I wanted to somehow incorporate in my senior project. I 

was inspired to explore the use of blended images for detecting pedestrians using the 2-camera 

system. The research question I decided to explore was: “Do blended images increase the 

probability of detecting a pedestrian compared to infrared images alone?”  

Background 

 Pedestrian Detection has become fundamentally more popular and essential over the last 

decade. Systems are constantly being installed into moving vehicles to help notify drivers of 

pedestrians. Often vehicles alert the driver if they are a certain distance from an object by 

cameras that have been mounted into the bumper or some other location on the vehicle. Infrared 

cameras are the most common form of camera that is used today to detect pedestrians. Infrared 

cameras appeared beneficial compared to visible cameras because of their ability to better 

identify objects at night or under darker lighting conditions. These images contain more than the 

red, green, and blue color scale that visible images are known for, and they offer a substantial 

amount of clarity when objects are present. For example, in an infrared image it may be easier to 

differentiate between a pedestrian and a light pole at night compared to a visible image. Even 

objects that are harder to see in a distance can be more refined in an infrared image than a visible 
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image. But doess an infrared image alone 

represent the best approach for detecting 

pedestrians? An infrared image taken 

with the camera I used for my senior 

project is displayed to the left. It is 

apparent to a human observer that 

pedestrians are present in the image. This 

exact image was also taken in the original visible frame most of us are used to. The image was 

taken on the quad on campus at Cal Poly. 

Blended Images vs. Infrared Images 

 Although infrared images seem to do an adequate job of detecting pedestrians, blended 

images display some similarities to infrared images with some added benefits. Blended images 

have yet to be investigated when dealing with pedestrian detection, and this is why I felt it would 

be useful. Image blending can be described as taking two identical frames and merging the pixels 

from each into one frame. The blended image we used for this project was combining the 

infrared band with the red, green, and blue visible bands. This combination makes it possible to 

unite the perks of an infrared image with a visible image, since infrared images may lack some 

capabilities that a visible image contains. With the blended image we obtained from the quad 

area it was physically visual that particular areas or objects were better captured than from a 

single band by itself. The blended images appeared to obtain sections of the frame that can be 

called “hot spots”. “Hot spots” could be considered areas that illuminate higher temperatures. 

Sections of the blended image where a pedestrian was present seemed to be warmer than objects 

such as buildings, trees, structures, etc., at least in the scene of the Quad at Cal Poly.  As stated 

Image 1: Infrared Frame 
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previously, infrared images are quite often used at night where visible images have certain 

advantages during the day or under lighter lighting conditions. This being the case, the blended 

should create an increase in the probability of detecting a pedestrian under any lighting 

condition. The blending of the two frames taken out by the quad can be shown below:  

   

 

Procedure 

 The procedure used to blend the images was done using the Mathematical Software 

MATLAB R2012a. Using MATLAB allowed for determination of pixel locations where objects 

are identifiable in both frames, infrared and visible.  The blending procedure is outlined in the 

flowchart below.   

Infrared Frame 

Visible (RGB) Frame 

Blended IR+Visible Frame 
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Once the images were blended the research on determining how to detect pedestrians on a single 

frame was conducted. One article in particular that I found, nicely displayed the procedures to 

perform to automatically detect pedestrians in a single frame. My goal then became to implement 

their methods starting with 2 bands, Infrared band and the Red visible band from the Visible 

(RGB) frame. This process was also done using MATLAB. Once detecting a pedestrian using 
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the techniques from the reference with the blended image was accomplished, I researched 

different probabilities that would be appropriate to apply to this situation. 

Pedestrian Detection Algorithm 

 The main reference used for my project was from Nanda and Davis’, “Probabilistic 

Template Based Pedestrian Detection in Infrared Videos”. First, I started by employing the 

methods in which they use to actually determine if a pedestrian in present in an Infrared frame to 

my blended image. In collaboration with Gary Hughes, my senior project advisor, we began by 

masking the blended image. Masking can be described as blacking out exterior objects and 

environment that is not a pedestrian. Then, highlighting the formation of all pedestrians in white 

will create a masked image. Statistics such as the mean and standard deviation was calculated for 

the pedestrian areas (white) and then for the background or non-pedestrians (black). These values 

were used to find a threshold, the threshold according to Nanda and Davis can be explained by 

the following equation: 

           
    

       
   

  

  
 + 

           

       
 

 

Applying this threshold at each pixel, it is possible to determine whether there is a pedestrian 

present at that location or not. If the raw masked image at a certain pixel is greater than the 

threshold at that pixel, then that corresponds to a pedestrian. If the raw masked image at a certain 

pixel is less than or equal to the threshold value at that pixel, it corresponds to a non-pedestrian. 

To determine whether the detection was correct or incorrect, Nanda and Davis used this 

combined probability equation: 

Combined Probability(i, j) = Σ (th(x, y)∗p(x, y)+(1−th(x, y))∗(1−p(x, y))) 
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As shown in the equation, the pixel(i, j) calculates the probability of a correct detection if the 

pedestrian is actually present.  

Probabilistic Template 

To find the total area of a pedestrian they a probabilistic template as such was used: 

 

Looking at the template, it is apparent the shape resembles a blurred pedestrian. This template 

was shifted around on the frame and placed on top of each pixel in the image to establish the 

probability that the pattern is centered on a pedestrian. The combined probability was then 

calculated at each pixel placement of the probabilistic template.  

Bayes’ Theorem: Special Case 

Since the question I was trying to answer dealt with finding an increase in probability, 

probability methods were researched to see which would best relate to the situation of using a 

blended image. It was found that the process Nanda and Davis used above in the Infrared Frame 

could be classified as a special case of Bayes’ Theorem. In a single frame, detecting a pedestrian 

and not detecting a pedestrian in the image can be considered mutually exclusive and exhaustive 

events. If A is considered the event that a pedestrian is detected, then the compliment of event A 

is the event that a pedestrian is not detected. To verify whether the pedestrian was present, given 
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that the pedestrian was detected could then be found by the conditional probability using based 

theorem. The conditional probability is calculated as such: 

 

Certain portions of this equation are formulas for finding the intersection of the probability of 

detecting a pedestrian and the pedestrian is present and the intersection of the probability of 

detecting a pedestrian and the pedestrian is not present.  

Pedestrian Detection in an IR Band 

Applying this special case of Bayes’ Theorem to our infrared band, the events were defined as: 

A= Pedestrian detected at pixel(x, y), A
c
= Pedestrian not detected at pixel(x, y), B= Pedestrian 

present at (x, y). Using these events, the intersection of events explained previously can be 

found. Where the intersection of events A and B were considered a Correct Detection rate, the 

intersection of events A
c
 and B

c
 is the Correct Non-Detection, the intersection of A and B

c
 is 

type I error, and finally the intersection of A
c
 and B is type II error. Transmitting this into the 

conditional probability using the intersections of events we can find the probability of a 

pedestrian being present given that a pedestrian was detected. This conditional probability is: 

 

 

 

 



10 
 

Pedestrian Detection in Two-Bands 

The special case of Bayes’ Theorem demonstrated above allows for the probability to be found 

in the situation with a single band, yet it does not directly apply to any more than one band. 

Although, conditional probabilities and elements of Bayes’ theorem can be used in the two-band 

case. Instead, a different probability model for pedestrian detection using two-bands can be 

formed. The events would be defined as: AIR= Pedestrian detected in IR frame at pixel(x, y), AR= 

Pedestrian detected in R frame at pixel(x, y), and B= Pedestrian present at pixel(x, y). And 

therefore the probability for a 2 band detections is: 

 

The elements of this two-band probability model are conditional probabilities such as those using 

Bayes’ Theorem. These elements can be used to find a point estimate for a two-band detection.  

Odds Ratio for Two-Band Detection 

In addition to being able to find the probability of correctly detecting a pedestrian using the 

union of the two conditional probabilities for a two-band detection, a benefit of adding another 

band is can be found by the Odds Ratio: 

 

It is known as well, that the distribution of the Log Odds Ratio is approximately normal and 

therefore sample proportions were able to be assessed from experiments. The sample portions 

would be of the form shown in this table: 
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Using the proportions for each situation we would use them to calculate the sample Log Odds 

Ratio. The sample Log Odds Ratio and its corresponding Standard Error would be the following: 

                                

Where the value of, n, in the denominators of the equation for standard error is found by dividing 

the sample proportions by the total number of pixels in the frame(N).  

Inference for the Odds Ratio 

Another component that can be formulated using this Odds Ratio is a 95% Confidence Interval 

of the Odds Ratio. To find the Odds Ratio and its 95% confidence interval, estimates from our 

Nanda and Davis reference were used to calculate the sample proportions found in the table 

above. The sample proportions for each case were calculated using a truth table. Placing the 

appropriate probabilities as given in the article into the outcome from each truth table, we were 

able to find approximations for the sample proportions to use in our formula for the 95% 

confidence interval of the Odds Ratio. The Odds Ratio cell estimates that we used were: 

 (     )  (    )  [(     )  (    )] 

(     ) 
  

 (     ) 
  

�̂�𝑛(1,1) �̂�𝑛(1,0) 

�̂�𝑛(0,1) �̂�𝑛(0,0) 
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 (     )  (    )  [(     )  (    )] 

(     ) .95 .8 

 (     ) .05-1.5 .05-1.5 

 

The cases .95 and .8 were those found directly from the articles probabilities. The range of 

numbers from 0.5 to 1.5 are anticipated values we expect to see for this situation. These 

anticipated values allowed for us to see how much higher the odds of detecting a  pedestrian 

using a blended image compared to an infrared image would be at the worst case scenario and 

then at the best case scenario. These estimates and anticipated values were plugged into the (1-

α)100% Z-Confidence Interval for the Odds Ratio: 

 

Summary Findings 

Finally, I used Excel to calculate the Log Odds Ratio and 95% Confidence Interval of the Odds 

Ratio by entering in the estimates and anticipated values of our sample proportions. These results 

were found for anticipated values of .25 and a total frame size(N) of 1000 pixels: 

  

Therefore, the 95% confidence interval for the Odds Ratio is 9.96 to 14.84. 

with a standard error of 
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Conclusion 

Ultimately, using the estimates from the article and anticipated values we would expect to see for 

such a situation it was found that the odds of detecting a pedestrian using two-band is higher than 

the odds of detecting a pedestrian using a single band. As well as, we can say we are 95% 

confidence, that the benefit is at least a 10 times higher detection rate for two-bands compared to 

one. Overall, the answer in regards to my research question, “Do blended images increase the 

probability of detecting a pedestrian compared to infrared images alone?”, is yes we do see an 

increase in this probability.  

In the future, I would like to implement these techniques in more than 2-bands to see if there is 

even more of a substantial increase in the odds or probability. If the odds were already 10 times 

higher with just the infrared frame blended with the Red frame, I would hope to see that increase 

per additional band. 
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Appendix 

References: 

Nanda and Davis.“Probabilistic Template Based Pedestrian Detection in Infrared Videos”, 2002. 

Pg. 1-11. 

MATLAB Code: 

Image Blending Preparation 

function img_agc = agc (img, n_rows, n_cols) 

  
    % perform Plateau AGC on unsigned 14-bit image 
    max_bit = 2^14; 
    hist_bins = zeros (max_bit, 1); 
    img_agc = uint8 (zeros (n_rows, n_cols)); 

     
    % set up the histogram bins, one for each 16-bit grayscale level 
    for i_bin = 1:max_bit 
        hist_bins(i_bin) = i_bin - 1; 
    end 

  
    % matlab calculates the image histogram 
    img_hist = histc (img(:), hist_bins); 

     
    % for Plateau Equalization, clip the bins to some plateau level 
    img_hist(img_hist > 150) = 150; 

    
    % calculate the cumulative frequency histogram from the clipped 
    % histogram 
    cum_hist = cumsum (img_hist); 

     
    % scale the cumulative frequency histogram to 8-bit grayscale 
    cum_hist = uint8 (255 * cum_hist / cum_hist(max_bit)); 

  
    % use the scaled cumulative frequency histogram as an intensity 
    % transform table to map the original 16-bit data to 8-bit level 
    for i_row = 1:n_rows 
        for j_col = 1:n_cols 
            img_agc(i_row,j_col) = cum_hist(img(i_row,j_col) + 1); 
        end 
    end 

     
return 

 

Blend Visible LWIR 

% read list of equivalent points in the two image frames.  the list of 
% points is generated by examining multiple frames of different scenes, and 
% determining the pixel locations of objects that are identifiable in both 
% image frames. 
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% stored in the Excel file as: 
%    vis_x(1)  vis_y(1)  lwir_x(1) lwir_y(1) 
%    vis_x(2)  vis_y(2)  lwir_x(2) lwir_y(2) 
%    ... 
%    vis_x(n)  vis_y(n)  lwir_x(n) lwir_y(n) 
vis_x = xlsread ('ImageRegistration.xlsx', 'A3:A10'); 
vis_y = xlsread ('ImageRegistration.xlsx', 'B3:B10'); 
lwir_x = xlsread ('ImageRegistration.xlsx', 'C3:C10'); 
lwir_y = xlsread ('ImageRegistration.xlsx', 'D3:D10'); 

  
% the list of equivalent points is used to determine a transformation for 
% any pixel in the LWIR frame to its equivalent location in the Visible 
% frame.  The transformation is: 
%    vis_x = a*lwir_x + b*lwir_y + c 
%    vis_y = d*lwir_x + e*lwir_y + f 
% the coefficients a, b, c, d, e and f are determined by finding the 
% best-fit solution to two linear systems, using the list of equivalent 
% points.  The linear systems are: 
%    [lwir_x lwir_y 1]*[a b c] = vis_x 
%    [lwir_x lwir_y 1]*[d e f] = vis_y 
% store the coefficients in leading matrix A 
n = length (vis_x); 
A = ones ([n 3]); 
A(:,1) = lwir_x; 
A(:,2 )= lwir_y; 

  
% the Matlab \ operator automatically determines the best-fit solution to 
% the overdetermined system by least squares.  The coefficients in abc and 
% def will provide the best-fit affine transformation, based on the list of 
% equivalent points. 
abc = A\vis_x; 
def = A\vis_y; 

  
% read in the raw image data. for this example, the data are contained in 
% video recordings, and only the 20th frame is read in from each file.  the 
% cameras used external synchronization so that each frame is taken at the 
% same instant in time. 

  
% ir frame from a binary file 
nIRrows = 512; 
nIRcols = 644; 
% visframe 23 = irframe 1 
% visframe 920 = irframe 250 
irframe = getVideoFrame ('irframe.tif',1); 

  
% visible frame from a bitmap file 
 visframe = getVideoFrame ('visframe.tif',1); 

  
% retrieve the visible image dimensions from the data array 
[nVISrows nVIScols rgb] = size (visframe); 

  
% upsample the LWIR image to the desired resolution 
% first, create a baseline reference frame where integer intersections  
% represent the locations of pixels (pixel centers?) in the LWIR frame 
[lwirbase_x lwirbase_y] = meshgrid (1:nIRcols, 1:nIRrows); 
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% to upsample, create a resampling grid within the LWIR reference frame at 
% the desired resolution.  In this case, the desired resolution is the 
% native visible frame resolution 
desiredres_rows = nVISrows; 
desiredres_cols = nVIScols; 

  
% the upsample increment in the LWIR reference frame is the ratio of the 
% native LWIR resolution and the desired (upsample) resolution 
xIncr = nIRcols/(desiredres_cols + 1); 
yIncr = nIRrows/(desiredres_rows + 1); 
[lwirres_x lwirres_y] = meshgrid (1:xIncr:nIRcols, 1:yIncr:nIRrows); 

  
% use Matlab's interp2 function to upsample the LWIR image, using the 
% LWIR reference grid and the desired resample grid 
irframeres = uint16 (interp2 (lwirbase_x, lwirbase_y, double (irframe), ... 
                              lwirres_x, lwirres_y, 'bicubic')); 

  
% the resampled image is still 14-bit, so apply AGC to convert to 8-bit 
% grayscale.  this step is required to view the image on an 8-bit display, 
% and it is also required for the blending operation (later) 
irframeresagc = agc (irframeres, desiredres_rows, desiredres_cols); 
figure,imagesc (irframeresagc) 
axis off 
axis equal 
colormap('gray') 

  
% the LWIR image has some 'footprint' in the visible image.  need to 
% 'extract' that portion of the visible image that lies within the LWIR 
% footprint.  the approach here is to re-sample the visible image over a 
% grid in the visible frame where each (upsampled) LWIR pixel lies. 

  
% create a baseline reference frame where integer intersections represent 
% the locations of pixels (pixel centers?) in the visible frame 
[visbase_x visbase_y] = meshgrid (1:nVIScols, 1:nVISrows); 

  
% create a grid that will store the locations in the visible reference  
% frame where pixels in the (up-sampled) LWIR image lie.  start with an 
% empty array, that is the size of the up-sampled LWIR image, and then 
% fill it up pixel-by-pixel, using the [a b c] and [d e f] transformations 
visres_x = zeros (desiredres_rows, desiredres_cols); 
visres_y = visres_x; 

  
% each point (lwirres_x, lwirres_y) in the up-sampled LWIR image 
% corresponds to a location in the visible image, here called (visres_x, 
% visres_y).  The point corresponding to (lwirres_x, lwirres_y) in the 
% visible reference frame can be found using the [a b c] and [d e f] 
% transformations. 
for jCol = 1:desiredres_cols 
    for iRow = 1:desiredres_rows 
        if ((jCol == desiredres_cols) && (iRow == desiredres_rows)) 
            dog=1; 
        end 
        visres_x(iRow,jCol) = abc(1)*lwirres_x(iRow, jCol) + ... 
                              abc(2)*lwirres_y(iRow, jCol) + abc(3); 
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        visres_y(iRow,jCol) = def(1)*lwirres_x(iRow, jCol) + ... 
                              def(2)*lwirres_y(iRow, jCol) + def(3); 
    end 
end 

  
% resample the visible image on the new grid.  the visible image has three 
% components, and each component is resampled independently 
visframeres = zeros (desiredres_rows, desiredres_cols, 3, 'uint8'); 
visframeres(:,:,1) = uint8 (interp2 (visbase_x, visbase_y, ... 
    double (visframe(:,:,1)), visres_x, visres_y, 'bicubic')); 
visframeres(:,:,2) = uint8 (interp2 (visbase_x, visbase_y, ... 
    double (visframe(:,:,2)), visres_x, visres_y, 'bicubic')); 
visframeres(:,:,3) = uint8 (interp2 (visbase_x, visbase_y, ... 
    double (visframe(:,:,3)), visres_x, visres_y, 'bicubic')); 

  
% display the resampled portion of the visible image. 
figure,image (visframeres) 
axis off 
axis equal 
colormap('default'); 

  
% blending is accomplished by converting the RGB image to YUV format,  
% calculating a weighted average of the Y and LWIR frames, then 
% re-converting the blendedY+UV back into RGB format. 
visprop = 0.1; 
irprop = 1 - visprop; 
[Y,U,V]=rgb2yuv(visframeres(:,:,1),visframeres(:,:,2),visframeres(:,:,3)); 
blended = uint8 (visprop*double(Y) + irprop*double(irframeresagc)); 
rgb_blended = yuv2rgb (blended,U,V,'YUV444_8'); 

  
% display the blended image (in color) 
figure,image (rgb_blended) 
axis off 
axis equal 

  
imwrite(rgb_blended,'rgb_blended.jpg','jpg') 
imwrite(visframeres,'visframeres.jpg','jpg') 
imwrite(irframeresagc,'irframeresagc.jpg','jpg') 

 

Get Video Frame 

%Reads avi, tif, FFF/SEQ and sfmov 
function frame = getVideoFrame(videoFileName, frameNr) 

  
%Get file type from video file name 
fileType = videoFileName(end-3:end); 

  
%************************************************************************* 
%.avi files 
%************************************************************************* 
if  strcmpi(fileType, '.avi') 
    mov = aviread(videoFileName, frameNr); 
    [frame, trash] = frame2im(mov); 
%     if ndims(frame>2) 
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%         img = rgb2gray(frame); %Assumes true color 
%     end 

     
%************************************************************************* 
%.seq files in FFF-format 
%************************************************************************* 
elseif strcmpi(fileType, '.seq') 
    [num, text, frame, nrOfFrames] = readfff(videoFileName, frameNr); 

     
%************************************************************************* 
%.tif files 
%************************************************************************* 
elseif (strcmpi(fileType, '.tif') || strcmpi(fileType, 'tiff')) 
    [frame, trash] = imread(videoFileName, frameNr); 

     
%************************************************************************* 
%.sfmov files 
%************************************************************************* 
elseif strcmpi(fileType, 'fmov') || strcmpi(fileType, 'bmov') 
    %Find image size 
    fid = fopen(videoFileName); 
    while(true) 
        line = fgetl(fid); 
        if (line == -1) 
            break; 
        end 
        ind = strfind(line, 'XPIXLS'); 
        if isempty(ind) 
            ind = strfind(line, 'xPixls'); 
        end 
        if ~isempty(ind) 
            [tmp sizew] = strread(line, '%s %d'); 
            line = fgetl(fid); %YPIXLS will be in the next line 
            [tmp sizeh] = strread(line, '%s %d'); 
            break; 
        end 
    end 
    fclose(fid); 
    %Find start of image data 
    fid = fopen(videoFileName); 
    while(true) 
        line = fgetl(fid); 
        if (line == -1) 
            break; 
        end 
        ind = strfind(line, 'DATA'); 
        if ~isempty(ind) 
            break 
        end 
    end 
    status = fseek(fid, (frameNr-1)*(sizeh*sizew)*2, 'cof'); 
    frame = fread(fid, [sizew sizeh], 'uint16')'; 
    fclose(fid); 
%************************************************************************* 
%Raw format 
%************************************************************************* 
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elseif strcmpi(fileType, '.raw') || strcmpi(fileType, '.bin') 
    [frame, time] = readRaw(videoFileName, frameNr); 

     
%************************************************************************* 
%FTS format 
%************************************************************************* 
elseif strcmpi(fileType, '.fts') 
    frame = ftsread2(videoFileName, frameNr); 

     

     
%************************************************************************* 
%unknown file format 
%*************************************************************************     
else 
    error('Unknown file format') 
end 

 

Convert to an RGB 

function rgb=yuv2rgb(Y,U,V,yuvformat,convmtrx) 
%Converts YUV to RGB 
%rgb=yuv2rgb(Y,U,V,yuvformat) 
%Version: 4.00, Date: 2007/11/18, author: Nikola Sprljan 
% 
%Input: 
% Y,U,V - Y,U and V components of the frame 
% yuvformat - YUV format [optional, default = 'YUV420_8']. See in rgb2yuv.m 
%             for supported YUV subsampling formats.  
% convmtrx - Conversion matrix [optional, default = 'BT709_l']. The  
%            following conversions ase defined. See in rgb2yuv.m 
%             for more details. 
% 
%Output: 
% rgb - RGB 3D matrix. rgb(:,:,1), rgb(:,:,2) and rgb(:,:,3) are R, G and 
%       B components, respectively. 
% 
%Uses: 
% imresize.m - Matlab Image Processing Toolbox 
% 
%Note: 
% When the input format has the chroma subsampled (e.g. 4:2:0 format),  
% upsampling is employed on the chroma components before the conversion  
% takes place.  
% See in the help of rgb2yuv.m for details on coversion options. 
% 
% ITU-R BT.601, RGB full range, results in the following transform matrix: 
%  1.164   0.000   1.596 
%  1.164  -0.392  -0.813 
%  1.164   2.017   0.000 
% ITU-R BT.601, RGB limited range, results in the following transform matrix: 
%  1.000   0.000   1.402 
%  1.000  -0.344  -0.714 
%  1.000   1.772   0.000 
% ITU-R BT.709, RGB limited range, results in the following transform matrix: 
%  1.000   0.000   1.570 
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%  1.000  -0.187  -0.467 
%  1.000   1.856   0.000 
%   
%Example: 
% rgb = yuv2rgb(Y,U,V); 

  
if (nargin < 4) 
    yuvformat = 'YUV420_8'; 
end; 
if (nargin < 5) 
    convmtrx = 'BT709_l'; 
end; 

  
if strcmp(convmtrx,'BT601_f') 
   load('BT601_f.mat','-mat'); 
elseif strcmp(convmtrx,'BT601_l') 
   load('BT601_l.mat','-mat'); 
elseif strcmp(convmtrx,'BT601_219') 
   load('BT601_219.mat','-mat'); 
elseif strcmp(convmtrx,'BT709_f') 
   load('BT709_f.mat','-mat'); 
elseif strcmp(convmtrx,'BT709_l') 
   load('BT709_l.mat','-mat'); 
end; 

  
%create the 3D YUV array 
yuv = zeros(size(Y,1),size(Y,2),3); 
if (strcmp(yuvformat,'YUV420_8')) 
    yuv(:,:,1) = double(Y); 
    yuv(:,:,2) = imresize(double(U),2,'bicubic'); 
    yuv(:,:,3) = imresize(double(V),2,'bicubic'); 
elseif (strcmp(yuvformat,'YUV444_8')) 
    yuv(:,:,1) = double(Y); 
    yuv(:,:,2) = double(U); 
    yuv(:,:,3) = double(V); 
end; 

  
%inversion of the transform matrix 
T = inv(rgb2yuvT); 
rgb = zeros(size(Y,1),size(Y,2),3); 
if (yuvoffset(1) ~= 0) 
  yuv(:,:,1) = yuv(:,:,1) - yuvoffset(1); 
end; 
if (yuvoffset(2) ~= 0) 
  yuv(:,:,2) = yuv(:,:,2) - yuvoffset(2); 
end; 
if (yuvoffset(3) ~= 0) 
  yuv(:,:,3) = yuv(:,:,3) - yuvoffset(3); 
end; 
rgb(:,:,1) = T(1,1) * yuv(:,:,1) + T(1,2) * yuv(:,:,2) + T(1,3) * yuv(:,:,3); 
rgb(:,:,2) = T(2,1) * yuv(:,:,1) + T(2,2) * yuv(:,:,2) + T(2,3) * yuv(:,:,3); 
rgb(:,:,3) = T(3,1) * yuv(:,:,1) + T(3,2) * yuv(:,:,2) + T(3,3) * yuv(:,:,3); 
rgb = uint8(round(rgb)); 

 

Implementing Probabilistic Template 



21 
 

% read in infrared image and mask 
lwir_image=imread ('lwirframe01.bmp'); 
lwir_image=lwir_image(:,:,1); 
imagesc(lwir_image) 
colormap(gray) 

  
% read in the mask 
mask=imread ('lwirframe01_mask.bmp'); 
mask=mask(:,:,1); 

  
%see if the mask works 
pedestrians=lwir_image.*mask; 
figure,imagesc(pedestrians) 
colormap(gray) 

  
% calculate statistics for pedestrians, background 
ped_list=double(lwir_image(mask==1)); 
mean_ped=mean(ped_list); 
stdev_ped=std(ped_list); 

  
back_list=double(lwir_image(mask==0)); 
stdev_back=std(back_list); 
mean_back=mean(back_list); 

  
% get probability template 
prob_template=imread('prob_template.bmp'); 
prob_template=double(prob_template(:,:,1)); 
prob_template=prob_template/255; 

 


