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Introduction 
A Santa Barbara county engineering firm proposed a collaboration with the Cal Poly Statistics 

Department to investigate the sources of variability in a certain measurement process, understand 

normal operability characteristics of the machine, reduce variability in machine measurements, establish 

process monitoring and control for the system, and verify utility of the proposed process control 

through designed experimentation. The proposed process control will be reviewed for potential 

integration into the operating specification system, and the two students (one statistics, and one 

materials engineering major) involved in the project have a unique opportunity to gain valuable 

experience applying their statistical and engineering knowledge towards a real world problem prior to 

graduation. This project is on-going and may be available for future Cal Poly student involvement, as 

further experimentation is necessary to devise, implement, and verify statistical process control 

measures. Participation in such a collaboration requires complete discretion from all Cal Poly 

contributing members, as all involved parties are under nondisclosure agreements. Proprietary 

information may not be revealed or released to anyone not directly involved in the project. 

Background 
All measurement systems have intrinsic variability. Measurement variability is often characterized into 

two different sources: 

1. Repeatability, also called precision variability or equipment variability, is a measure of dispersion 

of measurement results when all measurements are made under the same conditions (e.g., 

same appraiser, same equipment, same production environment, same time period). 

2. Reproducibility is a measure of dispersion of measurement results when the measurement 

conditions change (e.g., different appraisers, different machines, or different measurement 

conditions). 

The measurement process studied was found to have both reproducibility and repeatability variability in 

all three measurement outcomes (coded y1, y2, and y3). Three years’ worth of testing data have been 

meticulously recorded by the engineering firm for all tests conducted on a single material type 

manufactured by one vendor, and variance component analysis on data collected on that specimen type 

indicate large portions of observed variability are due to day-to-day effects and test-to-test effects 

nested within day. Further analysis into the historical data shows that trends exist in each of the three 

measurements. Measurements on y1 (Figure 1) and y2 (Figure 2) are regularly overestimated compared 

to the vendor claims (horizontal line), and measurements on y3 (Figure 3) are regularly underestimated 

compared to vendor claims. In addition, there are mean shifts in measurement readings from the first 

specimen measured to the second specimen measured, and so on. Therefore, measurement readings do 

not appear to be independent of one another. 
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Figure 1 – Mean and range plot illustrating positive bias of y1 measurements compared to vendor claims 

 

Figure 2 – Mean and range plot illustrating positive bias of y2 measurements compared to vendor claims 
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Figure 3 – Mean and range plot illustrating negative bias of y3 measurements compared to vendor claims 

Experimentation 
There are known sources of variability attributable to these erratic measurements; however, no studies 

have been conducted to empirically quantify the effects of these sources of variability on the 

measurement outcomes. The factors chosen to be investigated in this experiment are designed to 

address how controllable parameters influence measurement outcomes.  

Experimental Design 
The approved experimental design investigated three factors: 

1. Sample holder type 

2. Rest time 

3. Air flow rate into the machine / air pressure 

Sample holder type is a binary categorical variable; rest time is the duration of machine inactivity 

between sample tests; and air flow rate is set by an air pressure gradient across a flowmeter. Two levels 

of holder type (A and B), five levels of rest time, and five levels of air flow would be tested. Coded levels 

of these two quantitative factors are shown below in Figure 4. 

Rest Time -√2 = -1.414 -1 0 1 √2 = 1.414 

Pressure -√2 = -1.414 -1 0 1 √2 = 1.414 

Figure 4 – Coded experimental factors and levels. 
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A central composite design (CCD) is an efficient design that can effectively and confidently predict 

measurement outcomes at most rest time and pressure combinations within the design space (Figure 5). 

From the data collected in a CCD, heat release measurements can be predicted using two quantitative 

variables in a regression-like fashion using response surface methodology. Every quantitative treatment 

combination that is incorporated into a central composite design is run one time except for the (0,0) 

treatment combination (the center runs). Apart from the number of center runs, this is an unreplicated 

design. By replicating the center run treatment combination, internal estimates of error can be 

estimated for the model. The number of center runs that should be conducted in an experiment will be 

discussed later.  

There are three kinds of design points used in a central composite design: 1) the center runs; 2) factorial 

runs; and 3) axial runs. The factorial points are made up of the (±1, ±1) treatment combinations. When 

only factorial runs are conducted, only linear effects and interaction terms can be estimated. With the 

addition of center runs, curvature can be estimated in the response surface model. With the addition of 

axial points, the points coded 0 for one factor and ± √2 in the other factor, second order models can be 

constructed (Figure 6). The magnitude and sign of these second order coefficients determine the shape 

of the predicted response surface (Figure 7). 

 

Central composite designs have several desirable properties, including rotatability, sphericity, and 

stability. When a design is rotatable, the variance of the predicted values, or the prediction variance, 

depends only on a treatment combination’s distance away from the center of the design space in a 

given experiment. The prediction variance at any treatment combination is the product of the MSE and 

the treatment combination’s leverage value (Figure 8). Therefore, all treatment combinations that are 

the same distance away from the center have the same prediction variance (Figure 9). To achieve 

rotatability, the axial distance should be √k = √2, where k=2 factors for this CCD. Since this design region 

is spherical (the distance from each of the experimental factor combinations from the center are the 

 

Figure 5 – CCD experimental design space 
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same, √2), there is low prediction variance within that spherical region. To make these prediction 

variances stable throughout the entire design region, an appropriate number of center runs, should be 

conducted. When there are too few center runs (e.g., 2 center runs), the prediction variance is not 

uniform throughout the design region, but when there are a sufficient number of center runs (e.g., 4 

center runs), there is fairly uniform prediction variance (Figure 10). 

To accommodate a categorical binary variable (e.g., holder type), a central composite design is run for 

each holder type, so that two different response surfaces are fit for each of the three measurement 

outcomes. 

 

Figure 6 – A second order model 

 

 

Figure 7 – Second order response surface shapes (Walker) 

 

 

 

Figure 8 – The prediction variance formula 

(Walker) 
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Figure 10 – Prediction variance as a function of the number of center runs (Walker) 

 

Data Collection 
It was also discovered on the day of data collection, 25 April 2013, that the measurement apparatus was 

not capable of running the two higher levels of air pressure. Unfortunately, testing had already begun 

when this limitation was discovered. A CCD could not be run, since the factor-levels used are chosen 

precisely in order to obtain the design properties listed in the previous section. Data were collected 

using new pressure – rest time treatment combinations chosen on site (Figure 11). 

 

Figure 9 – Scaled variance contour plot for k=2 

CCD, α = √2, nc = 5 (Myers) 
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Figure 11 – The altered design space 

Results 
The amount of variability in the sample holder level A data is lower that the sample holder level B data, 

and statistically significant response surface models were constructed for y1 (Figure 12) and y2 (Figure 

13) when using sample holders at level A. The y1 model is a second order model, with significant 

quadratic effects on both rest time and pressure and a significant interaction effect. The y2 model was a 

first order model, where only pressure has a significant linear effect. No significant results were found 

for the y3 measurement, or with any measurement outcomes using level B samples holders. 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Second order response surface for 

y1, using sample holders at level A 

 

Figure 13 – First order response surface for y2, 

using sample holders at level B 
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Recommendations 
Based on these response surface models, the Cal Poly team made the following recommendations to the 

engineering firm: 1) use the identified factor-level settings that would optimize y1 and y2 measurements 

to match vendor supplied data; and 2) use sample holders A to reduce measurement variability in y1 

and y2 measurements. Implementing these recommendations will decrease variability and diminish 

biases in measurement outcomes. 

Further Study 
Additional experimentation needs to be conducted to observe day-to-day variability in measurement 

outcomes. Exploring higher levels of air pressure would also be warranted, since the machine was not 

capable of running high air pressure levels at the time of experimentation. 
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