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ABSTRACT 

Thinning of forested lands and timber stands in the Pacific Northwest have taken place 

for centuries with a limited understanding of how the alterations may affect ecosystem functions. 

The goal of this study was to examine the soil climate and microbial activity on a seasonal 

timescale of thinning practices examined at different stages of succession. Two timber stands in 

Southwestern Oregon within the Grayback Creek Watershed had identical forest management 

techniques separated by a 10-year treatment interval (40% variable density thinning). Field 

methods and equipment measured canopy coverage, soil moisture and temperature at 3 depths (5, 

15, 30 cm), as well as snow and precipitation events. Laboratory analysis included particle size 

analysis (PSA), determination of total %C and %N, and CO2 respiration. The least diurnal flux 

occurred at the deepest (30cm) and the greatest temperature flux near the surface (5cm). The 

covered stand showed a smaller magnitude of diurnal flux compared to the thinned stand (±3°C 

and ±7°C respectively). The thinned stand had twice as much (10.8%) water by volume at the 

5cm level compared to the covered stand (5.2%). The thinned stand reached 40% water content 

(θs) throughout the profile after the first snowmelt, the covered stand rarely approached that level 

at any depth and time. CO2 respiration, total carbon, and total nitrogen were significantly less on 

the thinned site compared to the covered site (12 v 45 ppm CO2 at the surface, 2 v 5% carbon, 7 

v 20% total nitrogen respectively). The lack of vegetation density (therefore decreased 

transpiration demands) on the thinned site may account for the differences between (1) water 

content differences at the peak of the dry season, (2) differences in the magnitude of diurnal flux, 

(3) and amount of precipitation required to reach θs. The CO2 respiration differences can be 

attributed to the covered understory vegetation significantly adding more organic matter for 

microbe decomposition compared to the relatively bare ground on the thinned stand.  
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INTRODUCTION 

 In the course of human history, we have modified or completely changed the land use in 

forested areas with limited understanding of how alterations may affect ecosystem functions 

(Tanaka and Hashimoto, 2006). Especially in the Pacific Northwest (PNW), water required for 

agriculture, human consumption, and timber products for infrastructure development are derived 

from forested ecosystems. Thus, it is imperative that land managers understand how forest 

operations affect hydrologic functions of forested ecosystems and how these changes may affect 

the microbial communities providing nutrients for fiber growth. The dichotomy between 

potential wood production and ecological values in forest settings over multiple centuries are 

inadequate (Busing and Garman, 2002). Silviculture regimes, including length of rotation and 

type of prescription, can achieve a wealth of short-term objectives. However, great difficulty has 

risen in promoting old-growth characteristics such as species diversity and vertical canopy 

heterogeneity (Hale et al., 1999; Busing and Garman, 2002). Forest management is difficult 

because the life cycle of trees surpass that of any human; but an understanding of water transport 

and soil climate (defined in this paper as soil temperature and soil water content) can provide a 

deeper understanding of ecosystem functions and stand development (Warren et al., 2005). 

Understanding how soil climate differs after stand manipulation is crucial for the health and 

sustainability of our national forests. 

 Water stresses from droughts are a significant factor for seedling regeneration and 

anthropogenic climate change may exacerbate this issue in the future (Livingston and Black, 

1987; Mote et al., 2003). Especially when trees are young and lack a prominent taproot, the soil 

water content in the upper horizons greatly influences seedling survival. The establishment of 

coniferous seedlings is greatest in the largest gap sizes and least in areas of dense canopies due to 
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differences in sunlight and possibly competition for water (Grey and Spies, 1996). Hydraulic 

redistribution by older conifers is an important mechanism to provide water near the surface 

during the summer months; but the amount of water is very difficult to quantify over seasonal 

timescales (Brooks et al. 2002). Understanding seasonal variation in soil climate and responses 

to precipitation events following the dry season in managed stands can provide a comprehensive 

foundation for management actions.  

 Seasonal variations in soil climate are expected and management prescriptions often 

create canopy gaps promoting understory and sub-surface heterogeneity (Grey et al., 2002). The 

establishment of understory vegetation is a factor of litter depth, soil moisture, and amount of 

light intercepted at the surface undoubtedly influenced by the extent of canopy coverage (North 

et al., 2005). Gap sizes in forests influence the quantity of sunlight reaching the forest floor, and 

significantly affect the magnitude of soil temperature flux. Clear cutting has been shown to 

increase mean annual surface soil temperatures up to 3.2°C there by significantly affecting 

biological activity in the upper soil horizons (Hashimoto and Suzuki, 2003). Conifer seedling 

growth is greatest between 18-20°C and root elongation is stunted at temperatures below 8°C 

(Anderson et al., 1986). Microbial biomass, like understory vegetation, is function of the type 

and quantity of substrates available as well as the soil climate dictated by the quantity heat and 

water present in the soil (Skopp et al., 1990).  

 Soil temperature greatly affects microbial biomass, as measured by CO2 respiration. 

Many researchers have found increasing temperatures are directly correlated to increases in 

microbial respiration (Pietikainen, 2005; Paul and Clark, 1996; Lloyd and Taylor, 1994; Chen et 

al., 2000). Carbon dioxide (CO2) is a molecule that provides chemical energy to vegetation and is 

a product from microbial respiration. The importance of CO2 in the decomposition cycle and the 
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ease that it can be detected, provide an ideal compound to quantify microbial biomass (Haney et 

al., 2008). Singh and Gupta (1977) found greater microbial biomass, measured by CO2 

respiration, is related to a greater degree of decomposition.  

Litter quality carries a direct effect on the rate of decomposition. Higher quality 

components, which are considered labile, will break down first. Decomposition rates will 

increase, but the rate of decomposition will decrease over time due to the remnants of recalcitrant 

substances (Kuers and Simmons, 2005). The labile substances, with low molecular weight, are 

considered readily available C substrates and can increase nutrient cycling frequency (Sikora and 

McCoy, 1990; Townsend et al., 1997). The microbial-mediated mineralization of organic 

compounds from organic matter to inorganic, plant available forms provides vital sources of 

energy for plant growth and photosynthesis (Uchida et al., 2010). Effectively closing the nutrient 

cycle, plants die and microbial populations decompose the organic materials and respire CO2 in 

the process. Microbial CO2 respiration is integral for predicting decomposition of organic 

materials, and understanding the temperature effects on CO2 respiration may be incredibly 

important for climate change modeling. 

 The goal of this study was to examine the differences in soil climate and microbial 

activity on seasonal timescales as influenced by variable thinning practices on two stands. The 

soil’s response to the first rain event, behavior of soil upon reaching saturation, and the 

magnitude of diurnal flux between the stands will be evaluated. The influence of soil 

temperature, soil organic matter (SOM) quantity, and trends in soil CO2 respiration at increasing 

depth will also be examined. 
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MATERIALS AND METHODS 

General site characteristics 

The study site is located in southwestern Oregon along the Siskiyou mountain range 

approximately 80 km south of Grants Pass within the Rogue River-Siskiyou National Forest and 

remains tectonically active (Bishop, 2010)(Fig. 1). The majority of upper Grayback watershed is 

underlain by upper Jurassic and lower Cretaceous felsic intrusive rocks between granitic to 

gabbro compositions, although diorites are the most common (USGS, 1961). The soils within the 

study area are described as coarse-loamy, mixed, frigid Dystric Xerochrepts (Soil Survey Staff) 

(Appendix- Part I). Other site characteristics differed greatly due to the timing of management 

actions.  

Two timber stands within the Grayback Creek Watershed were chosen because of 

identical forest management techniques separated by a 10-year treatment interval (40% variable 

density thinning). The two locations were within the Gray Elk Timber Sale within subdivisions 

54 and 54a for the covered and thinned, respectively.  

 The sites share similar topography and overstory Douglas-fir and Ponderosa pine 

vegetation in a mixed-conifer forest of the Pacific Northwest. Both sites are located on the 

middle backslope between 0% to 17% slope and between 5o to 17o northern aspect. The covered 

site was located at coordinates N 42o 7’ 27”, W123o 20’ 33” and the thinned site was located at N 

42o 7’ 29”, W123o 20’ 33”. Soil moisture and temperature regimes were identical due to the 

close proximity of both locations between 1,340 m (4,400 ft.) to 1,300 m (4,280 ft.) elevations 

for the covered and thinned site, respectively. Granitic parent materials were extensive and 

weathered to the coarse-textured soils found on both sites.  
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Figure 1. General site location of the Snow Telemetry (SNOTEL) site at Bigelow Camp relative to the 
study site location in the Grayback Creek watershed, southwest Oregon.  
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 The two forest management techniques of both sites yielded different canopy and 

understory expressions. Canopy closure data was collected on November 5, 2012 by J.D. 

Brazier. Average canopy closure on the covered site was 76%, while average canopy closure on 

the thinned site was 51%. The covered stand contained grass species that provided 100% 

effective soil cover with areas of madrone seedlings. The understory vegetation on the thinned 

was isolated pockets of grasses, snowberry, blackberry, whipple vine, and Oregon grape that 

provided approximately 40% effective soil coverage. 

Material collection 

Soil samples were collected on August 28, 2012 from three representative pedons for the 

covered site and four representative pedons for the thinned site. The sample bags were separated 

from representative pedons, but were treated as identical samples of each horizon (set A and set 

B for each horizon)(Appendix- Part II).  

Soil moisture and temperature devices 

 Soil volumetric water content (VWC) and soil temperature were recorded hourly at 5, 15, 

and 30 cm depths with Decagon GS-3 probes and Decagon EM-50 data loggers. The accuracy 

range of the Decagon GS-3 probes is ± 3% VWC and ± 1oC (Decagon Devices Inc., Pullman, 

WA). Precipitation and snow water equivalent (SWE) records were recorded from a Natural 

Resources Conservation Service (NRCS) Bigelow Camp SNOTEL (Snow Telemetry) site. 

Canopy coverage was measured at each data logger with a densiometer (spherical model C) in all 

directions (Forestry Suppliers Inc., Bartlesville, OK). All moisture and temperature values were 

averaged on an hourly basis in addition to calculation of standard deviations. 
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Treatment of samples 

Samples were air dried for five months, August 2012 to February 2013, and then ground 

using a mortar and pestle and passed through a 2-mm diameter sieve. The percent of total carbon 

and nitrogen were determined on February 5, 2013 using a carbon and nitrogen combustion 

analyzer. Each A and B set of horizon samples were duplicated (n=4) and analyzed on a 

VarioMAX CNS combustion analyzer (Elementar Americas Inc., Mt. Laurel, NJ).  

Horizon textures of the thinned and covered sites were analyzed on April 8, 2013 for set 

A and April 15, 2013 for set B. Soil textures were quantified by particle size analysis (PSA) on 

set A samples using chemical dispersion by sodium hexametaphosphate (Na-HMP) for samples 

from both site locations. Set B samples were chemically and mechanically dispersed using Na-

HMP and an industrial blender, respectively, for samples from both site locations. Both set A and 

set B horizon textures were calculated according to the American Society for Testing and 

Materials (ASTM) using the hydrometer and sieve method (Volk, 1937). The accuracy for both 

analyses were determined based on the percent relative difference (% RD) of known standards. 

Using Rosetta® software (V1.2 USDA: Agricultural Research Station – Salinity Laboratory) and 

data collected from the PSA analysis, Ɵs (saturated water content) was determined for each soil 

horizon.  

Carbon dioxide (CO2) respiration was analyzed at horizon samples from both sites. A 

representative 40 g sample was placed into a plastic beaker with perforations and a 0.45 

microfiber filter on the bottom. A 25 mL aliquot of deionized water was added to a glass jar 

containing the plastic beaker and a Solvita low CO2 pad (Woods End Laboratories, Mt. Vernon, 

ME).  The wetting of air dried samples emulated the rewetting conditions of the first 

precipitation event of the water year. The glass jars were incubated for 22 hours at three air 
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temperature treatments of 0, 8, and 20oC to best emulate field soil temperature conditions. The 

CO2 respiration was determined from a digital colorimetric reader (DCR) (Woods End 

Laboratories, Mt. Vernon, ME). All samples were analyzed in duplicate with a blank at each 

temperature treatment. Readings were taken in replicate to ensure equipment accuracy. 
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RESULTS AND DISCUSSION 

PSA: an unexpected finding  

The method difference between the two sets yielded significantly higher sand contents 

using set A. The use of only chemical dispersion in set A likely caused flocculation of particles 

(Bouyoucos, 1962). The flocculation of finer particles likely created low clay and silt contents 

and artificially high sand contents. The flocculation of finer particles more heavily influenced the 

clay textures as evidenced by the % RD range for clay sized particles from 22-60% compared to 

39-90% for silt sized particles (Table 1). 

Table 1. The horizon textures by particle diameter for both the A and B set and a % RD between the two 
set textures. 

Horizon Clay-A† Silt-A† Sand-A† Clay-B‡ Silt-B‡ Sand-B‡ Clay Silt Sand 
(in.) --------------------------g particles 100g-1 soil--------------------------- ----------% RD§--------- 

C 2-6 2 14 84 9 36 55 22 39 153 
C 6-14 3 23 74 9 31 60 33 74 123 

C 14-23 4 21 75 13 31 56 31 68 134 
C 23-44 5 28 67 14 31 55 36 90 122 
T 1.5-4.5 4 14 82 11 26 63 36 54 130 
T 4.5-10.5 6 19 75 10 28 62 60 68 121 

T 10.5-22.5 5 16 79 12 26 62 42 62 127 
T 22.5+ 4 6 90 7 10 83 57 60 108 

† Indicates horizon sample run through method A  
‡ Indicates horizon sample run through method B 
§Percent Relative Difference (% RD) equals  𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 100𝑔 𝑠𝑜𝑖𝑙 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 a 𝑠𝑒𝑡 

𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 100𝑔 𝑠𝑜𝑖𝑙 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 b 𝑠𝑒𝑡
 x 100% 

 
The method difference between the two sets was based on the hypothesis that physical 

dispersion in PSA may not be important for coarse-grained (high sand content) horizon samples. 

This hypothesis was incorrect and showed that flocculation effects small amounts of clay sized 

particles without using physical dispersion via an industrial blender, as described by Bouyoucus 

(1962).  We determined the more accurate method for determining the textures of the sandy, 

coarse grained samples to be the B method. This was based on the relatively uniform range of 

clay contents found in the A set that ranged from 2-6% compared to a range from 7-14% for the 
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B set (Table 1). The soil textures of the horizons were fairly uniform since all horizons were 

loamy sands except for the sand C horizon on the thinned stand (Table 2). 

Table 2. The horizon textures for PSA using method b for the covered and thinned sites. 
Horizon Soil texture† 

(in)  
C 2-6 Loamy sand 
C 6-14 Loamy sand 

C 14-23 Loamy sand 
T 23-44 Loamy sand 
T 1.5-4.5 Loamy sand 

T 4.5-10.5 Loamy sand 
T 10.5-22.5 Loamy sand 

T 22.5+ Sand 
† According to USDA soil textural triangle  
 
Seasonal soil moisture variability 

 The average Ɵs for our soil profiles occurred at approximately 40% VWC. The driest 

period of the year occurred at the same time for both stands, however the thinned stand contained 

twice as much water compared to the covered stand at the surface (11% and 5% VWC 

respectively) (Fig. 2 and 3). The covered stand rarely reached the Ɵs threshold, ~40% VWC, and 

only at areas deeper than 20cm for short periods of time. The events reaching Ɵs on the covered 

site were restricted to deeper soil horizons (>30cm). The thinned stand reached the Ɵs threshold 

from at least five separate precipitation events. The Ɵs threshold was reached throughout the 

entire profile depth. For rain events later in the season, the soil remained saturated up to 3 days. 

There is also evidence of VWC fluctuations deeper in the soil (30 cm) as dependent on the time 

of day only on the thinned site. These diurnal fluctuations in soil moisture are not as large as 

those on soil temperature on a 24-hour timescale. 
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Figure 2. The trends of the covered site for soil moisture and temperature data collected from the Decagon GS-3 probes compared to rain and snow 
event data collected from the NRCS (Natural Resource Conservation Service) SNOTEL (Snow Telemetry) site at Bigelow Camp, SW Oregon.  
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Figure 3. The trends of the thinned site for soil moisture and temperature data collected from the Decagon GS-3 probes compared to rain and snow 
event data collected from the NRCS(Natural Resource Conservation Service)  SNOTEL (Snow Telemetry) site at Bigelow Camp, SW Oregon.
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Seasonal soil temperature variability 

 The magnitude of diurnal flux was greatest at the surface soil horizon (5 cm) for both 

stands. The covered stand had a maximum flux of approximately ±2.5°C (5 cm) occurring early 

in the water year from October 1st to the first rain event. The thinned stand had a maximum 

diurnal flux of ±5°C (5 cm) occurring during the same time frame as the covered stand. As depth 

of soil increases, the magnitude of flux decreases. The maximum diurnal flux at 30-cm depth on 

the covered and thinned stands were ±0.2°C and ±0.5°C respectively. The covered site also had 

slightly lower baseline soil temperatures at 30-cm depth (~11-12°C). Relative to the covered site, 

the thinned site was slightly warmer (~13-14°C) at the 30-cm depth throughout the driest period 

of the year. The Ɵs level was reached throughout the entire profile during the first rain event. For 

some rain events later in the season, the soil remained saturated for approximately three days. 

Overall the thinned stand contained more VWC with depth and over time through the first season 

compared to the covered stand. 

There was a significant decrease in soil temperatures in both stands following the first 

snow event that delivered up to 38-cm of SWE to the area. Both stands reached their absolute 

minimum temperatures of 3.7°C (5 cm) on October 26th following the melt of a second, but 

smaller, snow event. During the time the soil had snow cover, there was some degree of diurnal 

flux, however it was smaller compared to the warmer periods of the year. When the snow from 

the first, and larger, event melted off there were overall decreases in soil temp (between a 4-7°C 

impact) throughout the profile and very little influence from diurnal flux during the cooling 

period.  
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Effects of initial precipitation events on soil moisture and temperature 

The first rain event occurred on October 13th, however there was less than 2-cm of rain 

delivered in the event (Appendix- Part III and IV). The VWC contents increased by 

approximately 5% at the surface (5 cm) on both stands; however at 30-cm depth the stands 

reacted differently. The covered soil moisture probe at 30-cm depth recorded an increase of 1% 

VWC after the first rain event; however the thinned site recorded a 3% decrease in VWC. On 

October 16th, 3-cm of SWE were delivered immediately before another small (3-cm water) rain 

event. A subsequent snow event later delivered up to 33-cm SWE, in the form of snowpack. 

However the soils were the most wet following the initial rain on snow event compared to when 

snowpack remained on the soil surface. The covered and thinned sites showed a distinct drying 

trend, 11% and 10% respective VWC decrease, at 5-cm depth immediately following the rain on 

snow event when snow was covering the soil surface. Data analysis on the covered site suggest 

the wetting front originated from below (>30 cm) and was a significant factor in wetting the soil. 

Conversely, the thinned site shows the wetting front always began at the surface and migrated 

downward through the profile. There is discrete behavior of the soil VWC infiltrating through 

the soil profile upon reaching the Ɵs threshold on the thinned site.  

Discussing the trend differences in soil moisture and temperature of the two stands 

 The covered stand had significantly denser understory vegetation throughout the site. 

Therefore the evapotranspiration demand in the shallow (0-30 cm) soil should also be greater 

than the thinned site. The data during the driest period of the year supports this hypothesis 

because there was twice as much water at 5-cm depth in the area with less understory vegetation. 

This implies the water losses due to evaporation are less than the losses due to transpiration of 

plants and other organisms at the surface. However, we also notice that the overall thinned soil 
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profile is consistently 1-2°C warmer at all depths than the covered site throughout this study. The 

lack of understory vegetation on the thinned site allows for more solar radiation to make contact 

with the soil surface. The soil surface on the thinned site is also more exposed to cooler 

temperatures at night leading to a greater magnitude of temperature flux. The diurnal flux on the 

thinned site at the soil surface was 5°C, but only 2.5°C on the covered site due to the insulation 

of air and interception of sunlight afforded by the dense grass species. 

The difference in understory vegetation also led to significant differences in how the 

water was utilized once water infiltrated the soil. The covered site rarely reached the Ɵs threshold 

due to high demand for water in the upper soil (0-15 cm). The quantity and size of roots in the 

covered profiles were very high compared to the thinned stand soil pits. The thinned site also 

maintained the Ɵs for an additional three days later into November and December. The most 

intense rainfall period of this study delivered ~40-cm of water within six days. This period 

helped to saturate the soil on the thinned site and may have allowed a significant amount of 

water to move into deeper soil horizons and possibly into groundwater. The covered site 

exhibited a high demand for water in the upper horizons. However, there seems to be an 

upwelling effect of soil moisture possibly caused by ponding in deeper horizons or ground water 

flow from the above hillslope.  
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Using depth to predict the trend in CO2 respiration  

 An incubation temperature of 0 ±2oC showed the average CO2 readings (n=4) decreased 

in samples from the covered stand. The duplicate samples (n=2) and replicate readings (n=2) 

were combined to give the average CO2 reading. The correlation coefficient (R2) was 0.85 for the 

covered stand at the 0oC incubation temperature and surpassed the target value of 0.80. The CO2 

readings from the thinned site were too low for the DCR to determine and are excluded from the 

data set (Fig. 4). 

 An incubation temperature of 8 ±2oC showed the average CO2 ppm readings (n=4) 

decreased in samples from both sites. The correlation coefficient was significantly higher in the 

covered samples of 0.91 compared to thinned samples of 0.52 using depth to predict CO2 

respiration (Fig. 5). The thinned sample R2 did not meet the target value of 0.80 for the 

correlation coefficient, while the covered sample set met the target R2 value. 

 An incubation temperature of 20 ±2oC showed the average CO2 ppm readings (n=4) 

decreased in samples from both sites. The correlation coefficients were 0.84 and 0.88 for the 

thinned and covered stands, respectively (Fig. 6). Both sample sets met the target 0.80 

correlation coefficient. 

The respiration of CO2 decreased with increasing depth within the soil profile at all 

incubation temperatures. The average CO2 respiration did increase in the Cr horizon of the 

thinned site, which also contributed to the low R2 value at the 8oC incubation temperature for the 

thinned site (Fig. 5). The high correlation coefficients to predict CO2 respiration using depth as a 

predictor variable indicated the CO2 respiration for each horizon was dependent on the sample 

depth. 
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However, samples were taken from a depth range and may not accurately represent 

specific depth values. Attempts to explain the trend of CO2 at depth by other researchers have 

been limited, except for an unpublished study that looked at CO2 trends at varying depths 

between a north and south aspect (S. Pensky, unpubl. data). A study by Winkler et al. (1996) also 

looked at CO2 respiration trends at varying horizons and suggested differences in respiration 

rates with depth were caused by horizon differences in soil organic matter concentrations. 

Therefore, examination of substrate quantity, as indicated by total C and N percentages, may 

better predict the CO2 respiration rates.
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Dependence of CO2 respiration on total C and N  

The similar trends between CO2 respiration and the total C and N rates were observed 

(Fig. 7 and 8). The CO2 respiration yielded higher values for the covered stand compared to the 

thinned stand at horizon equivalent depths for each incubation temperature. Similarly, a v-shaped 

pattern between the two trend lines of the stands for CO2 respiration with depth was evident for 

all incubation temperatures. The v-shaped pattern of the trend lines for total C and total N 

suggested that CO2 respiration was dependent on the quantity of total C and N in the soil.  

The proportion of C and N in the SOM also greatly affects microbial CO2 respiration 

(Schlesinger and Andrews, 2000; Paul and Clark, 1996; Persson et al., 1999). Nadelhoffer and 

others (1990) determined after C:N ratio of soil organic matter ranged from 12 to 15. The C:N 

ratios of the samples typically ranged from about 20 to 28 (Appendix- Part IV). Therefore, the 

total C and N in the soil were assumed to be from SOM, and thus SOM and total C and total N 

will be used interchangeably. 

 The effective soil cover (ESC) was 100% on the covered site compared to an ESC of 

40% on the thinned. The greater presence of understory vegetation on the covered site provided 

greater SOM, as evidenced by the greater total C and N percentages found in the covered 

compared to the thinned. The greater quantity of substrate likely provided a greater energy 

source to support a larger amount of soil microorganisms. The greater energy source was 

reflected by the greater respiration of CO2 that represented microbial biomass (Haney et al., 

2008).
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Effect of air temperature incubation on CO2 respiration  

The trend in CO2 respiration was similar for the thinned and covered sites at each 

incubation temperature, yet the covered had greater respiration rates compared to the thinned. 

Generally, the trend in CO2 respiration was an increase at each horizon (Fig. 9, 10, and 11). The 

increasing CO2 respiration with increasing incubation temperatures is a trend is supported by 

many other researchers (Lloyd and Taylor, 1994; Persson et al., 1999; Pietikainen et al., 2005; 

Singh and Gupta, 1977; Townsend et al., 1997; Uchida et al., 2010). The surprising trend was the 

difference between the two stands among the horizons.  

The upper two horizons of the covered site had more CO2 respiration at each incubation 

temperature relative to the thinned site. The covered stand upper B horizon showed greater 

respiration rates relative to the A horizon in the thinned stand (Fig. 10). This finding suggested 

the covered stand had greater microbial biomass in its upper B horizon than the thinned stand 

had in its A horizon. The trend continued in the lower horizons, whereby the CO2 respiration in 

the C horizon of the covered stand was greater than the respiration in the upper B of the thinned 

site. The C horizon of the thinned was the only horizon that showed an increase in CO2 

respiration with increasing depth (Fig. 11). 

The similar trends in CO2 respiration were consistent with all incubation temperatures. 

However, slight differences between the CO2 respiration rate trends suggested an increased 

dependence on SOM quantity with higher incubation temperatures. The CO2 respiration 

differences were greatest in the upper three equivalent horizons at the 8oC incubation 

temperature with a % RD range from 266 to 303% and just 14% in the bottom most horizon 

equivalent. The % RD of the upper three equivalent horizons ranged from about 32 to 63% at the 

20oC incubation temperature (Appendix- Part VI).  
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The broadening of the aforementioned v-shaped pattern suggested a greater correlation to 

SOM for the thinned stand. The greater dependence of thinned stand CO2 respiration was evident 

by the higher R2 value using total C and N as the predictor variables to explain the trend in 

respiration (Appendix- Part VII).  The increased predictability of respiration based on SOM with 

higher temperatures suggested that SOM quantity became more important on the thinned stand 

with increasing temperatures.
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CONCLUSION 

The goal of this study was to examine the differences in soil climate and microbial 

activity on seasonal timescales as influenced by variable thinning practices on two managed 

stands. The soil’s response to the first rain event, behavior of soil upon reaching saturation, and 

the magnitude of diurnal flux between the stands were evaluated. The influence of soil 

temperature, SOM quantity, and trends in soil CO2 respiration at increasing depth was also be 

examined. 

The significant difference in understory vegetation played a vital role in the moisture and 

temperature behavior on these study sites. The dense grass species on the covered site had a high 

demand for water and provided significant cover from the sun on the soil surface. The covered 

site only reached Ɵs deeper where water may have accumulated over time or from subsurface 

flow. The thinned site frequently reached Ɵs and may have added a significant quantity of water 

to deeper soil horizons or possibly acted to recharge groundwater. The lack of vegetation on the 

thinned site caused the diurnal flux to be significantly greater than the covered site near the soil 

surface (±5°C and ±2.5°C respectively). The cover of snow decreased diurnal flux; however, the 

influence of snow melt caused soil temperatures to drop throughout the whole profile (between 

4-7°C) and diminished evidence of diurnal flux. Overall the thinned site had higher temperatures, 

larger magnitude of flux, and higher VWC at all horizons throughout the timing period, 

suggesting a potentially favorable climate for soil microfauna. 

The proliferation of soil microbes was dependent largely upon the depth, and thus 

distribution of total C and N throughout the soil pedon. The low number of replicates did not 

allow for quantification of differences between the covered and thinned stand. However, the 

trends of the covered and thinned stand showed decreasing CO2 respiration with increasing depth 
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at almost every incubation temperature. The rate of CO2 respiration on the thinned site was more 

dependent on SOM with higher incubation temperatures, as evidenced by the greater R2 values 

using total C and N to predict CO2 respiration (Appendix- Part VI).  

The study determined significant impacts of management from 40% variable thinning on 

southwest Oregon timber stands, as evidenced by differences in response to soil moisture, soil 

temperature, and SOM quantity for CO2 respiration. In order to avoid the “black box” notion for 

microbial processes and species, further research on microbial CO2 respiration should focus on 

the in situ species of the samples and deep water transport. Limited funding and research time 

prevented this study from examining those features. In order to provide a more holistic 

understanding of forest sustainability, long-term monitoring needs to continue on these timber 

stands. 
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APPENDIX 

Part I. Soils map of the Grayback Creek watershed area 
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Part II. Pedon description sheets† for the covered and thinned stands. 
Horizon Horizon Boundary Structure Rock Fragment Roots 

(in.)    (%)  
C 0-2 Oi - - - - 
C 2-6 A AS 3, f, GR 10% sr, gr (1 cm) m, vf-f; c, md 

C 6-14 Bw CW 2, m, SBK 10%, sr, gr (1-2 cm) c, f-vf; m, co; f, vc 
C 14-23 Bt DW 2, m-co, GR 10%, sr, gr (<1 cm) c-m, f 
C 23+  CB CS 0, MA - - 
T 0-1.5 Oi - - - - 

T 1.5-4.5 A AS 2, co, GR sr-ang, gr (3-3.5 cm) m, vf; c, f; f, md 
T 4.5-10.5 Bw1 CS 2, f, SBK 37% sr-r, gr f, f 

T 10.5-22.5 Bw2 GS 1, f, SBK - f, co 
T 22.5+ BC CS 0, MA - Vf, f 

† Abbreviations according to NRCS Field book for describing and sampling soils, Version 3.0  
 
Part III. Soil moisture and air data for the first precipitation event on the covered stand 
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Part IV. Soil moisture and air data for the first precipitation event on the thinned stand
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Part V. The trend of average Carbon to Nitrogen Ratio (C:N) with increasing horizon depth compared 
between the covered and thinned sites 

 
 
Part VI. The % RD between the covered and thinned stands for their respective incubation temperatures 
Horizon Equivalent 0oC 8oC 20oC 
 -------------------------------------------%RD†------------------------------------------- 
A n/a 266 32 
Upper B n/a 273 63 
Lower B n/a 303 31 
C n/a 14 367 
† Percent Relative Difference (% RD) equals (𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝐶𝑂2 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛−𝑡ℎ𝑖𝑛𝑛𝑒𝑑 𝐶𝑂2 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛)

𝑡ℎ𝑖𝑛𝑛𝑒𝑑 𝐶𝑂2 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
 x 100% 
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Part VII. Using total C and N to predict CO2 respiration at the 3 incubation temperatures 

 
Figure 12. Using total N to predict CO2 respiration at the 0oC incubation temperature. 
 

 
Figure 13. Using total C to predict CO2 respiration at the 0oC incubation temperature. 
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Figure 14. Using total N to predict CO2 respiration at the 8oC incubation temperature. 
 

 
Figure 15. Using total C to predict CO2 respiration at the 8oC incubation temperature. 
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Figure 16. Using total N to predict CO2 respiration at the 20oC incubation temperature. 
 

 
Figure 17. Using total C to predict CO2 respiration at the 20oC incubation temperature. 
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Part VIII. Statistical analyses figures with averages and standard deviations 

 
Figure 18. A comparison between the average CO2 respiration at the 0oC incubation (with standard 
deviations) for the horizons of the thinned and covered site. 
 

 
Figure 19. A comparison between the average CO2 respiration at the 8oC incubation (with standard 
deviations) for the horizons of the thinned and covered site. 
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Figure 20. A comparison between the average CO2 respiration at the 20oC incubation (with standard 
deviations) for the horizons of the thinned and covered site. 
 

 
Figure 21. A comparison between the total carbon percentage (with standard deviations) for the horizons 
of the thinned and covered site. 
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Figure 22. A comparison between the total nitrogen percentage (with standard deviations) for the horizons 
of the thinned and covered site. 
 
 

 
Figure 23. A comparison between the C:N (with standard deviations) for the horizons of the thinned and 
covered site. 
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Part IX. Photos of the covered and thinned site, respectively 
 

 
Figure 24. Photo of the covered stand. 
 

 
Figure 24. Photo of the thinned stand. 
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