Quantile-locating functions and
the distance between the mean and quantiles

D. Gilat*
School of Mathematical Sciences, Tel Aviv University
Ramat Aviv 69978, Israel

T. P. Hill**
School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332, USA

Given a random variable X with finite mean, for each $0 < p < 1$, a new sharp bound is found on the distance between a p-quantile of X and its mean in terms of the central absolute first moment of X. The new bounds strengthen the fact that the mean of X is within one standard deviation of any of its medians, as well as a recent quantile-generalization of this fact by O’Cinneide.

Key words & Phrases: mean, median, quantiles, absolute central first moment, convex function.

1 Introduction

Let X be a real-valued random variable with finite mean $E(X) = \mu$ and standard deviation σ. O’Cinneide (1990) gives an interesting proof of the fact, which he attributes to Hotelling and Solomons (1932), that the mean of X is within one standard deviation of any of its medians. As observed by Mallows and Richter (1969), even a bit more is true: the distance between the mean and any median of X is bounded not only by its standard deviation (which may be infinite), but even by its (generally) smaller central first moment. Putting m for any median of X, one obtains

$$|EX - m| \leq \sigma$$

(1)

where the crucial second inequality in (1) is valid because, as is well known (e.g. see Bickel and Doksum, 1977, p. 54), m minimizes the mapping $x \rightarrow E|X - x|$. Note that equalities throughout (1) are attained if X is symmetric about μ, two-valued and one of its values is taken for m.

In this note we use, for each $0 < p < 1$, a functional U_p which is uniquely minimized by any p-quantile of X to obtain a central first moment bound, which generalizes (1), on the distance between the mean of X and any of its p-quantiles.

* Partly supported by U.S.-Israel Binational Science Foundation Grant No. 88-00005.
** Partly supported by U.S.-Israel Binational Science Foundation Grant No. 88-00005.
Partly supported by National Science Foundation Grant DMS-89-01267.
Throughout this note, if \(a \) and \(b \) are real numbers, \(a \lor b \) \((a \land b)\) stand for their maximum (minimum) and, as is customary, \(a^+ = a \lor 0 \) and \(a^- = (-a)^+ \). Recall that the real number \(m = m_p \) is a \(p \)-quantile of \(X \) \((0 < p < 1)\), if \(P\{X \leq m\} \geq p \) and \(P\{X \geq m\} \geq 1 - p \).

2 A function uniquely minimized by \(p \)-quantiles

Given a random variable \(X \) with finite mean, for \(0 < p < 1 \), let the functions \(U_{p,X} = U_p: \mathbb{R} \to \mathbb{R} \) be defined by

\[
U_p(x) = pE(X - x)^+ + (1 - p)E(X - x)^-. \tag{2}
\]

Note that \(U_{1/2}(x) = (1/2)E|X - x| \); the next proposition records two useful properties of \(U_p \).

Proposition 1. For each \(0 < p < 1 \), \(U_p \) is convex, and \(U_p \) uniquely determines the distribution of \(X \).

Proof: The convexity of \(U_p \) follows easily from the convexity (for each \(y \)) of the maps \(x \to (y - x)^+ \) and \(x \to (y - x)^- \). The usual technique of integration by parts yields

\[
U_p(x) = p \int_{-\infty}^{x} P\{X > t\} \, dt + (1 - p) \int_{x}^{\infty} P\{X \leq t\} \, dt. \tag{3}
\]

Thus \(U_p \) is differentiable at continuity points of \(P\{X \leq x\} \) and if \(x \) is such a point, then the derivative \(U'_p \) satisfies

\[
U'_p(x) = -pP\{X > x\} + (1 - p)P\{X \leq x\} = P(X \leq x) - p = (1 - p) - P(X > x). \tag{4}
\]

Since the set of such \(x \)'s is dense in \(\mathbb{R} \), the distribution of \(X \) can be recovered from (4). \[\square\]

The property of \(U_p \) which will be used in deriving the mean-quantile bound mentioned in the introduction is that \(U_p \) is a \(p \)-quantile-locator in the sense of the following proposition (cf. also Ferguson, 1967, Exercise 3, page 51, where uniqueness is not claimed). Note that this includes the well-known inequality (used in (1)) that the median minimizes \(E|X - x| = 2U_{1/2}(x) \).

Proposition 2. For every integrable random variable \(X \) and every \(p \in (0, 1) \), the function \(U_p \) is uniquely minimized by any \(p \)-quantile of \(X \). That is, \(U_p(x) = \min \{U_p(y) : y \in \mathbb{R}\} \) if and only if \(x \) is a \(p \)-quantile of \(X \).

Proof: Since \(U_p \) is nonnegative, convex and unbounded on both the positive and negative rays of \(\mathbb{R} \), it has a minimum. If, in addition, \(U_p \) is differentiable (which is the case when the distribution of \(X \) is continuous) then setting the derivative \(U'_p(x) = 0 \) in formula (4) completes the proof that \(U_p \) is minimized by every \(p \)-quantile. In general, when the distribution of \(X \) may have atoms, proceed as follows.
First apply integration by parts to rewrite U_p, defined in (2), in the forms
\[
U_p(x) = p(EX - x) + E(X - x)^-
\]
\[
= p(EX - x) + \int_{-\infty}^{x} P[X \leq t] \, dt
\]
\[
= -(1 - p)(EX - x) + E(X - x)^+
\]
\[
= -(1 - p)(EX - x) + \int_{x}^{\infty} P[X > t] \, dt.
\] (5i)

Next, distinguish between two cases. If $x \geq m_p$ use (5i) to obtain
\[
U_p(x) = p(EX - x) + \int_{-\infty}^{m_p} P[X \leq t] \, dt + \int_{m_p}^{x} P[X \leq t] \, dt
\]
\[
\geq p(EX - x) + \int_{-\infty}^{m_p} P[X \leq t] \, dt + p(x - m_p)
\]
\[
= p(EX - m_p) + E(X - m_p)^- = U_p(m_p),
\] (6)
where the inequality is valid because m_p is a p-quantile of X, and the last equality follows from (5i). The proof for the case $x < m_p$ is similar using (5ii). This completes the proof that U_p is minimized by any p-quantile.

To see the converse note that if x is strictly larger than the largest p-quantile, then the inequality in (6) is strict. Similarly, using (5ii), a strict inequality is obtained when x is strictly smaller than the smallest p-quantile. Thus the minimum of U_p is attained only at p-quantiles.

\[\square\]

3 Distance between the mean and quantiles

For an integrable random variable X and each $0 < p < 1$, let $V_{p,X} = V_{p} : \mathbb{R} \to \mathbb{R}$ be defined by
\[
V_p(x) = p(EX - x)^+ + (1 - p)(EX - x)^-.
\] (7)

and let
\[
\Delta_p = U_p - V_p,
\]
where U_p is as in (2).

Note that V_p is piecewise linear with slope p to the left of EX and slope $1 - p$ to its right.

Some useful properties of Δ_p are recorded in the following lemma.

Lemma. For each $0 < p < 1$,

(i) $\Delta_p(x) = \begin{cases} E(X - x)^-, & x \leq EX \\ E(X - x)^+, & x \geq EX \end{cases}$ independently of p;

(ii) $0 \leq \Delta_p(x) \to 0$ as $|x| \to \infty$; and

(iii) $\int_{-\infty}^{\infty} \Delta_p(x) \, dx = \frac{1}{2} \text{Var} X$ (whether finite or not).
PROOF: (i) By definition,
\[
\Delta_p(x) = U_p(p) - V_p(x) = p[E(X - x)^+ - (EX - x)^+] + (1 - p)[E(X - x)^- - EX - x^-]
\]
\[
= p[(E(X - x)^+ - E(X - x)^-)] - [(EX - x)^+ - (EX - x)^-)] + \{E(X - x)^- - (EX - x)^-]
\]
\[
= p[(EX - x) - (EX - x)] + [E(X - x)^- - (EX - x)^-)]
\]
\[
= [E(X - x)^-], \quad x \leq EX
\]
\[
E(X - x)^+, \quad x \geq EX.
\]
(ii) The inequality follows from (i) (or from Jensen). The asymptotic statement follows from (i) using monotone convergence.

(iii) Assume, without loss of generality, that $EX = 0$. By (i)
\[
\int_{-\infty}^{\infty} \Delta_p(x) \, dx = \int_{-\infty}^{0} E(X - x^-) \, dx + \int_{0}^{\infty} E(X - x^+) \, dx.
\]
Applying integration by parts twice and using Fubini in between to change the order of integration, one obtains
\[
\int_{-\infty}^{\infty} \Delta_p(x) \, dx = \int_{-\infty}^{0} tP\{X < t\} \, dt + \int_{0}^{\infty} tP\{X > t\} \, dt
\]
\[
= (1/2)(E(X^-)^2 + E(X^+)^2) = \left(\frac{1}{2}\right)EX^2.
\]
\[
\square
\]

REMARK. Applying (iii) with $p = \frac{1}{2}$ it follows that
\[
\int_{-\infty}^{\infty} \{E|X - x| - |EX - x|\} \, dx = \text{Var} \, X.
\]
Finally, Proposition 2 and the above properties of Δ_p will be used to obtain bounds on the distance between any p-quantile of a random variable and its mean in terms of its central absolute first moment. These bounds are analogous to the standard deviation bounds of Dharmadhikari (1991)
\[
EX - \sigma \sqrt{q/p} \leq m_p \leq EX + \sigma \sqrt{p/q}
\]
which both generalize (1) and strengthen the symmetric version of O'Cinneide (1990)
\[
|EX - m_p| \leq \sigma \sqrt{\max \{p/q, q/p\}}.
\]
Theorem 1. For \(0 < p < 1\), let \(m_p\) be a \(p\)-quantile of the random variable \(X\). If \(EX\) is finite, then (letting \(q = 1 - p\))

\[
EX - (1/2p)E |X - EX| \leq m_p \leq EX + (1/2q)E |X - EX|,
\]

and these bounds are attained.

Proof: If \(m_p \leq EX\) then

\[
p(EX - m_p) = V_p(m_p) \leq U_p(m_p) \leq U_p(EX) = pE(X - EX)^+ + (1 - p)E(X - EX)^- = (1/2)E |X - EX|, \tag{8}
\]

where the first equality follows from (7), the first inequality from Lemma (ii), the second inequality from the definition of \(U_p\), and the last equality since \(E(X - EX)^+ = E(X - EX)^- = (1/2)E |X - EX|\). If \(m_p \geq EX\), use the same argument with the fact from (7) that \((1 - p)(m_p - EX) = V(m_p)\). Equality is easily seen to be attained if \(X\) takes only two values \(a < b\) and \(P(X = a) = p\). \(\square\)

Acknowledgement

The authors are grateful to the Mathematics Department of the Free University of Amsterdam and especially to Professor Piet Holewijn, for their hospitality during the spring of 1991 where this research was begun, and to Professor Ester Samuel-Cahn for pointing out the Ferguson reference.

References

O'CINNEIDE, C. A. (1990), The mean is within one standard deviation of any median, *The American Statistician* 44, 292-293.