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ABSTRACT 
 

Basin depth is a fundamental parameter in many types of geologic studies such as 

resource exploration and regional tectonic mapping. The Horizontal-to-Vertical Spectral Ratio 

(“H/V”) method has been successfully applied to estimating of basin depths up to several 

hundred meters. In this study the H/V method is applied to the deep basins on the western side of 

the San Joaquin Valley to determine the thickness of the sedimentary layers and depth to 

bedrock.  Microtremor data from Earthscope Seismic Array stations are ideal to test the accuracy 

of the H/V method on deeper basins because the data is of high-quality and the proximity of 

several station locations to where independent basin depth estimates exist.  The H/V method is 

also attractive because it is inexpensive and non-invasive, thus providing a reconnaissance tool 

for identifying locations in which more detailed mapping techniques may be justified.  This 

study finds that while moderate basin depths (< ~1.2 km) are estimated accurately, deep basin 

depths (up to ~4 km) are significantly underestimated (~ 29%). These mixed results suggest that 

the sedimentary to bedrock transition in the deeper parts of the San Joaquin Valley is gradual 

rather than sharp. 
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INTRODUCTION 

Accurate knowledge of basin depths is an important parameter to many geologic studies.    

This is especially pertinent for the quaternary geologist/geomorphologist interested in 

depositional history (Ingersoll, 1988).  Geologic studies that take place on sediment filled basins 

require the determination of depths to bedrock, the relation between depositional environments 

and tectonics, and geologic parameters about the sub-soil.  Precise knowledge of soft sediment 

cover above the bedrock is crucial for preparing cross sections and understanding the relative 

locations of lithologic layers.  Subsurface geology can also be applied to resource extraction 

(gas/oil/geothermal) or groundwater studies that require information to develop efficient drilling 

plans or add more continuous spatial information (Lane et al., 2008). 

Vibroseis is a seismic method commonly used in exploration seismology to obtain 

subsurface layer structure, including depth to bedrock.  This method uses trucks that input 

vibrational energy directly into the ground to be reflected from subsurface layers and detected 

along a linear profile of seismometers.  Another technique to determine basin depths is well 

drilling, where examination of core samples is used to determine depth to bedrock.  Both 

methods provide high-quality data, but suffer from being expensive, environmentally invasive, 

and in the case of well data spatially sparse.  

The H/V Spectral Ratio (hereafter “H/V”) method provides an alternative for basin depth 

estimation. This technique utilizes microtremors, or ambient vibration of the earth, as signal.  

The term microtremors refers to small ground motions propagating through the Earth’s surface 

not due to seismic events (earthquakes) or explosions (Seht and Wohlenberg , 1999).  It has been 

shown in previous studies that sources of microtremors can originate from sea waves, human 

microtremors/activity, wind, and rainfall (Seht and Wohlenberg, 1999).  These sources will 
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produce different frequencies of microtremors, which will affect the frequency content of the 

microtremor frequency spectrum.  The microtremor frequency spectrum is also influenced by the 

local layered subsurface structure, which can cause the amplification of seismic waves and 

resonance of certain microtremor frequencies (Seht and Wohlenberg, 1999). 

The H/V ratio was first introduced in 1989 and is defined as the ratio of the averaged 

horizontal-components frequency spectrum of a single three-component seismometer and that of 

the vertical-component measured at that point (Lermo and Chávez-García, 1993).  The frequency 

spectrum is computed by taking the Fourier Transform of the microtremor data from each 

respective channel (N-S, E-W, Z).   

The H/V method was originally developed to determine what are known as ‘site effects’ 

of the soft sediment cover layer.  Site effects can be described as parameters about the soft layer 

that changes how seismic waves amplify and propagate through the medium.  Another 

application of the H/V method this paper focuses on is the determination of the depth of 

sediment filled basins through simple wave mechanics.  

One particularly successful study of basin depth estimation applied the H/V method to an 

alluvial filled basin in the Lower Rhine Embayment (Germany) where a large number of well-

log control exists (Seht and Wohlengberg 1999).  The study applied the H/V method on parts of 

the basin that were tens of meters to 1.2 km in depth.  Basin depths estimated with the H/V 

method compared very well to drilled basin depths.   

The goal of this study is to apply the H/V method to the San Joaquin Valley of California.  

This basin is much deeper than previous studies (3-5km), and will test the validity of the H/V 

ratio in deep sediment filled basins. 

 



3 
 

 

DATA AND METHODS 

The H/V method utilizes a single three component seismometer placed on the soft 

sediment cover site.  The original data was acquired during ‘quiet’ (12-1A.M.) periods to reduce 

the effect of human microtremors on the recording.  The recording was acquired through the 

IRIS web based time-series builder at seismic stations T05C, S05C, T06C, R04C, and Q04C 

seismometer locations of the Earthscope Transposable Array (TA) (Figs. 1 and 2).  One minute 

of data was recorded and downloaded from each seismic station.  While one-minute time-series 

is typical in previous studies (Seht and Wohlenberg, 1999), 5, 10 and 20 minute long signals 

were also tested; however no significant change in spectral content of the signal or dominant 

frequency was observed. 

The original signal (Fig. 3) was tapered, de-trended, and smoothed with a low-pass filter to 

remove the higher frequency microtremors (Fig. 4).  This pre-processing allows for a more stable 

calculation of the frequency spectrum and is typical in all seismic data processing (Yilmaz, 

2001).  The microtremor frequency spectrum of each channel of the three-component 

seismometer data was obtained by performing a discrete Fourier transform on the filtered data in 

Matlab©.  The frequency spectrum shows the relative magnitudes of the frequencies that 

compose a filtered seismogram (Fig. 5).  Once the frequency spectrum from each component is 

calculated, the transfer function is computed and the resulting dominant frequency is extracted 

for use in the basin depth calculation (Fig. 6).     

The transfer function is calculated by taking a root mean square of the sum of the 

frequency spectra of the horizontal components (NS and EW) divided by the vertical component 

frequency spectrum (Eqn. 1).  This form of the transfer function was computed by Delgado et al. 
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(2000), which is slightly different from the one introduced by Seht and Wohlenberg 1999.  The 

H/V ratio utilizes the lowest “main peak” in the transfer function in order to calculate basin 

depth.  The main peak was interpreted as the most dominant maxima at low frequencies.  It is 

thought that the main peak correlates to the most dominant and lowest (fundamental) resonant 

frequency of the basin medium.   
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The H/V method is based on modeling a sedimentary basin as a simple two layer model 

with a hard rock basement that acts as a node side for the resonant wave, and the surface of the 

basin that behaves as an open end that can move freely as the wave propagates through the 

sedimentary medium.  This is similar to how acoustic harmonics are modeled in a one end closed 

and one end opened pipe (Fig. 7).  In this physics model, uneven multiples of quarter 

wavelengths resonate in the pipe.  The same principle applies with the basin (Fig. 8).  Since the 

transfer function averages the lowest frequency “main peak” from the frequency spectra, one 

quarter of a wavelength corresponds to the lowest main peak frequency in the transfer function 

plot (Figs. 6 and 8).  The resonant frequency is equal to the velocity of the wave propagating 

through the basin divided by the wavelength (Eqn. 2).  The depth is equal to the wavelength 

divided by 4 therefore we can combine these two equations (Eqns. 3 and 4). 
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It is important to note that the H/V method assumes a strong acoustic impedance contrast 

(≥2:1) between the bedrock and the overlying sediments.  Acoustic impedance is calculated by 

multiplying the velocity of the wave in the medium by the density of the medium (Fig. 9) (Lane 

et al., 2008).  The H/V method is inaccurate in geologic settings where this assumption does not 

hold, such as gradational contacts, cementation, weathering, or strong heterogeneity (Lane et al., 

2008). 

The depth calculation must also take into account the changing velocity of seismic waves 

with depth.  The velocity-depth function is given by equation 5.   / oZ z z= with 1oz = meter, ov

is the surface shear wave velocity, and depth dependence of the velocity is given by x .   The 

fundamental resonant frequency can then be calculated as 1/ 4 oT  since oT  is the travel time 

between the bottom basement and the top of the basin.  Velocity as a function of vertical depth is 

defined as ( ) /v z dz dt= , and the travel time oT  can be calculated (Eqn. 6).   The relationship 

between resonant frequency and depth can then be determined algebraically (Eqns. 7 and 8).  

Resonant frequency ( rf ) is given in Hz, shear wave velocity ( sv ) in meters per second, and 
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depth ( m ) in meters.  During initial calculations, values for the surface velocity and depth 

dependence were borrowed from previous studies (Seht and Wohlenberg, 1999).  
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RESULTS 

Depths to bedrock that were compared to the H/V method calculations were estimated 

from previous active-source seismic studies of crustal velocity and layering (Holbrook and 

Mooney, 1987) (Figs. 10 and 11), well logs near the seismic stations, and cross sections scanned 

from the California Well Repository on the Cal State Bakersfield campus (Appendix A-C).  

These depths to bedrock were then compared to the values computed from the transfer function 

at each site.   

Site T05C 

An accurate relationship between depth and the frequency of the main peak was not able 

to be determined accurately in the deeper part of the basin occupied by station T05C.  The 

transfer function contains a fundamental resonant frequency of 0.116 Hz (Fig. 6).  Applying the 

above formula for basin depth yields a 2.1 km basin depth.  The bedrock was estimated from 

well logs and cross sections to be between 3.9 and 4.5 km (Figs. 10 and 11) (Appendix A-C) 

(conservation.ca.gov, 2012).  This underestimates depth to bedrock by about 2km, or 50% of the 
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expected depth inferred from well logs and cross sections.  The velocity-depth function, its depth 

dependence ( x =0.278), and surface shear wave velocity ( ov ) of 162m/s were borrowed from 

Seht and Wohlenberg.   

Curve fitting of seismic velocities taken from a nearby sonic well log (Appendix C) 

yielded improved basin depth estimates compared to the ov and x values used in the velocity-

depth function by Seht and Wohlenberg.  The depth calculation (Eqn. 8) contains ov and x , 

therefore it is important to get these parameters as accurate as possible for the specific site.  Data 

points representing average seismic shear wave velocity at a given depth range were chosen off 

of the nearby sonic well log and plotted using Matlab©’s curve fitting feature (Fig. 12).  The data 

points were fit to the same functional form as equation 5, using the depths as the ‘ z ’ 

(independent variable) values and the shear wave velocities as the ‘ sv ’ (dependent variable) 

values.  The sonic log data starts at about 550 meters deep, which gave no information about 

surface shear wave velocity and made extrapolation to surface shear wave velocity poorly 

constrained.   

Surface shear wave velocity ( ov ) was extrapolated to surface depth during the curve 

fitting session and depth dependence ( x ) was estimated from the best fit curve.  The curve fitting 

session produced a projected ov value of 121.2m/s and an estimated x value of 0.3594.  

Substituting these values of ov , x  and the resonant frequency from the transfer function for 

station T05C in to equation 8 yields an improved basin depth estimate of 3.0km.  This result 

underestimates the basin depth by about 1.2km or 29% of the expected depth inferred from well 

logs and cross sections. 
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Eastern Basin: Stations S05C, Q04C, R04C, and T06C. 

The eastern side of the basin, adjacent to the foothills of the Sierra Nevada mountain 

range has a much shallower basin than the western side where station T05C is located (Fig. 2). 

Basin depths are shallower and thus it may be expected that the sedimentary to bedrock contact 

will be sharper and more accurate basin depths will be calculated.  

The transfer function of the S05C station showed a fundamental resonant frequency of 

0.35 Hz (Fig. 13).  This correlates to a basin depth of 465 meters.  This value correlates well with 

depths to bedrock estimated from cross sections and boreholes in the area (Appendix A-C) 

(conservation.ca.gov, 2013).  The transfer function of the Q04C station showed a resonant 

frequency spike at 0.38Hz (Fig. 14), correlating to a basin depth of 416 meters.  The transfer 

function of the R04C station contains a resonant frequency spike at 0.48Hz (Fig. 15), which 

correlates to a basin depth of 302 meters.  The transfer function of the T06C station showed a 

resonant frequency spike at 0.25Hz (Fig. 16), which correlates to a basin depth of 739 meters. 

These values work well with previous studies that estimate this side of the basin to be about 305 

to 650 meters deep (Pujol, 1954/1958)(conservation.ca.gov, 2012/3).   

 

DISCUSSION 

 Calculated depth beneath the western side of the San Joaquin Valley basin near the T05C 

station underestimated the expected depth of about 4.2km by about 29%.  This result indicates 

that one of the major assumptions that must be applied to the H/V method is likely not valid in 

the deeper part of the San Joaquin Valley (SJV).  Specifically, that there must be a strong (≥2:1) 

acoustic impedance between the bedrock and overlying sediments (Lane et al., 2008).   

Examples of geologic setting where this assumption might not hold are gradational contacts 
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resulting from weathering or cementation, and strong heterogeneity within the basin (Lane et al., 

2008).  It is possible due to the deep nature of the western side of the basin that there is 

compaction taking place due to the significant amount of overburden above the bedrock.  

Compaction in the lower half of the basin would make the assumption of strong acoustic 

impedance invalid.  

 Analysis of the basin depth formula was performed on the depth dependence equation 

(Eqn. 8) (Seht and Wohlenberg, 1999).  Two- and three-dimensional plots were made to 

illustrate the relationship between depth and resonant frequency, particularly to examine how 

these parameters trade-off in producing basin depths.   

First a 2D plot was made showing the depth-frequency relationship holding the values for 

depth dependence and surface shear wave velocity given by Seht and Wohlenberg constant (Fig. 

17).  This plot illustrates that the depth dependence equation has a drastic change in behavior 

around the 0.15Hz frequency value.  The graph becomes extremely steep, and small variations in 

frequency yield drastically different depth estimates.  3D plots were also made where one of the 

parameters (x, sv  or rf ) was held constant, and the other two were explored over a range of 

values (Figs. 18-22).  The 3D plots showed the similar results, that the depth approximation 

becomes unstable for lower frequencies.  The depth dependence equation becomes more stable at 

higher depth dependence values and surface wave velocities. 

 The H/V method is a 1D wave method and does not account for 2D and 3D site effects.  

2D and 3D site effects can be influenced by the geometry of the basin and local geology (Yuncha 

and Luzón, 2000).  It is possible that the seismometers are detecting 2D and 3D site effects that 

the method does not account for. 
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 Good results were obtained in the eastern side of the basin where depths range from 

about 302 to over 600 meters.  Depth values calculated from stations on this side of the basin 

were compared to geologic cross sections and borehole drillings from the same region.  

Shallower basin depths on this side of the basin mean that there is less overburden and 

compaction above the bedrock.  This allows for strong acoustic impedance between the bedrock 

and overlying sediments.  These results are consistent with previous studies that have been 

conducted in this depth range. 

 An alternative method that still utilizes microtremor data is the reference site method 

(S/R method).  The S/R method uses two seismometers, one placed on the soft sediment site and 

one placed on a nearby bedrock site.  The S/R transfer function is calculated by dividing the 

averaged horizontal component spectra from the soft sediment site by the averaged horizontal 

component spectra of the bedrock site (Fig. 23).  The S/R method still tries to determine the 

fundamental resonant frequency of the basin.  The S/R method is assumed to show something 

similar to site effects, which tell about how seismic waves are amplified or attenuated in the soft 

sediment basin.  The main disadvantage of the S/R method is that it uses two seismometers.  One 

is placed on a soft sediment site and one on a bedrock site.   The two sites located at different 

spatial locations and having different local geology are not influenced by the same local 

microtremor sources.  Computing the ratio becomes difficult when you divide the two frequency 

spectrums.  The denominator and numerator spectrum in the S/R method does not divide out the 

higher frequencies as effectively as the H/V method since the H/V method uses a single 

seismometer at the same spatial location (Seht and Wohlenberg, 1999). 

 The H/V method can also be used to determine site effects.  The H/V method tries to 

determine the fundamental resonant frequency of the basin below the site.  The fundamental 
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resonant frequency, along with the amplification of ground motion is the data required to 

perform seismic hazard assessments (Cara et al., 2008).  The H/V ratio is ideal for acquiring this 

data because it can acquire the data in areas of low seismicity, data acquisition is short, it 

requires only on seismometer, and signal processing can be done quickly (Cara et al., 2008). 

 The results of this study agree with previous work applying the H/V method to 

sedimentary basins less than 1.2km.  Sites on the eastern side of the basin estimate the depth 

reasonably well.  While, on the deeper part of the basin the H/V method underestimated the 

depth by about 29%.  The H/V method can be used as a valuable tool to assist borehole data 

where drillings are sparse and a more detailed understanding of basin depth is desired.  Proof of 

strong acoustic impedance between the bedrock and overlying sediments must be determined 

prior to conducting an H/V study. 

CONCLUSIONS 

 In this study the H/V method was applied to the much deeper sedimentary basins of the 

San Joaquin Valley than previous studies have addressed. The H/V method underestimates the 

4.2 km basin depth at the tested seismic site by 29%. This underestimation most likely arises 

from a more gradational material property contrast between the sedimentary basin and the 

basement rock, which violates an assumption of the H/V method. Thus the only conclusion is a 

lower bound for basin depth. The second test site, with a more moderate basin depth near the 

Sierran foothills provided an accurate estimate.  In the absence of a modification to the 

processing of microtremor data, we conclude the H/V method should only be used for basin 

depths thought to be < ~1.2 km thick. 
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FIGURES 

 
Figure 1.  IRIS web based time-series builder (IRIS, 2012). 

 
Figure 2.  Locations of seismic stations.  Red triangles show Easrthscope Transportable 

Array seismic stations in the San Jouquin Valley used in the basin depth analysis (IRIS, 2012). 
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Figure 3.  Unfiltered micrtotremor data.  From station T05C for the vertical (Z) channel. 

 
Figure 4.  Smoothed microtremor data.  Data from station T05C using a low-pass filter 
for the Z channel. 
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Figure 5.  Frequency spectrum.  N-S channel for station T05C. 

 
Figure 6.  Transfer function.  Calculated from all three channels at station T05C. 
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Figure 7.  Harmonics in a pipe with one open end (onlinephys, 2013). 

 
Figure 8.  Site response and transfer function for a sedimentary layer over bedrock (Seht 
and Wohlenberg 1999). 
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Figure 9.  Simple two layer model.  Defines the acoustic impedance in each layer.  The 
H/V method assumes a strong (≥2:1) impedance contrast between the bedrock and 
overlying sediments (Lane et al., 2008). 
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Figure 10.  Location map of Central Valley, California.  Showing refraction lines, reflection 
profiles and generalized geology (Holbrook and Mooney, 1987). 
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Figure 11.  Structural model for central axis profile (Holbrook and Mooney, 1987). 

 
Figure 12.  Sonic Log Curve Fitting Plot.  Velocity-depth function in the form of equation 5 fit 
to data points ( z , sv ) selected from nearby sonic log.  Curve fitting produced a ov value of 
121.2m/s and an x value of 0.3594. 
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Figure 13.  Transfer function.  Eastern basin station S05C. 

 
Figure 14.  Transfer function.  Eastern basin station Q04C. 
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Figure 15.  Transfer function.  Eastern basin station R04C. 

 
Figure 16.  Transfer function.  Eastern basin station T06C. 
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Figure 17.  Two-dimension depth-frequency relationship.  Plot showing depth-frequency 
relationship using Seht and Wohlenberg’s values for surface shear wave velocity ( sv ) and depth 
dependence ( x ). 
 

 
Figure 18.  Three-dimension plot.  Displays depth values over a range of frequencies ( rf ) and 

sv values using Seht and Wohlenberg’s x  value. 
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Figure 19.  Three-dimension plot.  Displays depth values over a range of rf and x  values using 
Seht and Wohlenberg’s value for sv . 
 

 
Figure 20.  Three-dimension plot.  Displays depth values over a range of sv values and x  
values holding rf  constant at 0.01 Hz . 
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Figure 21.  Three-dimension plot.  Displays depth values over a range of sv  and x  values 
holding rf  constant at 0.1 Hz . 
 

 
Figure 22.  Three-dimension plot.  Displays depth values over a range of sv  and x  values 
holding rf  constant at 0.35 Hz . 
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Figure 23.  Various microtremor methods.   Compares H/V and S/R methods that both use 
microtremor spectra to determine resonant frequency and/or site effects (Seht and Wohlenberg, 
1999) 
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APPENDIX 

Appendix A.  Cross-Section Modesto Area by Pujol, 1954. 

Appendix B.  Top Basement Map Modesto Area by Pujol, 1958. 

Appendix C.  Sonic Log: Redfern Ranches Well #A-1, Phillips Petroleum Company. 

Appendix D.  Matlab Code: ExampleRefCodes.m used to analyze seismic data and calculate 

resonant frequencies. 

Appendix E.  rsac.m 

Appendix F.  centeredFFT.m 

Appendix G.  lpfilter.m  









 
 

APPENDIX D 

ExampleRefCodes.m 

%% Calculate The H/V Transfer Funciton from Microtremor Data 
  
%% Load Seismic Data Code (Vertical Channel) 
% Let d1 equal our matrix with vertical channel data from the seismometer 
% T05C in the TA seismic array 
 
d1 = rsac('T05C.BHZ.2005.VEL.SAC'); 
 
%% Plot Code for Data 
  
figure(1); plot(d1(:,1),d1(:,2)); grid on ; xlabel('Seconds');... 
    ylabel('Ground Velocity (m/s)'); 
  
%% Run centeredFFT (Frequency Spectrum) for Vertical Channel 
% Remove Mean and Taper Endpoints 
 
zdata = d1(:,2); zdata = detrend(zdata,'constant'); 
zdata = zdata.*tukeywin(length(zdata),0.1); 
 
% Run centeredFFT 
 
[X1 freq] = centeredFFT(zdata,(1/d1(1,3))); 
 
% Plot Freq Spectrum 
 
figure(2); plot(freq,abs(X1)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude'); grid on; 
  
%% LP Filter Code 
 
lpfData = lpfilter(zdata,0.5,(1/d1(1,3)),-1); 
figure(77); plot(d1(:,1),lpfData);grid on; xlabel('Seconds');... 
    ylabel ('Ground Velocity (m/s)'); 
  
%% LP Filter Data FFT  
 
[X1 freq] = centeredFFT(lpfData,(1/d1(1,3))); 
figure(3); plot(freq,abs(X1)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude');grid on; 
 
% 'Water Level' Filter 
 
X1=X1+0.000000001; 
  
%% Load Seismic Data Code (North-South Channel) 
% Let d2 equal our matrix with north-south channel data from the 
% seismometer T05C in the TA seismic array 
 



 
 

d2 = rsac('T05C.BHN.2005.VEL.SAC'); 
  
%% Plot Code for Data 
figure(1); plot(d2(:,1),d2(:,2)); grid on; xlabel('seconds');... 
    ylabel('Ground Velocity (m/s)'); 
  
%% Run centeredFFT (Frequency Spectrum) for N-S Channel 
% Remove Mean and Taper Endpoints 
 
ndata = d2(:,2); ndata = detrend(ndata,'constant');  
ndata = ndata.*tukeywin(length(ndata),0.1); 
 
% Run centeredFFT 
 
[X2 freq] = centeredFFT(ndata,(1/d2(1,3))); 
 
% Plot Freq Spectrum 
 
figure(2); plot(freq,abs(X2)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude'); grid on; 
  
%% LP Filter Code 
 
lpfData = lpfilter(ndata,0.5,(1/d2(1,3)),-1); 
figure(77); plot(d2(:,1),lpfData); grid on; 
  
%% LPF Data FFT 
 
[X2 freq] = centeredFFT(lpfData,(1/d2(1,3))); 
figure(3); plot(freq,abs(X2)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude'); grid on; 
  
%% Load Seismic Data Code (East-West Channel) 
% Let d3 equal our matrix with east-west channel data from the seismometer 
% T05C in the TA seismic array 
 
d3 = rsac('T05C.BHE.2005.VEL.SAC'); 
  
%% Plot Code for Data 
  
figure(1); plot(d3(:,1),d3(:,2)); grid on; xlabel('Seconds');... 
    ylabel('Ground Velocity (m/s)'); 
  
%% Run centeredFFT (Frequency Spectrum) for E-W data 
% Remove Mean and Taper Endpoints 
 
edata = d3(:,2); edata = detrend(edata,'constant'); 
edata = edata.*tukeywin(length(edata),0.1); 
 
% Run centeredFFT 
 
[X3 freq] = centeredFFT(edata,(1/d3(1,3))); 
 



 
 

% Plot Freq Spectrum 
 
figure(2); plot(freq,abs(X3)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude'); grid on; 
  
%% LP Filter Code 
 
lpfData = lpfilter(edata,0.5,(1/d3(1,3)),-1); 
figure(77); plot(d3(:,1),lpfData); grid on; 
  
%% LPF Data FFT 
 
[X3 freq] = centeredFFT(lpfData,(1/d3(1,3))); 
figure(3); plot(freq,abs(X3)); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude');grid on; 
  
%% Transfer Function Calculation for H/V ratio 
 
t=sqrt((X2.^2 + X3.^2)./(2.*X1.^2)); 
t=abs(t); 
figure(4445); plot(freq,t); xlabel('Frequency (Hz)');... 
    ylabel('Spectral Amplitude');grid on 
  



 
 

APPENDIX E 

%RSAC    Read SAC binary files. 
%    RSAC('sacfile') reads in a SAC (seismic analysis code) binary 
%    format file into a 3-column vector. 
%    Column 1 contains time values. 
%    Column 2 contains amplitude values. 
%    Column 3 contains all SAC header information. 
%    Default byte order is big-endian.  M-file can be set to default 
%    little-endian byte order. 
% 
%    usage:  output = rsac('sacfile') 
% 
%    Examples: 
% 
%    KATH = rsac('KATH.R'); 
%    plot(KATH(:,1),KATH(:,2)) 
% 
%    [SQRL, AAK] = rsac('SQRL.R','AAK.R'); 
% 
%    by Michael Thorne (4/2004)   mthorne@asu.edu 
  
function [varargout] = rsac(varargin); 
  
for nrecs = 1:nargin 
  
  sacfile = varargin{nrecs}; 
  
%--------------------------------------------------------------------------- 
%    Default byte-order 
%    endian  = 'big-endian' byte order (e.g., UNIX) 
%            = 'little-endian' byte order (e.g., LINUX) 
  
endian = 'little-endian'; 
  
if strcmp(endian,'big-endian') 
  fid = fopen(sacfile,'r','ieee-be');  
elseif strcmp(endian,'little-endian') 
  fid = fopen(sacfile,'r','ieee-le');  
end 
  
% read in single precision real header variables: 
%--------------------------------------------------------------------------- 
for i=1:70 
  h(i) = fread(fid,1,'single'); 
end 
  
% read in single precision integer header variables: 
%--------------------------------------------------------------------------- 
for i=71:105 
  h(i) = fread(fid,1,'int32'); 
end 
  
  



 
 

% Check header version = 6 and issue warning 
%--------------------------------------------------------------------------- 
% If the header version is not NVHDR == 6 then the sacfile is likely of the 
% opposite byte order.  This will give h(77) some ridiculously large 
% number.  NVHDR can also be 4 or 5.  In this case it is an old SAC file 
% and rsac cannot read this file in.  To correct, read the SAC file into 
% the newest verson of SAC and w over. 
%  
if (h(77) == 4 | h(77) == 5) 
    message = strcat('NVHDR = 4 or 5. File: "',sacfile,'" may be from an old 
version of SAC.');  
    error(message) 
elseif h(77) ~= 6 
    message = strcat('Current rsac byte order: "',endian,'". File: 
"',sacfile,'" may be of opposite byte-order.'); 
    error(message) 
end 
  
% read in logical header variables 
%--------------------------------------------------------------------------- 
for i=106:110 
  h(i) = fread(fid,1,'int32'); 
end 
  
% read in character header variables 
%--------------------------------------------------------------------------- 
for i=111:302 
  h(i) = (fread(fid,1,'char'))'; 
end 
  
% read in amplitudes 
%--------------------------------------------------------------------------- 
  
YARRAY     = fread(fid,'single'); 
  
if h(106) == 1 
  XARRAY = (linspace(h(6),h(7),h(80)))';  
else 
  error('LEVEN must = 1; SAC file not evenly spaced') 
end  
  
% add header signature for testing files for SAC format 
%--------------------------------------------------------------------------- 
h(303) = 77; 
h(304) = 73; 
h(305) = 75; 
h(306) = 69; 
  
% arrange output files 
%--------------------------------------------------------------------------- 
OUTPUT(:,1) = XARRAY; 
OUTPUT(:,2) = YARRAY; 
OUTPUT(1:306,3) = h(1:306)'; 
  
%pad xarray and yarray with NaN if smaller than header field 



 
 

if h(80) < 306 
  OUTPUT((h(80)+1):306,1) = NaN; 
  OUTPUT((h(80)+1):306,2) = NaN; 
end 
  
fclose(fid); 
  
varargout{nrecs} = OUTPUT; 
  
end 
  



 
 

APPENDIX F 

function [X,freq]=centeredFFT(x,Fs) 
%this is a custom function that helps in plotting the two-sided spectrum 
%x is the signal that is to be transformed 
%Fs is the sampling rate 
  
N = length(x); 
  
%this part of the code generates that frequency axis 
if mod(N,2) == 0 
    k = -N/2:N/2-1; % N even 
else 
    k = -(N-1)/2:(N-1)/2; % N odd 
end 
T = N/Fs; 
freq = k/T;  %the frequency axis 
  
%takes the fft of the signal, and adjusts the amplitude accordingly 
X = fft(x)/N; %/N normalize the data 
X = fftshift(X); %shifts the fft data so that it is centered 
 
  



 
 

APPENDIX G 

function[lpfData] = lpfilter(data,lpcorner,samplingFrequency,order) 
% 
% Butterworth low pass filter 
%  
% INPUTS: 
% data: 1-d vector of data points 
% lpcorner: frequencies above are cut, or...frequencies below are preserved 
% samplingFrequency: frequency of data sampling, Hz 
% order: filter order. Defaults to 4 if not specified, or input as -1 
% 
% EXAMPLE USAGE: 
% [lpfData] = lpfilter(data,2,40,10) 
% [lpfData] = lpfilter(data,0.5,200,-1) 
% 
  
  
%% Check Inputs...need to fix this up.... 
  
if nargin > 4 || nargin < 1 
    fprintf('incorrect number of inputs\n') 
    fprintf('type: help lpfilter\n') 
    return 
elseif nargin < 2 
    fprintf('must choose a corner frequency!\n') 
    fprintf('type: help lpfilter\n') 
    return 
elseif nargin < 3 
    fprintf('must input a sampling frequency\n') 
    fprintf('type: help lpfilter\n') 
elseif nargin == 3 
    fprintf('defaulting to 4th order\n') 
    order = 4; 
end 
  
if nargin == 4 && order == -1 
    order = 4; 
end 
  
  
  
%%  Low Pass Filter Constructed & Applied Here 
  
fNorm = lpcorner / (samplingFrequency/2); 
[b a] = butter(order,fNorm,'low'); 
lpfData = filtfilt(b,a,data); 
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