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Recent ‘dynamical’ approaches to relativity by Harvey Brown and his colleagues have used 
John Bell’s own solution to a problem in relativity which has in the past sometimes been 
called ‘Bell’s spaceships paradox’, in a central way. This paper examines solutions to this 

problem in greater detail and from a broader philosophical perspective than Brown et al. 
offer. It also analyses the well-known analogy between special relativity and classical ther
modynamics. This analysis leads to the sceptical conclusion that Bell’s solution yields 

neither new philosophical insights concerning the foundations of relativity nor differential 
support for a specific view concerning the existence of space-time. 

1. Introduction 

Recently, Brown (2005) and Brown and Pooley (2001, 2006) have used a problem in 
special relativity concerning a pair of co-accelerating spaceships and a string, originally 
posed by Dewan and Beran (1959) and later restated by Bell (1993), hereafter ‘the DBB 

problem’, as part of a rather subtle argument for their ‘dynamical’ interpretation of 
relativity, which includes the contention that Minkowski space-time is not a real 
entity. The weight of neither Brown and Pooley’s dynamical approach to relativity 

nor their anti-realist conclusion rests exclusively on their discussion of Bell’s own 
solution to the DBB problem. However, Brown does cite Bell’s solution as a paradigm 
of how we ought to understand the familiar relativistic effect of length contraction 
using the dynamical approach to relativity (Brown 2005). 

The purpose of this article is to examine the DBB problem and its solutions in a 
broader philosophical context that is independent of arguments concerning the 
reality of space-time. The primary goal here is to explore the consequences of the 

DBB problem, if there are any, both for our understanding of length contraction and, 



more broadly, for the philosophical foundations of special relativity. Additionally, we 
will pursue in some detail the famous analogy between classical thermodynamics and 
special relativity, which Einstein framed explicitly as early as 1919 (Einstein 1982, 
228), for this is an analogy that both Brown and Bell use. We shall argue that once sol

utions to the DBB problem are properly understood and the analogy between special 
relativity and classical thermodynamics is clarified, the sceptical conclusion that the 
DBB problem offers no new insights concerning either the foundations of special rela

tivity or the ontology of the theory is difficult to resist. Because our motivations and 
philosophical methods are substantially different from those of Brown and his col
leagues, we do not engage in a point-by-point criticism of their views but indicate 

only philosophically significant differences where necessary. 
The article begins, in Section 2, with a statement of the DBB problem. In Section 3, 

we contrast the standard static case of length contraction, which we illustrate with 

Pauli’s discussion of Einstein’s 1911 twin-rod thought experiment, with the 
dynamic case of length contraction in the DBB problem. Even in the latter, 
however, one can choose to analyse the physical system in question from a purely 
kinematical point of view, which we explain in Section 4. We also fill a lacuna in 

such kinematical solutions to the DBB problem by introducing the notion of momen
tary proper length, with which one can tell a consistent story concerning how the 
proper length of the string changes in the DBB problem. In Section 5, we distinguish 

dynamical solutions to the DBB problem into phenomenological solutions and 
solutions from first principles. We discuss Cornwell’s phenomenological solution in 
Section 6 and Bell’s solution from first principles in Section 7, where we emphasize 

features of Bell’s solution not noted by Brown and his colleagues. In Section 8, we 
provide a detailed examination of the analogy between special relativity and thermo
dynamics and use it to illuminate Bell’s own use of this analogy and seemingly conflict
ing claims in the literature concerning the nature of length contraction. We conclude, 

in Section 9, that if these philosophical lessons are correct, it becomes more difficult to 
see Bell’s solution as offering support for either any specific interpretation of special 
relativity or a specific philosophical view about the reality of space-time. 

2. The DBB Problem 

When Bell (1993) reintroduced a problem originally discussed by Dewan and Beran 
(1959) to illustrate his non-standard pedagogical approach to relativity, he did so 

roughly as follows. Consider three identical spaceships A, B, and C arranged in a 
line in two-dimensional Minkowski space-time in a state of relative rest in an inertial 
frame F with C equidistant between A and B. A light, taught string is stretched between 
equally placed protrusions on A and B (Dewan 1963), though one routinely idealizes 

the spaceships as point particles. C emits a light pulse in opposite directions toward A 
and B. When A and B receive the light signal, they accelerate executing ‘identical 
acceleration programmes’ (Bell 1993, 67) as they travel along the positive x-direction 

of the Cartesian coordinate system S adapted to F. Does the string eventually break? 

  



The answer to this question has, in the past, eluded even experts, as Bell famously 
reports (Bell 1993, 68), though it would not do so today. A growing number of con
tributions to the physics literature, which routinely assume for pragmatic reasons, as 
we will, that the ships accelerate with identical constant proper accelerations, show 

unequivocally that if the string is light enough and the ships accelerate for long 
enough, the string will indeed break—see, for example Dewan and Beran (1959), 
Bell (1993), Cornwell (2005), Flores (2005), the recent exchange between Redžić 

and Peregoudov (Redžić 2008; Peregoudov 2009; Redžić 2009), and references 
therein. Furthermore, some of these contributions show that the standard geometrical 
approach to special relativity is sufficient to arrive at the conclusion that the string will 

indeed eventually break. Nevertheless, understanding how these solutions can 
be categorized as either kinematical or dynamical and understanding their respective 
scope, especially when we focus not on whether the string breaks but on how the length 

of the string changes, can yield a better understanding of the analogy between classical 
thermodynamics and special relativity. However, before explaining these two types of 
solution, let us note how the DBB problem differs from the standard cases of length 
contraction discussed in elementary textbook presentations of relativity (e.g. French 

1968; Rindler 1991; Taylor and Wheeler 1992) and qualitative presentations of relativ
ity by philosophers (e.g. Maudlin 1994; Kosso 1998; Lange 2002). 

3. Standard Cases of Length Contraction and the DBB Problem 

In the standard static case of length contraction, one compares the length of an 

extended object W originally at rest in an inertial frame F—which remains at rest in 
F as the proper time tW elapses, as measured by a clock on, say, one of the spatial 
end points of W—with the length of W as reckoned in a different inertial frame F ′ , 
where F ′ moves with a constant non-zero velocity v relative to F. This is the type of 

length contraction Einstein first discussed in 1905 (Einstein 1952a), Minkowski inter
preted geometrically in 1908 (Minkowski 1952), and Pauli described as ‘not a property 
of a single measuring rod taken by itself, but . . . a reciprocal relation between two such 

rods moving relatively to each other’ (Pauli 1958, 12 –13). Pauli describes length con
traction as a relationship between rods because he is assuming, as Einstein originally 
did, that the length of a rod is a primitive notion in relativity that one uses to define 

distance. Significantly, Pauli reaches his characterization of length contraction through 
an examination of Einstein’s 1911 twin-rod thought experiment, which merits our 
attention. 

Consider two rods A1B1 and A2B2 of equal rest length l0 whose spatial end points are 
A1, B1 and A2, B2, respectively. Let S be an inertial coordinate system in which the two 
rods move with equal and opposite velocity v. Because of the symmetry of the 
configuration, the end points of the rods A1 and A2, and B1 and B2, will overlap sim

ultaneously in S. Finally, suppose that when A1 coincides with A2 and B1 coincides 
with B2, we mark on another rod at rest relative to S these spatial end points and des
ignate the marks A∗ and B∗, respectively. According to Pauli, the distance l between A∗ 

and B∗ will satisfy l ¼ lo/g(v), where g(v) is the usual Lorentz factor. 



Einstein’s twin-rod thought experiment compares the length of one of the two 
‘moving’ rods, say A1B1, in its rest frame F relative to which it continues to remain at 
rest with the length of that same object A1B1 relative to another inertial frame F ′ 

that moves with a velocity v relative to F. From this perspective, the role of the 

second rod A2B2 and the marking procedure that generates A∗B∗ is merely to avoid 
using clocks to ensure that one is reckoning the length of A1B1 along a simultaneity 
slice for F ′ . Consequently, Pauli is correct that this thought experiment shows that 

(a) the rest length of A1B1 does not change but (b) there is a reciprocal relation of 
length contraction among objects at rest in F and objects at rest in F ′ . 

In contrast to this standard static case of length contraction, the DBB problem 

involves comparing the length of an object W originally at rest relative to the inertial 
frame F, relative to which the object then accelerates in a very specific way as proper time 

tW elapses, with the length of W relative to a different inertial frame F ′ relative to which 

W is at rest at some later proper time tW. Strictly speaking, in the configuration of the 
DBB problem, this comparison can be conducted only after all parts of W have ceased 
to accelerate and W has come to rest in F ′ . During the acceleration period, there does 
not exist an inertial frame relative to which all parts of W are at rest, and hence the 

notion of a proper length for W is not defined. 
In the standard static case, nothing happens to W despite the reciprocal relation of 

length contraction, because W is in a state of uniform motion. There is no dynamics in 

this static case, in the straightforward sense that we are considering a physical con
figuration in which no forces (or fields) affect the motion of W. Additionally, W has 
no internal dynamics; or at least one can say that whatever internal physical processes 

occur, W remains in a state of equilibrium and none of its macroscopic, observable 
quantities change. Whence, the standard static case of length contraction is often 
called a ‘kinematical effect’. 

However, in the DBB problem, the physical system of interest has a non-trivial 

dynamics. There are external forces acting on the spatial end points of the string W 
as the engines accelerate the ships. These external forces are transmitted to the interior 
of W where, as internal forces, they ‘pull’ the parts of W along. Consequently, W does 

not remain in a state of internal equilibrium and whatever happens to W is not merely 
a ‘kinematical effect’, since it is the result of a combination of non-trivial external and 
internal dynamics. This last qualification is important, for there is one clear and well-

known case where A and B accelerate, i.e. where the spaceships– string system has an 
external dynamics, but where there is no interesting internal dynamics. 

Consider a case where A and B do not execute ‘identical acceleration programmes’ 

but instead accelerate in such a way that at any instant, as reckoned by an inertial 
observer momentarily co-moving with either A or B, any part of the string W is at 
rest relative to any other part of the string. In this case, W executes Born rigid 
motion (BRM), as described by, for example, Pauli (1958, 131– 132) and Rindler 

(1991, 34). An object that executes BRM moves in such a way that, as judged by an 
inertial observer momentarily co-moving with either one of its spatial end-points, 
its proper length remains constant. Thus, if the spaceships had executed BRM, then 

the string would experience no relativistic stresses and if the ships ran out of fuel 



after the appropriate amount of proper time elapsed for each of them so that A and B 
would begin to coast simultaneously in the same inertial frame F ′ , the final length of 
the string would be equal to its original length. Thus, in this case, although the external 
dynamics is non-trivial, the accelerations on each part of the string are selected pre

cisely so as not to give rise to any internal changes to W, i.e. so as not to disturb W 
out of its state of internal equilibrium. Precisely what physical process can produce 
such accelerations is, of course, a subtle, and a different, question altogether. Neverthe

less, since the internal state of W does not change as W executes BRM, one can classify 
this as a case of static length contraction. 

4. Kinematical Solutions to the DBB Problem 

Although the spaceships –string system in the DBB problem has a non-trivial 

dynamics, one can choose to analyse its motion from a purely kinematical perspective, 
i.e. by neglecting the sources of acceleration and the details of how the forces are trans
mitted within the system. Of course, in such a treatment one recognizes that one is 
bracketing important details of the relevant physics. Nevertheless, such a kinematical 

analysis is useful both because it yields the qualitative solution that if the string is light 
enough and the ships accelerate for long enough, the string will break, and because 
with additional quantitative stipulations, it yields quantitative results concerning 

when and where the string will break—see, for example, Rindler’s problem 13 
(Rindler 1991, 37). 

One obtains the qualitative solution by focusing on the initial and final states of the 

ships –string system. Suppose the two ships A and B in the DBB problem are originally 
a distance d apart in S. Furthermore, suppose that to avoid using the notion of the 
length of a rod as a primitive in our reasoning we reckon distances using the familiar 
radar signalling method. One can define the distance DAB from A to B as reckoned by A 

at an event a [ A, where we now use A and B also to designate the world lines of the 
ships, where no ambiguity threatens. The distance DAB is the amount of time, as 
measured by a momentarily co-moving inertial observer (MCIO) I to A at a, that 

light takes to travel from A to B, which I can measure in light seconds, say, by bouncing 
a light pulse off B and dividing the time of flight of the light pulse in half. Prior to the 
acceleration period, DAB ¼ d and clearly DBA ¼ DAB, where DBA is the obvious ana

logue of DAB. Once all acceleration has ceased, an elementary calculation shows that 
DAB ¼ d . g(v) ¼ DBA, where g(v) is the familiar Lorentz factor and v is the final vel
ocity of the ships relative to F. So, for example, if the final speed of the ships in S is one 

half the speed of light, the distance DAB ¼ d . g(v) the string must be able to span, once 
all acceleration has ceased, is approximately 1.15d. If the string is not flexible enough 
to stretch this far, or to any lesser value in the interval (d, d . g(v)], then the string must 
break. 

One can thus solve the DBB problem in at least two equally satisfying ways. One can 
say that although the coordinate distance between A and B in S is constant and equal to 
d throughout the entire history of the ships (as described in F), the distance the string 

must span in its final rest frame after all acceleration has ceased is not d but rather the 



longer distance d . g(v). Alternatively, one can reason counterfactually. In order for the 
string to remain taught at the same tension, without experiencing any additional 
stretching forces, the ships A and B would have to execute BRM. Had the ships 
been executing BRM, the coordinate distance from A to B in S would diminish and, 

after all acceleration had ceased, it would have been less than d. 
1 

However, since the 
final coordinate distance in S between the two ships is equal to d, the string was 
stretched. One can append to this kinematical account an explanation of how for A, 

B is pulling ahead since A measures the distance DAB to B along A’s increasingly 
inclined simultaneity slices whereas for analogous reasons, B reckons that A is 
falling farther and farther behind—see, for example, Flores (2005). 

The kinematical solution to the DBB problem leaves the following question 
unanswered: how exactly does the proper length of the string change during the accel
eration period? Somewhat surprisingly, there is no straightforward answer to this 

question in a kinematical analysis of the DBB problem, because once the ships 
begin accelerating, there does not exist an inertial frame relative to which the front 
and back ends of the string are in a state of relative rest. There is no such thing as 
‘the rest frame of the string’ once acceleration begins until after all acceleration has 

ceased and the string comes to rest in F ′ , assuming it does not break, of course. 
Thus, we can only say that before the ships began accelerating the proper length of 
the string was d and, assuming either that the ships did not accelerate for long 

enough to break the string or that the string was flexible enough to withstand the 
stretching, the proper length of the string after all acceleration ceased is d . g(v). 
However, it seems we must remain silent about precisely how the proper length of 

the string changes during the acceleration period. Is this the best we can do? 
An analysis of the conditions for the applicability of the notion of proper length 

seems to indicate otherwise. Suppose one asks: what are the necessary conditions 
for the applicability of the notion of proper length? One can state these conditions 

in ‘coordinate-free’ language as follows: 

1. There exists a space-like line S that bisects W so that at the points of intersection a 
[ A of S and A and b [ B of S and B, the four-velocities va of A and vb of B are 
parallel (using the well-defined notion of parallel four-vectors and appealing to the 
obvious two-dimensional versions of the four-dimensional vectors). 

2. The four-velocity va—and necessarily vb because of (1) above—is orthogonal to 
the space-like line S. 

In the two-dimensional cases we are considering, it is a straightforward exercise to 
show that (1) and (2) obtain both in the familiar case of an object W that moves iner
tially in Minkowski space-time and in the case of an object whose parts execute BRM. 

There are two telling cases where the conjunction of conditions (1) and (2) is not 
true. First, consider an object W whose spatial end points A and B move inertially 
with a non-zero constant relative velocity v. There does not exist a space-like line S 
such that the four-velocities va and vb are parallel. Thus, condition (1) is false and 
the notion of proper length does not apply to W. There does exist an inertial frame 



in which the magnitudes of the relevant velocities are equal, but in that frame the vel
ocities have opposite directions. Intuitively, W does not have a proper length, because 
there does not exist an inertial frame in which its spatial end points are simultaneously 
at rest. Note that even in this case one can define the distance DAB between A and B at 

an event a [ A and its analogue DBA. Thus, this case is particularly useful for dis
tinguishing the notion of distance from the notion of length: a proper length is 
always a distance between the spatial end-points of an object but the distance 

between the spatial end-points of an object is not always a proper length. 
The second case to consider is the accelerating portions of A and B in the DBB 

problem. The notion of proper length does not apply to the string while either one of 

the ships is accelerating, because the conjunction of conditions (1) and (2) above is 
false. However, it is only condition (2) that is false, for condition (1) is true in this 
case. This is significant for it entails that there exists a pair of world lines, which we 

can construct by extending va and vb, that can be regarded as the world lines U1 and 
U2 of the spatial end points of an inertially moving object U to which the notion of 
proper length does apply. This object U is the two-dimensional analogue of an MCIO 
as U momentarily co-moves with the string W. Figure 1 displays the relevant space

time diagram for U and W, which momentarily co-move when U1 is coincident with 
A at event a and U2 is coincident with B at event b. 

2 
The events a and b are simultaneous 

in F. Figure 2 displays the relative spatial location of U, the spaceships, and the string Wat 

a series of equally separated coordinate times (in S). U and W both move left to right. 
U moves with constant coordinate velocity v ¼ va in S, while the ships move with 
increasing coordinate velocity w. At coordinate time ta, W moves with coordinate 

velocity w ¼ v, and U1 and U2 momentarily co-move with A and B respectively. 

Figure 1 Space-time diagram for accelerating phase of Bell’s spaceships problem. The inertially moving object U 

and the string W momentarily co-move when U1 is coincident with A at event a and U2 is coincident with B at 

event b. 



The observation that the ships A and B momentarily co-move with U1 and U2, 

respectively, at coordinate time ta suggests that we can define the momentary proper 
length l of the string W at the ‘instant’ picked out by the events a and b, i.e. when 
the proper times for A and B respectively satisfy ta ¼ tb, as the value of the proper 
length of U. 

3 
Notice that so defined, during the acceleration phase, l is neither 

equal to the coordinate distance d (in S) between the spaceships nor to the coordinate 
length of U (in S). The value of l is also not equal to either one of the distances DAB|a 

or DBA|b. Yet, one might ask, why should we regard l as having anything to do with the 

length of the string W? 
First, notice that as stated the question is ill-posed, for it presupposes that there is 

such a thing as ‘the length of the string’. However, the term ‘the length of the string’ is 

too ambiguous to designate any specific quantity. If we interpret ‘the length of the 
string’ as meaning ‘the proper length of the string’, we are closer to asking a meaningful 
question. Still, the question may be entirely inappropriate, precisely because there is no 

such thing as ‘the proper length of the string’ once acceleration has begun. A better way 
to ask our question is: can we define a quantity that can reasonably be interpreted as 
the proper length of the string ‘at an instant’, where we also specify how such an 
‘instant’ is to be selected (as the notion of ‘at an instant’ is obviously not Lorentz invar

iant)? There are two considerations that suggest that our l is such a quantity. 
First, consider the situation from the ‘3 + 1’ view depicted in Figure 2. Suppose that 

the ships and the string W cease to accelerate when U1 is coincident with A at the event 

a and U2 is coincident with B at the event b, i.e. when A and B have each reached the 
coordinate velocity w ¼ v. Furthermore, suppose that in S the coordinate length l of U 
is equal to the coordinate length d of W when w ¼ v. After acceleration has ceased, we 

can conclude that the proper length l of both U and W is l ¼ d . g(va). Notice that the 
‘instant’ is picked out by the coincidence of the world lines U1 and A at the event a and 
U2 and B at b. 

Yet, that W stopped accelerating should not matter. Consider the following analogue 
to Einstein’s twin-rod thought experiment. Suppose when U1 is coincident with A and 
U2 is coincident with B, two marks M1 and M2 are made on a rod at rest in F. The coor
dinate distance (in S) between these two marks is clearly d. The momentary proper 

length l of U ‘when’ the marks were made, i.e. at the instant picked out by the two 
events ‘U1 is coincident with A’ and ‘U2 is coincident with B’, satisfies l ¼ d . g(va). 
Finally, since at that ‘instant’ not only were the spatial end points of W coincident 

with the spatial end points of U but the end points of both U and W moved with 

Figure 2 Space diagram illustrating the relative positions of the inertially moving object U, the spaceships, and 

the string W at a series of equally separated coordinate times in the original rest frame S of the ships– string 

system. 



the same coordinate velocity and hence were in a state of relative rest, we can say that l 
is the momentary proper length of W. Of course, none of this reasoning depends on 
the specific values of the proper times ta and tb for the events a [ A and b [ B, 
respectively, so long as a and b occur in the accelerating portion of A and B and ta 

¼ tb. Consequently, one can say that at the proper time ta ¼ tb, where a and b are 
any such simultaneous events in F, the momentary proper length of the string W is l. 

Second, suppose we ‘linearize’ the curved trajectories of A and B so that they become 

the concatenation of a series of ‘small’ line segments, as depicted in Figure 3. We do 
this by concatenating first-order approximations of A and B at a series of events on 
A and B, respectively, separated by equal intervals of proper time. Each corresponding 

pair of line segments that approximates the curves A and B can be regarded as the 
spatial end points of an inertially moving object Wi that co-moves with another iner
tial object U of proper length l for a small and finite amount of proper time. Thus, 

while the string ‘occupies’ the rest frame of U, its proper length is l. So long as the 
line segments are long enough, it also happens that DAB ¼ DBA and DAB ¼ l. 
However, as we consider the limit in which the line segments become infinitesimally 
small, the quantities DAB, DBA, and l are no longer equal.

4 

One can easily verify that so defined, the value of the momentary proper length l for 
an arbitrary object W is always equal to the proper length of W both when W moves 
inertially and when W’s parts execute BRM. Furthermore, it is clear that l, which is a 

Lorentz-invariant quantity, reduces to the corresponding Newtonian notion in the 
appropriate limit, though defining such a notion in the Newtonian context is otiose. 

Still, while one might agree that l is mathematically well-defined and has the prop

erties just enumerated, one could argue that it is the interpretation of l as the momen
tary proper length that is questionable since we seem to have arbitrarily privileged an 
inertial frame (maybe F or the rest frame of U). However, this is not the case. As we 
have suggested above, the ‘moment’ at which l is defined is picked out by the Lorentz

invariant criterion (1) for the applicability of the notion of proper length. Because we 

Figure 3 A first-order approximation of the curved trajectories A and B, illustrating that the string momentarily 

‘occupies’ the rest frame of U with which it is coincident for a small but finite amount of proper time. 



are assuming that the two ships in the DBB problem move with the same constant 
proper acceleration, which is a sufficient but not necessary condition for the ships 
to be executing ‘identical acceleration programmes’, for any given event a in the accel
erating portion of A, there exists a unique event b [ B such that the four-velocities va 

and vb are parallel. This entails that the momentarily co-moving object U we construct 
is also unique and hence the same for all inertial observers. 

Consequently, one can use the momentary proper length l to give a consistent 

account concerning the proper length of the string in the DBB problem. We no 
longer have to say that we must remain entirely silent about the proper length of 
the string while it accelerates, only to discover that once all acceleration has ceased, 

the proper length of the string has increased. Instead, one can say that prior to the 
events at which A and B begin accelerating, the value of l for the string is constant 
and equal to d. The momentary proper length l then increases monotonically, since 

l ¼ d . g(vm), where vm is the velocity of A relative to S at an event m on the accel
erating portion A. If the string withstands the stresses that occur during the accelerat
ing phase, then its final momentary proper length is just l ¼ d . g(vf), where vf is the 
final velocity of A and B in S. Finally, note that, at the very least, condition (1) for the 

applicability of proper length is also a necessary condition for the applicability of the 
momentary proper length. Thus, it does not follow that there always exists a ‘moment’ 
at which we can apply the notion of momentary proper length for an object whose 

spatial end points move arbitrarily. 

5. Types of Dynamical Solutions to the DBB Problem 

There are two types of dynamical solutions to the DBB problem: phenomenological 
solutions and solutions a physicist might describe as solutions ‘from first principles’. 
Bell’s solution to the DBB problem (Bell 1993) is of the latter type. The former type 

of solution, which Cornwell (2005) offers, has been generally overlooked by philoso
phers. Before examining philosophically Cornwell’s and Bell’s solutions, the following 
brief remarks on the distinction between these two types of dynamical solutions seem 

germane. 
In general, the contrast between a phenomenological solution to a problem and a 

solution from first principles has an entrenched use among physicists. Roughly, it is 

used to indicate the difference between solving a problem by attending to quantities 
that are comparatively easily measured and typically characterize macroscopic features 
of a physical system, with solutions that attend to quantities that are comparatively 

difficult to measure and typically characterize microscopic features of a physical 
system. This contrast is most famously exemplified in the difference between classical, 
phenomenological thermodynamics and the kinetic theory of gases. However, it is also 
exemplified in the difference, say, between calculating the current in a conductor phe

nomenologically, e.g., using Ohm’s law, versus calculating the same current from first 
principles as one does by providing a theoretical description of the microscopic con
stituents of the conductor in solid-state physics. It may even be, though this is some

what speculative, that this is the type of distinction Einstein tried to convey to the 



public in his newspaper article for the London Times in 1919 when he described the 
difference between ‘principle’ and ‘constructive’ theories (Einstein 1982, 228). Thus, 
this classification of dynamical solutions to the DBB problem is not intended to intro
duce yet another philosophical distinction between ‘levels’ of theories but is intended 

merely to describe the physics in a way that is amenable to both physicists and 
philosophers. 

6. Cornwell’s Phenomenological, Dynamical Solution 

The string in the DBB problem experiences differential forces once the acceleration 
period begins. A phenomenological approach to the DBB problem attends to the relevant 
forces, masses, and accelerations and aims to derive at least the conditions under which 

the string must break. Additionally, one can use this approach to calculate, as Cornwell 
does, for a given string, the amount of time one would have to wait in order for the string 
to break, assuming, of course, that the ships do not run out of fuel first and begin to coast. 

However, as Cornwell suggests, because one is attending to the dynamics of the problem, 
the problem itself needs to be more carefully specified. As formulated by Bell, the DBB 
problem treats the dynamical effects of the string on the ships–string system as negligible 

and hence ignorable. However, in more realistic versions of the problem, the string, or 
‘cord’ as Cornwell calls it, exerts a force on the ships and affects their state of motion. 
For these reasons, Cornwell restates the DBB problem as follows: 

Two identical ships are floating in flat space at relative rest, the one directly in front 
of the other, and with a cord tied between them, attached at identical points. At the 
same moment, both ships gradually fire up their identical engines to an identical 
steady thrust, doing so identically according to identical clocks located at identical 
places in the ships. They run their engines for long enough to reach half light speed 
relative to the original rest frame. What happens to the cord? Does it break or does it 
not? (Cornwell 2005, 699) 

Immediately, Cornwell explains that the correct answer to the question is ‘it depends’. 
If the string is strong enough, the entire ships –string system will execute something 

very close to BRM and the string will not break. If the string is not strong enough, 
the trajectories of the ships deviate appreciably from the trajectories of ships executing 
BRM, and the string will break. Notice that in this scenario, although the two ships fire 

their engines ‘identically’, in the sense Cornwell specifies in the above quotation, their 
world lines are not ‘parallel’ in S, i.e. A cannot be brought into coincidence with B by 
performing a spatial translation unless we ignore the dynamical effects of the string on 

the ships. A closer examination of Bell’s requirement that the two ships execute ‘iden
tical acceleration programmes’ illustrates the main difference in Cornwell’s formu
lation of the problem. 

Bell nowhere states precisely what he means by stipulating that the ships in the DBB 

problem execute ‘identical acceleration programmes’. However, a reasonable interpret
ation of this requirement can be developed as follows. Let us assume, with Bell, that A 
and B are identical ships. Let us further assume that they carry identical clocks (with 

which to measure proper time t) and identical accelerometers (with which to measure 



proper acceleration). Finally, let us assume that when A and B receive the light signal 
from C, they set their clocks to t ¼ 0. One can then define: 

The two spaceships A and B ‘have’ or ‘execute’ identical acceleration programmes if, 
and only if, their respective accelerometers record equal values of proper accelera
tion for equal values of elapsed proper time. 

More abstractly, an acceleration program is simply a set of ordered pairs where the first 
element is a value of proper time and the second element is a value for the proper 
acceleration of the ship. Physically, ‘identical acceleration programmes’ can be realized, 

for example, by having identical on-board computers with identical acceleration pro
grams adjust the throttle on the ships’ engines continuously so that each ship achieves 
the desired value of proper acceleration at the desired proper time (cf. Cornwell 2005, 
702). Notice that, on this interpretation, ships that co-accelerate with the same con

stant proper acceleration instantiate only one special case of ‘identical acceleration 
programmes’. 

One can easily construct an acceleration program so that after the acceleration period 

ends, the length of the string is any value greater than or even equal to d. As an example 
of the latter, consider an acceleration program in which the two ships accelerate with the 
same constant proper acceleration for an amount of proper time t0 and then decelerate 

with the same constant proper acceleration for the same amount of proper time t0 and 
hence return to a state of rest relative to S after all acceleration has ceased. Physically, 
this acceleration program could be realized by ships that have identical engines front 

and back and the appropriate navigation computers (as described above). The back 
engine of the ship fires only for an amount of proper time t0 at which instant (assuming 
that we can ignore issues concerning the relativity of simultaneity that arise if we con
sider the ship to a have non-negligible spatial separation between the two engines), the 

identical front engine fires only for an amount of proper time t0. If the string can with
stand the stresses ‘during’ the acceleration phase (roughly speaking), it will not break 
and will return to its original length d once all acceleration has ceased. Even a purely 

kinematical analysis of the problem yields this conclusion. Thus, the answer to Bell’s 
own version of the DBB problem is actually the same as the answer to Cornwell’s 
problem, i.e., ‘it depends’, though for importantly different reasons. 

For Cornwell, the reason why the answer to his problem is ‘it depends’ is that he is 
including the non-trivial dynamics of the string in the DBB problem. Cornwell 
suggests that we approach the problem by considering the force that the string 
would have to exert in order for the two ships to execute BRM. If at some time the 

string cannot exert this force on the ships, because it is not strong enough, then the 
string must break. Cornwell estimates that, if we assume that the original length of 
the string is L, the acceleration of the mid-point of the string is A and the ships 

have a mass M, the entire ships – string system executes rigid motion if the string is 
able to exert a force F ≈ (1/2)(MA

2
L), in c ¼ 1 units. Cornwell then uses this 

approximation to develop the following example: 

Consider a spider weighing one gram hanging from a thread it has spun which is of 
length one meter. Attach this between ships each weighing about one hundred 



metric tonnes. Ignoring the non-relativistic effects, how long would one have to wait 
to reach half the speed of light without the thread breaking? T is easily calculated to 
be a little more than twenty minutes. (Cornwell 2005, 701) 

Thus, Cornwell’s phenomenological approach gives concrete results rather quickly. As 
is often the case, such results would be far more difficult to obtain from first principles. 

7. Bell’s Dynamical Solution from First Principles 

Bell’s approach to solving the DBB problem is quite different from Cornwell’s; 
Bell wishes to show that the string contracts relative to the inertial frame F because 

of the detailed physical processes that the constituents of the string experience. Bell 
assumes that the string is composed of Bohr-like atoms and sets out to determine, 
using Maxwell’s theory, how the circular orbit of an electron will deform once its 

nucleus begins to accelerate gently. Bell admits, of course, that the model he adopts 
for the constituents of the string, governed as it is by an inadequate, non-quantum 
mechanical theory of matter, is rather crude. However, Bell’s primary aim in his 
paper is pedagogical: he wishes to show that by using the theoretical resources with 

which students are already familiar, namely Maxwell’s theory, one can derive some 
of the main results of relativity by working entirely within the context of one inertial 
frame. Furthermore, Bell quips, ‘it is often simpler to work in a single frame, rather 

than to hurry after each moving object in turn’ (Bell 1993, 77). 
Determining changes to the shape of the circular electron orbit is, in outline, 

a straightforward calculation consisting of two main steps. First, one finds an 

expression for the field produced by the nucleus (ignoring the field produced by the 
electron itself) using Maxwell’s equations. Second, one finds the electron’s equation 
of motion for the electron in that field and solves it. However, the details of this cal
culation are rather subtle both because Bell must make several approximations, given 

the complexity of even this simple configuration, and because to derive length contrac
tion Bell has to use what is in effect the relativistic definition of momentum, though he 
does not introduce it that way, for important reasons as we shall presently see. 

The exact equations for describing the field produced by the gently accelerating 
nucleus of charge Ze, Bell explains (Bell 1993, 70), are known. These equations, 
which Bell provides in a footnote (Bell 1993, 78 – 79), are rather complex because 

even in classical electrodynamics—which is the theory Bell invokes—changes to the 
field some finite distance from its source do not happen instantaneously. Conse
quently, the exact field equations involve retarded potentials. Furthermore, there are 

good reasons for requiring the acceleration of the nucleus to be gentle, the most 
obvious of which is to ensure that the electron is not stripped from the nucleus. For 
these reasons, Bell suggests, we can instead use the equations produced by a charge 
Ze that moves with a uniform velocity V, which, as Bell reports, ‘differ only slightly’ 

(Bell 1993, 70) from the exact field equations. Perhaps due to the nature of his 
article, Bell does not bother to state the accuracy of any approximation he makes in 
the paper, of which there are several including this one. He paints with rather broad 

brush strokes and leaves it to the industrious reader to fill in the details. 



     

The second step is to write down the equation of motion for the electron and solve 
it. To obtain the equation of motion for the electron, Bell uses the classical Lorentz 
force law, which following Bell, one can write as ṗ = − e E + ṙ × B( ), where p, E, 
and B are the familiar three-vectors for the momentum of the electron, the electric 

field, and the magnetic field, r is the position vector for the electron, and we are 
using cgs units with c ¼ 1. Ordinarily, one would rewrite this equation by using the 
Newtonian relationship between velocity, momentum, and mass ṙ = p/m to eliminate 

ṙ in the Lorentz force law and obtain an equation of motion. However, Bell explains 
that this Newtonian relationship is inadequate because it implies that ‘by acting 
long enough with a given electric field an electron could be taken to an arbitrarily 

high velocity’ (Bell 1993, 70). Bell then explains that this is unacceptable because 
one finds empirically that the speed of light is a limiting velocity and that ‘the exper
imental facts are fitted by a modified formula proposed by Lorentz’ (Bell 1993, 70). 

In special relativity, the formula Bell attributes to Lorentz is known simply as the 
definition of relativistic three-momentum, a formula which, for example, Einstein 
goes to great lengths to obtain in his 1935 derivation of mass-energy equivalence (Ein
stein 1935; Flores 1998) and which Mermin and Feigenbaum also deduce in their 

modified version of Einstein’s original 1905 derivation of mass-energy equivalence 
(Mermin and Feigenbaum 1988). For Bell, however, the formula for the relativistic 
three-momentum, which one can write, following Bell, as ṙ = p/ m2 + p2

( ) 1/2
, where 

p 2 is the squared (Euclidean) magnitude of p, is obtained empirically. This implicitly 
imports another approximation into Bell’s derivation, for such a formula is presum
ably obtained by carrying out measurements and then using a curve-fitting algorithm. 

More importantly, it is as if Bell wants to imagine how we might have arrived at rela
tivistic results, such as length contraction, from a purely Newtonian understanding of 
the world supplemented only by an empirical finding that modifies the definition of 
momentum. If this is correct, then, it seems the dot over the r and p must indicate, 

though Bell nowhere says so, differentiation with respect to Newtonian time, and 
not with respect to either relativistic coordinate time or relativistic proper time. 

To obtain the equation of motion, one then substitutes the empirically obtained 

expression for ṙ and the expressions for the E and B fields produced by the nucleus 
Bell had previously obtained into the Lorentz force law to obtain a system of 
coupled differential equations that do not admit an exact solution. As Bell correctly 

notes, ‘one can programme a computer to integrate these equations’ (Bell 1993, 70). 
If one does, Bell continues, one finds that ‘if the acceleration of the nucleus is suffi
ciently gradual, the initial circular orbit deforms slowly into an ellipse. . . the contrac

tion is to a factor
     
1 − V2/c2

) 
’ (Bell 1993, 70). Since the results of a numerical 

integration performed on a computer are numbers, we find here evidence of 
another approximation. 

After making yet another approximation and deriving what Bell describes as the 

Lorentz transformations, though we can now appreciate that they are only approxi
mately so, Bell suggests that one can easily expand the line of reasoning he has 
pursued to macroscopic objects. He says: 



by a trivial extension this reasoning applies not only to a single electron interacting 
with a single electromagnetic field, but to any number of charged particles, each 
interacting with the fields of all others. This allows an extension to very complicated 
systems of some of the results described above for the simple atom. (Bell 1993, 73) 

Whether an extension of the reasoning is as trivial as Bell suggests and precisely which 
results derived for the simple atom can be so extended is rather subtle. As Bell himself 
points out, even if we focus only on one electron and the field produced by its nucleus, 

whether the acceleration in question is gentle enough depends on how ‘tight’ the orbit 
is. Consequently, the conclusion that the string will contract obtains only ‘for a coher
ent dynamical system whose configuration is determined essentially by internal forces 
and only a little perturbed by gentle external forces accelerating the system’ (Bell 1993, 

75), which Bell is willing to assume. Bell then concludes: 

In the rocket problem in the introduction, the material of the rockets, and of the 
thread, will Lorentz contract. A sufficiently strong thread would pull the rockets 
together and impose Fitzgerald contraction on the combined system. But if the 
rockets are too massive to be appreciably accelerated by the fragile thread, the 
latter has to break when the velocity becomes sufficiently great. (Bell 1993, 75) 

One thus arrives, with Bell, at the qualitative conclusion obtained from both kinema
tical solutions and dynamical, phenomenological solutions. Furthermore, the above 
quotation indicates that Bell recognizes the value of dynamical, phenomenological sol

utions, for the last two sentences of the above quotation do not report results Bell has 
derived. 

8. The Analogy with Thermodynamics and Length Contraction 

An examination of the analogy between special relativity and classical thermodyn
amics can illuminate the relationship between the different solutions to the DBB 

problem and the philosophical foundations of special relativity. There are lessons to 
uncover not only concerning Bell’s use of this analogy (Bell 1992), which Brown 
cites favourably (Brown 2005, 125– 126), but also concerning seemingly conflicting 

claims about how to understand length contraction philosophically. For example, 
the title of Martı́nez’s review of Brown’s book (Brown 2005) rhetorically asks: 
‘There’s no pain in the FitzGerald contraction, is there?’ (Martı́nez 2007). Superficially, 

Martı́nez’s question resembles Maudlin’s when the latter tests his reader’s comprehen
sion of kinematical relativistic effects by asking ‘What would it be like to travel at 99.99 
percent the speed of light?’ (Maudlin 1994, 57). While Maudlin’s question challenges 

no one with even an elementary understanding of relativity, Martı́nez’s question is 
more subtle especially if one appreciates that Bell is correct, in a sense, when he says 
that ‘the Lorentz contraction can do physical damage’ (Bell 1992, 34) . The analogy 
between special relativity and classical thermodynamics helps one to resolve the appar

ent conflict in such claims. 
As in ordinary classical mechanics, in thermodynamics one can distinguish static 

physical systems from dynamic ones. A simple example of the former is a gas in 

thermal equilibrium enclosed in a container that is completely isolated from its 



immediate surroundings. For such static gases one can use the ideal gas law to calculate 
any one of the familiar phenomenological state variables given the values of the other 
two. As an example of a dynamic physical system in thermodynamics, one only has to 
imagine that the gas container has a movable wall pushed by a piston and that the 

piston is moving relative to the walls of the container. In this case, because an external 
force is being applied (to move the piston) and is transmitted to the interior of the 
physical system, viz., the gas, the system has a non-trivial dynamics. Still, even in 

this case one can analyse the system by ignoring the dynamics and focusing on com
paring final states. For example, one can use the ideal gas law when the piston is 
initially at rest, and then use it again after the piston has come to rest and enough 

time has elapsed so that the gas attains equilibrium, to determine how the state vari
ables have changed through the compression process. One can carry this analysis even 
further if one ignores the internal dynamics of the gas, because one can use the ideal 

gas law to compare any two instantaneous states of the gas even when the piston is 
moving. 

Arguably, the subtle relationship between the unsavouriness of leaving the ideal gas 
law as an unexplained brute fact and the promise of the molecular hypothesis yielding 

quantitative results motivates the familiar constructive explanation afforded by the 
kinetic theory of gases (KTG). More importantly, one can give an account of the 
observed relationships among the state variables in both the static and dynamic 

case. In a sense that is difficult to articulate and defend, KTG yields the greatest 
insight in dynamic cases, such as when one uses KTG to explain why as a piston com
presses a gas the pressure on all sides of the container changes, which would not 

happen if one was compressing a solid object. An account of static cases using KTG 
merely constitutes a promising start. From a methodological perspective, if an ade
quate account of the static case cannot be found, there is little hope that a dynamic 
account is forthcoming. 

Because the physical system in the DBB problem has non-trivial external and internal 
dynamics, it is most closely analogous to a dynamic system in thermodynamics, and not 
a static one. The example of the compression of a gas in a cylinder by a piston that begins 

and ends at rest provides a tolerably good analogue to the DBB problem. In both cases, 
the subsystem of interest, i.e. the gas in the one case and the string in the other, begins in 
a state of equilibrium, it is then disrupted from this state by an external force, until after 

the external force is no longer applied and enough time has elapsed the system returns to 
equilibrium, assuming the string does not break. As in thermodynamics, in the DBB 
problem one can opt—as kinematical solutions display—for a purely kinematical 

analysis of changes to the spaceships– string system that compares only final states 
and reaches important qualitative and quantitative conclusions. However, such an 
approach self-consciously ignores both the external and internal forces that act on 
the system to bring about the changes in question and assumes, for any pair of states 

it compares, that the system has either settled back into an equilibrium state or that 
its internal dynamics can be ignored ‘at an instant’, which is not an invariant notion 
in relativity and hence must be handled carefully. 



If this way of drawing the analogy between static and dynamic systems in both rela
tivity and thermodynamics is broadly correct, one can use it to resolve the apparent 
conflict between the remarks made by Bell and Martı́nez about length contraction. 
When Bell compares thermodynamics and special relativity, he says: 

If you are, for example, quite convinced of the second law of thermodynamics, of the 
increase of entropy, there are many things that you can get directly from the second 
law which are very difficult to get directly from a detailed study of the kinetic theory 
of gases, but you have no excuse for not looking at the kinetic theory of gases to see 
how the increase of entropy actually comes about. In the same way, although 
Einstein’s theory of special relativity would lead you to expect the FitzGerald con
traction, you are not excused from seeing how the detailed dynamics of the 
system also leads to the FitzGerald contraction. (Bell 1992, 34) 

On a narrow interpretation of ‘dynamics’, in which one interprets examining 

‘the detailed dynamics of the system’ as fruitful only for systems with non-trivial 
dynamics, Bell is encouraging us to look for a constructive account of length contrac
tion only for dynamic cases of length contraction, such as the DBB problem. This is a 

reasonable interpretation of Bell’s remarks because he focuses exclusively on the 
increase of entropy and does not mention idealized static, isentropic systems in ther
modynamics analogous to static cases of length contraction. 

On this interpretation, one is excused from analysing ‘the detailed dynamics of the 
system’ in static cases of length contraction, which are the types of cases on which 
Martı́nez (2007) focuses, because such systems have only a trivial dynamics. Martı́ nez 
is correct that the Lorentz contraction does not hurt so long as we confine ourselves to 

static cases, which is no surprise. However, Bell is also correct, in a sense, because in 
dynamic cases, if the external dynamics of a system are not just right, i.e. if the 
forces are not applied in such a way that the system executes BRM, then physical 

damage can certainly result from external forces ‘pulling’ apart the string against its 
‘natural’ tendency to contract, which is admittedly highly metaphorical language all 
solutions to the DBB problem make fairly precise. Yet, this cannot be the whole story. 

The desire to complement the phenomenological account with an account from 
first principles is not unique to the analysis of physical systems with non-trivial 
dynamics, especially once a theory of the constituents of the system is forthcoming. 
As in the case of a static gas in thermodynamics, one should at least search for an 

account of the static case of length contraction based on a theory of matter T from 
which one can derive the relationships among the state variables from first principles. 
The theory T would have to be a Lorentz covariant quantum theory from which one 

can derive the length l of an object in its own rest frame and the length l ′ of the same 
object as reckoned in a different inertial frame F ′ . Significantly, even though Bell 
neglects the requirement that T be a quantum theory, he does not begin by considering 

the static case first. Instead, he arrives at an approximation of the static case by first 
considering the dynamic case. 

It is no accident that Bell’s version of the DBB problem uses spaceships whose world 

lines A and B are both curved and parallel. The trajectories are curved because Bell 
anticipates the effects of accelerated motion on an idealized atom described by 



Maxwell’s theory. The trajectories are parallel because Bell anticipates that in the low-
acceleration limit, such trajectories reduce to inertial trajectories, which will enable 
him to derive, as he does, approximate versions of the Lorentz transformations. Fur
thermore, Bell simply assumes that the theory he uses to analyse the string can account 

for the string’s length in the string’s rest frame. However, this is not a trivial assump
tion for those interested in the foundations of relativity. 

Bell nowhere discusses the meaning of the distance between the nucleus and the 

electron in the static case. Borrowing Einstein’s 1916 language (Einstein 1952b, 
115), one could say that Bell nowhere analyses the meaning of the spatial coordinates 
he uses to describe the motion of the electron. Yet, if Bell’s solution to the DBB 

problem is supposed to provide a reductive explanation of length contraction analo
gous to reductive explanations afforded by KTG, he cannot employ Einstein’s 
approach of analysing spatial distance in terms of the length of rigid rods that 

satisfy the laws of Euclidean geometry. Furthermore, Bell’s approach cannot be 
improved upon by adopting the radar signalling method to define distance and 
then treating length as a derivative notion, which one can adopt in a kinematic and 
phenomenological solution to the DBB problem, as we have seen. The radar signalling 

method depends crucially on neglecting any momentum transfer that occurs as a light 
beam strikes an object and is reflected. Clearly, one cannot make this assumption at the 
subatomic level. Thus, if we regard the proper length l of an object as a macroscopic 

state variable in Bell’s solution to the DBB problem, it is analogous to volume in ther
modynamics and not to either pressure or temperature, both of which are eliminated 
in the reduction to KTG. Thus, the likelihood that Bell’s own solution to the DBB 

problem yields either new insights concerning the foundations of relativity or 
additional support to one side of the debate concerning the ontology of space-time 
seems significantly reduced. 

9. Conclusion 

Exploring the various ways in which the DBB problem can be solved illustrates that 

Bell’s and Brown’s preference for a constructive solution from first principles seems 
unlikely to support either an interpretation of relativity that emphasizes dynamics 
or a view about the unreality of Minkowski space-time. Instead, the analogy 

between special relativity and classical thermodynamics, if pursued a bit further 
than has hitherto been done, suggests that Bell’s own solution to the DBB problem 
is analogous to the constructive explanation afforded by KTG of a dynamic physical 

system in thermodynamics. While such accounts certainly effect an eliminative 
reduction of some of the macroscopic state variables, other state variables, such as 
volume in thermodynamics and length in relativity, are not eliminated by such 
accounts. If this is correct, while a constructive solution to the DBB problem may 

help one understand the macroscopic dynamics of the string in terms of the dynamics 
of its constituents, and while one may even extend this approach to static cases of 
length contraction, it becomes more challenging to avoid the sceptical conclusion 

that the DBB problem sheds no new light on the foundations of special relativity. 
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Notes 

[1] If the ships A and B execute BRM, then they do not execute ‘identical acceleration pro
grammes’. Instead, A and B move with very specific but different constant proper accelera
tions. Consequently the ships have to accelerate for different amounts of proper time 
before shutting off their engines to ensure the two ends of the string ‘arrive’ at the same inertial 
frame F ′ . 

[2] We created Figures 1 and 3 using Maple 13. 
[3] This assumes, of course, that A and B set their clocks to read the same value of proper time, e.g. 

when they received the light signal from C and began accelerating. 
[4] The relationship between DAB, DBA, and l as a function of the elapsed proper time t for either 

A or B is somewhat subtle. We explore this relationship and other relationships assumed in 
this paper analytically, and display the relevant plots, in Fernflores (forthcoming). 
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