
of the 34th
Conference on Decision & Control
New Orleans, LA - December 1995 WA11 1O:OO

Computer Assistance In Discovering Formulas And
Theorems In System Engineering *

J. William Helton
Mark Stankus

Department of Mathematics, U. C. San Diego La Jolla, Cal 92093-0112
helton@osiris. ucsd. edu

ABSTRACT
If one reads a typical article on A,B,C,D systems

in the control transactions, one finds that most of
the algebra involved is non commutative rather than
commutative. Thus, for symbolic computing to have
much impact on linear systems research, one needs
a program which will do noncommuting operations.
Mathematica, Macsyma and Maple do not. We have a
package, NCAlgebra, which runs under Mathematica
which does the basic operations, block matrix manip-
ulations and other things. The package might be seen
as a competitor to a yellow pad. Like Mathematica
the emphasis is on interaction with the program and
flexibility.

The issue now is what types of “intelligence” to
put in the package. [HSW] (CDC94) focused on pro-
cedures for simplifying complicated expressions auto-
matically. In this talk we turn to a much more ad-
venturous pursuit which is in a primitive stage. This
is a highly computer assisted method for discovering
certain types of theorems.

At the beginning of “discovering” a theorem, an en-
gineering problem is often presented as a large system
of matrix equations. The point is to isolate and to
minimize what the user must do by running heavy al-
gorithms. Often when viewing the output of the algo-
rithm, one can see what additional hypothesis should
be added to produce a useful theorem and what the
relevant matrix quantities are.

Rather than use the word “algorithm”, we call our
method a strategy since it allows for modest human
intervention. We are under the impression that many
theorems in engineering systems might be derivable
in this way.

1 What is a strategy?
We are under the impression that many theorems
in engineering systems, matrix and operator theory
amount to giving hypotheses under which it is possi-
ble to solve large collections of equations. (It is not

‘This work was partially supported by the Air Force Office
for Scientific Research and by the National Science Foundation.

mstankus@osiris. ucsd. edu

our goal to reprove already proven theorems in engi-
neering systems theory, but rather to develop tech-
nique which will be able to be used to discover new
theorems.) Any method which assumes that all of the
hypothesis can be stated algebraically and are known
at the beginning of the computation will be of limited
practical use.

What we shall describe is a method which al-
lows one to add (algebraic) hypotheses as one pro-
ceeds with the computation. These hypotheses would
be motivated by insights gained in the course of a
computer session and the user would have to record
and justify them independently of the computer run.
However, we do want to be extremely systematic so
we shall propose a structure which is algorithm like
but a bit looser.

1.1 NCProcess
The approach which we will use to manipulate large
collections of equations will be based largely upon a
noncommutative Grobner Basis Algorithm (GBA). A
person can use this practical approach to performing
computations and proving theorems without knowing
anything about GBA’s. Indeed, this article is a self-
contained description of our method.

The program which we shall use which is based
upon a GBA will be called NCProcess and will be
described in $1.4.

The input to NCProcess is:

11. A list of knowns.

12. A list of unknowns (together with priorities for
eliminating them).

13. A collection of equations in these knowns and
unknowns.

The output of NCProcess is a list of expressions
which is presented to the user as

01. Unknowns which have been solved for and equa-
tions which yield these unknowns.

0 2 . Equations selected or created by the user. For
example, in the context of S1 below, one would

These do not exist in the first run. A user-selected equation

0-7803-2685-7/95 $4.00 0 1995 IEEE 303

to select the equation E17. There are also
times during a strategy when one wants to intro-
duce new variables and equations. This is illus-
trated in $2.

03. Equations involving no unknowns.

04. Equations involving only one unknown.

05 . Equations involving only 2 unknowns. etc.

1.2 Strategy
The idea of a strategy is :

S1. Run NCProcess which creates a display of the
output (see 01-05 in $1.1) and look at the list
of equations involving only one unknown (say a
particular equation E17 contains only 23).

S2. The user must now make a decision about equa-
tions in 23 (e.g., E17 is a Riccati equation so 1
shall not try to simplify it, but leave it for Mat-
lab). Now the user declares the unknown z3 to
be known and runs the GB algorithm again.

S3. The user must again make a decision and the
process repeats.

S4. Knowing when a strategy stops is discussed in
$1.3.

The above listing is, in fact, a statement of a 1-
strategy. Sometimes one needs a 2-strategy in that
the key is equations in 2 unknowns.

The point is to isolate and to minimize what the
user must do. This is the crux of a strategy.

they generate too many equations. It is our hope and
our experience that these equations which it gener-
ates contain all of the equations essential to solution
of whatever problem you are treating. On the other
hand, it contains equations derived from these plus
equations derived from those derived from these as
well as precursor equations which are no longer rele-
vant. That is, a GB contains a few jewels and lots of
garbage. In technical language a GB is almost never a
minimal basis for an ideal and what a human seeks in
discovering a theorem is a minimal basis for an ideal.
Thus we have algorithms and substantial software for
finding small (or smallest) sets of equations associated
to a problem. The process of running GBA followed
by an algorithm for finding small sets of equations is
what constitutes NCProcess.

1.5 Summarv
I

We have just given the basic ideas. As a strategy pro-
ceeds, more and more equations are digested by the
user and more and more unknowns become knowns.
Thus we ultimately have two classes of knowns: orig-
inal knowns K O and user designated knowns Ku. Of-
ten a theorem can be produced directly from the out-
put by taking as hypotheses the existence of knowns
&uK~ which are solutions to the equations involving
only knowns.

Assume that we have found these solutions. To
prove the theorem, that is to construct solutions to
the original equations, we must solve the remaining
equations. Fortunately, the digested equations often
are in a block triangular form which is amenable to
backsolving. This is one of the benefits of “digesting”
the equations.

An example, makes all of this more clear.
1.3 When to Stop

2 A Simple Example There are various criteria for stopping.
The digested equations (those in items 01, 0 2 and

0 3) often contain the hypotheses of the desired t h e
orem and the main flow of its proof. If the starting
equations follow as algebraic consequences Of them
then we should stop. This last statement is true iff
the GB generated by the digested equations reduce
(in a standard way) the set of starting equations to 0.
Checking this on a computer is a purely mechanical
process.

We derive a theorem due to Bart, Gohberg, Kaashoek
and Van Dooren. The reader can skip the statement
of this theorem ($2.1) if he wishes and go directly to
the

2.1 Background
Theorem([BGKvD]) A minimal factorization

problem statement.

[e, f, g, 11 f-- t
1.4 Redundant Equations [a1 b, c, 11

1
state dim = nl state dim = n2 We mentioned earlier that we are using the Grobner

Basis algorithm (GBA). GBA and the formatted out-
put ($1.1) alone are not enough to generate solutions
to engineering or math problem. This is because of a system [A, B , C, 11 correspond to projections PI
is a polynomial equation which the user has selected. An effect
which this has is to make the algorithm described in 51.5 treat
these equations as “digested”. This, for example, implies that
they are given the highest priority in eliminating other equa-
tions when NCProcess runs. For example, equations which one
knows can be solved by Matlab cam be selected.

and PZ satisfying pl + p2 = 1,

AP2 = PzAPz (A - BC)Pl = Pl(A - BC)P1 (1)

provided the state dimension ofthe [A, B , c, 11 system
is n1 + n2. (which has the geometrical interpretation

304

A and A - BC have complimentary invariant
subspaces).

We begin discussing how one might derive this theo-
rem by giving the algebraic statement of the problem.
Suppose that these factors exist. By the statespace
isomorphism theorem (Youla -Tissi), there is map

(ml , m2) : Statespace of the product --+

Statespace of the original

which intertwines the original and the product sys-
tem. Also minimality of the factoring is equivalent
to existence of left and right inverses (imT, imT)T to
(ml , m2). These requirements combine to imply that
each of the following expressions is zero.

2.2 The Problem

Am1 - mla - m2 f c
B - mlb- m2f

Am2 - m2e
-c + Cml

(FAC) imlml - 1 im2m2 - 1
iml m2 im2ml

-g + Cmz mliml+ m2im2 - 1

Each of these expressions must equal 0. Indeed mini-
mal factors exist iff there exist solutions m ~ , m ~ , iml,
im2, a , b , c , e , f and g to these equations. Here A,
B , C are known.

The problem is to solve these equations. That is
we want a constructive theorem which says when and
how they can be solved.

2.3 Solution via a Strategy

We now apply a strategy to see how one might dis-
cover this theorem.

The input is the equations
(FAG'), together with declaration of A , B , C as
knowns and the remaining variables as unknowns.
Here is the output displayed in what we call a spread-
sheet. The "**" below denotes matrix multiplication
and -> can be read as an equal sign.

We run NCProcess.

THE EXPRESSIONS WITH 1 UNKNOWNS ARE THE FOLLOWING.

The expressions with unknown variables
€ml,im2) and knowns €A,B,CO1

im2 ** mi -> 0
im2 ** B ** CO ** mi -> im2 ** A ** mi
The expressions with unknovn variables
€m2,im21 and knowns €1

im2 ** m2 -> i

..

.......................................

.......................................

THE EXPRESSIONS WITH 2 UNKNOWNS ARE THE FOLLOWING.

The expressions with unknown variables
{mi,imi,im2) and knowns IA,B,CO>

..

imi ** mi -> 1

THE EXPRESSIONS WITH 4 UNKNOWNS ARE THE FOLLOWING.

The expressions with unknown variables
Cmi,m2,imi,im2> and knowns €1

..

m2 ** im2 -> -1 ml ** iml + 1 <===

The unknowns a,b,c,e, f and g are solved for. There
are no equations in 1 unknown. There are 4 categories
of equations in 2 unknowns. There is one category of
equations in 4 unknowns. A user must observe that
the first equation which we marked with <=== is an
equation in the unknown quantity ml ** iml. One
makes the assignment:

PI = ml iml .
Then the user may notice that the second equation
marked with <=== in an equation in only one un-
known quantity m2 ** im2 once the above assignment
has been made and PI is considered known2. These

(2)

21f the user does not notice it at this point, it will become
very obvious with an additional r u n of NCProcess.

305

lead us to “select” (see footnote corre-
sponding to 0 2 in $1.1) the equations ml iml - PI,
iml ml - 1, m2 im2 - 1 + PI and im2 m2 - 1.

Run NCProcess again with (2) added and PI de-
clared known as well as A,B and C declared known.
----I - _--- ----- -- _------
---------- YOUR SESSION HAS DIGESTED I----

THE FOLLOWING RELATIONS ==--= ----I---- ---- -----
==============-====-------~----
THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
f a , b , c , e , f ,g l
The corresponding ru les are the following:
a->iml**A**ml b->iml**B c->CO**ml
e->im2**A**m2 f->im2**B g->CO**m2

ml**iml->Pi
imi**ml->l
im2**m2->1
m2**im2-> -mi ** iml + I

THE EXPRESSIONS WITH 2 UNKNOWNS ARE THE FOLLOWING.

The expressions with unknown variables
Cml,imll and knonns {PI)

i m l ** ml -> 1 is a user s e l e c t .
mi ** iml -> PI is a user s e l e c t .
The expressions with unknown variables
{m2,im2> and knowns {Pi)

..

.......................................

-----____-_---__--_--------------------
im2 ** m2 -> I is a user select.
m2 ** im2 -> -1 PI + 1 is digested.

3 TheEndGame
Note that all equations in the spreadsheet are neces-
sary for a factoring to exist, since they are implied
by the original equations. The equations involving
only knowns play a key role. In particular, they say
precisely that, there must exist a projection PI such
that

PIAPI = PIA and PIBGPI = PlA-APl+BCPI

are satisfied.
The converse is also true and can be verified with

the assistance of the above spreadsheet. We now prove
this. We begin by assuming a projection PI exists
which satisfies (3).

0 First, solve the two equations in the category
{iml, ml} for the matrices ml and iml .
0 Next, solve the expressions in the category
{imz, mz} for the matrices mz and im2.
0 Finally, one uses the computed formulas to solve for
a, b, c , e, f and g.

Here we used the fact that we are working with ma-
trices and not elements of an abstract algebra. Thus
by backsolving through the spreadsheet, we have con-
structed the factors of the original system [A, B , C, I].
This proves

Theorem:[BGKvD] The system A, B , C, 1 can be
factored if and only if there exists a projection PI
such that PIAPI = PIA and PI BCP1 = PIA -
A PI + B C PI are satisfied.

Note the known equations can be neatly expressed
in terms of PI and P2 = 1 - PI. Indeed, it is easy to
check with a little algebra that these are equivalent to
(1). It is a question of taste, not algebra, as to which
form one chooses.

Our efforts are in a primitive stage and the brevity
of this presentation suppresses some of the advantages
and some of the difficulties. For example, one might
not instantly have all of the insight which lead to the
second spreadsheet. In practice a session in which
someone “discovers” this theorem might use many
spreadsheets. All that matters is that one makes a
little bit of progress with each step.

REFERENCES

(3)

[HSW] J . W. Helton, M. Stankus and J . Wavrik: “Com-
puter simplification of engineering systems for-
mulas,” Conf. on Decision and Control, Orlando
Florida December 1994.

Note that the equations in the above display which [TMora] T. Mora, “An introduction to commutative and
are in the undigested section (i.e., below the lowest noncommutative Grobner Bases”, Theoretical
line of equal signs) are repeats of those which are in Computer Science, Nov 7,1994, vol. 134 N1:131-
the digested section (i.e., above the lowest line of equal 173.

a convenience for categorizing them. We will see how
this helps us in $3. Since all equations are digested,
we have finished using NCProcess (see S4). As we
shall see, this output spreadsheet leads directly to the
theorem about factoring systems.

signs). we these particular equations [NCA] J.W. Helton, R.L. Miller and M. Stankus,
“NCAlgebra: A Mathematica Package for Do-
ing Non Commuting Algebra” available from
ncalg@ucsd .edu

306

