U.S. Agricultural Productivity and Returns to Research

Julian M. Alston
University of California, Davis

Philip G. Pardey
University of Minnesota

Matt Andersen

Jennifer S. James

Food & Fuel: The Implications for Agricultural Research Policy
June 4-6, 2007, University of Saskatchewan, Saskatoon
Overview

Agricultural Productivity

Agricultural R&D

Model Specification & Assumptions

Returns to Research
U.S. Public R&D Funding, 1890-2004

- **SAES**
- **USDA IM**

Millions of 2000 US$
U.S. Public R&D Funding, 1890-2004

- SAES
- Extension
- USDA IM

Millions of 2000 US$
U.S. Agricultural Productivity

- **Productivity Data**
 - Based on input and output quantities
 - Started with data from Aquaye, Alston, and Pardey, 2002
 - Quantities adjusted for quality
 - State-specific prices used in index construction
 - Revised by Alston, Andersen, and Pardey
 - Added more outputs and inputs
 - Improved accounting of capital components

- **Multi-Factor Productivity (MFP)**
 - Output per quantity of Input
U.S. Agricultural Productivity, 1949-2002

Index (1949 = 100)

Output Index
U.S. Agricultural Productivity, 1949-2002

The graph illustrates the trend of U.S. agricultural productivity from 1949 to 2002. The index values are normalized to 1949 = 100.

Output Index shows a steady increase over the years, with fluctuations around 1970 and 1980. Input Index, on the other hand, remains relatively stable throughout the period, indicating a lower sensitivity to changes in productivity.
U.S. Agricultural Productivity, 1949-2002

Multi-Factor Productivity

Output Index

Input Index
Output Indexes in U.S. Agriculture

Output Quantity Index

Quantity Index (1949 = 100)

- Field Crops
- Nursery & Greenhouse
- Livestock

Year:
- 1949
- 1959
- 1969
- 1979
- 1989
- 1999

Graph shows the trend of output indexes from 1949 to 1999 for different categories.
State-Specific Growth in Inputs and Outputs, 1950-2002

Each diamond represents one state.
Values are averages of year-to-year state-specific rates of growth in outputs and inputs.

U.S.
State-Specific Growth in Inputs and Outputs, 1950-2002

45-degree line through the origin indicates combination with no growth in productivity.
State-Specific Growth in Inputs and Outputs, 1950-2002

45-degree line through U.S. indicates growth in productivity equal to U.S. average
Spatial Patterns of Input and Output Growth
Northeastern States

Output Growth

Input Growth

-2.5% -1.5% -0.5% 0.5% 1.5%

-1% 0% 1% 2% 3%

-2.5% -1.5% -0.5% 0.5% 1.5%

VT ME NY

NJ RI NH

MA

-1% 0% 1% 2% 3%

Spatial Patterns of Input and Output Growth
Northeastern States
Spatial Patterns of Input and Output Growth
Pacific States

- Output Growth
 - CA
 - WA
 - OR

- Input Growth
 - -2.5%
 - -1.5%
 - -0.5%
 - 0.5%
 - 1.5%
Spatial Patterns of Input and Output Growth
Southern States

Output Growth

Input Growth

AL

FL

GA

KY

AR

LA

MS

0%
1%
2%
3%
-1%
-0.5%
-1.5%
-2.5%
0.5%
1.5%
Spatial Patterns of Input and Output Growth
Big Wheat-Producing States

Output Growth

Input Growth
Spatial Patterns of Input and Output Growth
Big Beef-Producing States

Output Growth

Input Growth

- SD
- IA
- NE
- KS
- CO
- CA
- TX
- OK
Temporal Patterns of Input and Output Growth, Pre- and Post-1990

Output Growth

Input Growth

Pre-1990
Temporal Patterns of Input and Output Growth, Pre- and Post-1990

Output Growth

Pre-1990 in teal
Post-1990 in orange

Input Growth

-2.5% -1.5% -0.5% 0.5% 1.5%
Share of Public R&D Directed to Enhancing Farm Productivity

[Graph showing the percentage of public R&D directed to enhancing farm productivity from 1975 to 2000, with a general trend of decrease over time.]
Linking R&D Investments to Productivity

- **Goals:**
 - To obtain econometric estimates of the effect of R&D on productivity
 - To use those estimates to calculate the returns to research

\[
MFP_{it} = f (R&D \text{ Spending, other factors})
\]

- **Specification Issues:**
 - Functional form
 - Imposing structure on spending data
Managing the Spending Data

- R&D spending by any particular state in any particular year will (most likely):
 - have little effect for several years
 - then have increasingly pronounced effects for some years
 - after which, effects taper off

- Have similar effects in other states
 - Especially those that are agriculturally similar

- A complete econometric specification would include variables for
 - Each of two types of spending for 48 states
 - Federal IM spending
 - For last 50 years (give or take)
Managing the Spending Data (cont.)

- **Problems with complete specification**
 - Too many coefficients to estimate
 - Too much correlation among variables

- **Solution – Create knowledge stocks**
 - Weighted sum of spending data over previous ___ years
 - Weights determined by gamma distribution
 - flexible
 - characterized by only two parameters
 - Alternative structure uses a trapezoid shape for weights

- **Three knowledge stocks**
 - Own-state research
 - Own-state extension
 - Spillins
Spillin Stocks and Spillover Coefficients

- **Technological Spillovers**
 - Technologies developed in one state may be adopted in other states

- **Spillin Stocks**
 - Weighted sum of research (and possibly extension) knowledge stocks in all other states
 - Weights are spillover coefficients

- **Spillover Coefficients**
 - Measure similarity of two states in their output mixes
 - Based on 74 outputs
 - Vary between zero (no similarity) and one (the same)
Estimation Strategy and Issues

\[\text{MFP}_{it} = g \left(\text{Knowledge Stocks, Other Factors} \right) \]

- Own-State (inc. extension)
- Spillins (including USDA IM)
- Growing Condition Index

- Estimate two parameters of gamma distribution
 - Abbreviated grid search
Some Preliminary Results

- Elasticities implied:
 - Log:
 - wrt own-state stock: 0.29
 - wrt spillin stock: 0.32
 - Linear:
 - wrt own-state stock: 0.12
 - wrt spillin stock: 0.49

- Double-log functional form
 \[\ln MFP_{it} = a_i + 0.29 \ln (\text{Own-State Stock}) + 0.32 \ln (\text{Spillin Stock}) \]

- Linear functional form
 \[MFP_{it} = a_i + 0.00000057 \times \text{Own-State Stock} + 0.000000072 \times \text{Spillin Stock} \]
Calculating Returns to Research

- For a hypothetical increase in SAES spending in 1950 in one state
 - Calculate the % increase in productivity in all states in all years
 - Multiply by value of production for each state, year
 - Gives a stream of benefits
 - Discount or compound so valued at same time
 - Calculate the benefit/cost ratio

- Two Benefit/Cost Ratios for Each State
 - Private – only includes benefits accruing to state of hypothetical spending
 - Social – includes benefits accruing to all states (through spillovers)
Private Benefit/Cost Ratios
Double-Log Model

Average = 15
Range 2 to 40

Range of Benefit/Cost Ratios

Number of States
Social Benefit/Cost Ratios
Double-Log Model

Average = 26
Range from 10 to 52
Private Benefit/Cost Ratios
Linear Model (in orange)

Average = 7
Range 0 to 29
Social Benefit/Cost Ratios

Linear Model (in orange)

Average = 25
Range from 9 to 48
Concluding Thoughts

● Evaluate effects of specification choices
 ○ Functional form
 ○ Lag structure (gamma shapes, trapezoid)
 ○ Number of years of spending data included in stocks
 ○ Whether benefits from extension spillover to other states
 ○ How spillin weights are calculated
 ○ Data included in estimation

● Results are quite sensitive to lag specification
Concluding Thoughts (cont.)

- Regardless of Specification Choices
 - Private Benefit/Cost ratios are quite high for most states
 - Implies underinvestment from “private” perspective
 - Social Benefit/Cost ratios are generally much larger than private
 - Broader perspective indicates higher potential returns for increased spending on R&D
 - Degree of underinvestment is greater from national perspective
 - HOWEVER, private and social effects are difficult to separate due to multicollinearity inherent in data

- Relative Benefit/Cost ratios across states suggest less-than-optimal allocation of research funding among states