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Abstract

We explore the basic mathematical physics of quantum mechanics. Our primary
focus will be on Hilbert space theory and applications as well as the theory
of linear operators on Hilbert space. We show how Hermitian operators are
used to represent quantum observables and investigate the spectrum of various
linear operators. We discuss deviation and uncertainty and brieáy suggest how
symmetry and representations are involved in quantum theory.
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Chapter 1

Introduction and History

The development of Hilbert space, and its subsequent popularity, were a result of
both mathematical and physical necessity. The historical events and individuals
responsible for the topics we will cover make up an interesting story. It can be
told as a part of the history of mathematics or as an integral stage in the
development of modern physics. Here we will brieáy summarize the tale from
both perspectives. The majority of what is to come is told according to the
historical note at the beginning of [LB&PM] and also summarizes some of the
events covered in [CMMC]. At the end the history there will be a brief note of
these and other references for the material that will eventually be covered.

1.1 Physics

The theory of physical law developed by Newton in the 1700ís had carried the
sciences through centuries of progress and successes, but by the early 1900ís it
had become apparent that Newtonís laws, in fact, would not stand the test of
time. With the development of quantum mechanics came the need for a new
ìsettingî or mathematical structure for the description of physical systems.
Hilbert space would turn out to satisfy this need and the resulting interest in
this new Öeld of mathematical physics has led to nearly a century of increasingly
successful theory and experimentation.
The progression of experimental realizations and theoretical advancements

that led to our modern formulation of quantum mechanics can be broken into
several key stages.
The origin of the theory is often considered to be a paper presented by Max

Planck on December 14, 1900 entitled ìOn the Law of Distribution of Energy in
the Normal Spectrum.î In this paper Planck presented his work on the law of
blackbody radiation. His conclusion was that energy could no longer be treated
as continuous variable. Planck observed that the energy of a vibrating system
could not change continuously, but was limited to an integral multiple of so
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called energy quanta. He coined the term quantum discontinuity and deÖned
the proportionality constant in his energy expression as a new universal constant
h, referred to now as Planckís constant.
This led Einstein to develop his well known theory of the photoelectric e§ect

around 1907 which describes the process by which an oscillating particle absorbs
and emits quanta of radiation or photons. This theory incorporated the newly
discovered Planckís constant in the energy, E, for light quanta as E = hf
where f is the frequency of the photon being considered. Einsteinís theory of
the photoelectric e§ect was also supported by previous experiments done by
Millikianís and was taken as a sign that the mystery of atom was, and likely
would continue, to gradually diminish.
The work of Planck had created an intense excitement in the physics com-

munity, but with so many fundamental notions beings challenged and century
old theories becoming obsolete overnight, there was also substantial confusion.
The structure of the atom was still a mystery, as were many of its other char-
acteristics. It was at least known that atoms had a neutral charge so with the
discovery of the electron, due to J.J. Thompson, the "plum-pudding" model
of the atom was proposed. According to this tentative model, the negatively
charged electrons were stuck in some positively charged distribution, resulting
in an overall neural charge. This model was quickly improved when, in 1911,
E. Rutherford demonstrated through experiment that the positive charge of an
atom is not evenly distributed, but rather densely concentrated at the core of
the atom in what is now called the nucleus.
Even though the familiar "planetary system" model was now realized there

was still no explanation for the discrete atomic spectrum. With this model,
according to classical electrodynamics, electrons would fall and collide with the
nucleus since their motion would result in a continuous emission spectrum. The
answer to this problem would be found by a young Danish physicist Neils Bohr,
who, as it turns out, had worked in Rutherfordís laboratory.
According to [CMMC], "Bohrís leading role in the development of atomic

theory began in 1913" when Bohr published his work in a paper titled ìOn
the constitution of atoms and moleculesî. Bohr observed that atoms exhibited
a stability with respect to external perturbation that could not be explained
by classical mechanics or electrodynamics. He wanted to preserve Rutherfordís
atomic model resembling a planetary system, but at the same time explain the
stability and discrete spectrum phenomena that classical theory failed to ac-
count for. He did this by providing two assumptions under which this bizarre
behavior could possibly be explained. First, Bohr introduced the notion of sta-
tionary states. He assumed that an atomic system can only exist permanently
in a certain series of states corresponding to a series of discrete and discon-
tinuous energy levels of the system. Additionally he added that the transition
between these so-called stationary states could only occur upon the emission
or absorption of a energetic light quanta described by Einsteinís photoelectric
e§ect. His second assumption then was that the di§erence in energy levels
between stationary states was equal to the energy of the absorbed or emitted
radiation associated with the transition and that each transition had a frequency
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f which deÖned this energy. That is, each transition has a frequency f such
that

E1  E2 = hf

gives the energy di§erence hf between two states with energy E1 and E2:
More speciÖcally, for the hydrogen atom, Bohrís revolutionary new assump-

tions meant that the angular momentum of an electron orbiting the atom could
only take on certain, discrete, values. In other words, the angular momentum
is quantized, given by the relation

L = n}; n = 1; 2; 3; :::

where } is the reduced Plank constant h

2 = } = 1:05457210
34J s: Addition-

ally, Bohr assumed Newtonís second law and L = mvr for an orbiting electron,
the usual relation governing the dynamics of circular orbits. This ultimately led
to the relation

En =
13:6eV

n2
; n = 1; 2; 3; :::

governing the allowed energy of the orbiting electron.
The novelty of this new conception of atomic systems cannot be understated.

Bohrís work sparked enormous interest in this area and a resurgence in work
on what is now know as the "old" quantum theory. The First World War
hindered progress, but did not stop it. During this time Arnold SommerÖeld
investigated some of the implications of Bohrís assumptions and invented several
new quantum numbers as a means of explaining the Öne structure of hydrogen.
The end of the war allowed physicists to refocus their e§orts on the rapidly

expanding Öeld of quantum theory. In 1922 Stern and Gerlach demonstrated the
space quantization rule by demonstrating that the magnetic moment of silver
atoms could only take on two positions, or a silver atom is a spin 1

2 particle.
With the sudden eruption of interest in and discovery of rules describing

atomic behavior, many physicist looked forward to obtaining detailed solutions
to outstanding problems such as the Zeeman E§ect or a coherent description of
the helium atom. However, they would soon realize they were drastically un-
derestimating just how exotic the nature of what they were trying to describe
truly was. While the successes of Bohrís atomic model had been many, the
space quantization rule, as well as Bohrís assumptions and other realizations,
were nothing more than convenient descriptions of observations which allowed
more for prediction and description rather than any sense of explanation. Ad-
ditionally, what is know as Bohrís Correspondence Principle promoted a rather
restrictive notion of atomic behavior as it held that any quantum theory must
agree with classical results in the limit of large energies and large orbits. This
inhibited the realization that a radical change in the foundation of physics would
be necessary to have any hope of successfully explaining the range of phenomena
they hoped to understand.
Physicists were attempting to describe quantum behavior with classical lan-

guage. In a way, it was like trying to understand a dead language; translation
is possible, but the essence and cultural signiÖcance of the phrases are often
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lost. Similarly, the physicists of the early 1920ís were attempting to translate
observed quantum behavior in terms of classical ideas and from a classical point
of view. But, they did not speak the language of quantum mechanics and so
they could not truly understand it. Once they had realized the inadequacy of
Bohrís model, and their whole approach really, physicists set their sights on de-
veloping some kind of mathematical formalism which would allow more freedom
and be unencumbered by classical restrictions.
This originally took two forms and is explored in depth in [CMMC]: one de-

veloped by Heisenberg known as matrix mechanics and the other by Schrˆdinger
known as wave mechanics. Most important characteristics of the modern for-
mulation of quantum mechanics can be found fairly explicitly in one of the
two theories. The most fundamental assumption of Heisenbergís theory was
that atomic physical observables were not dependent on continuous variables,
but rather on discrete quantities like the natural numbers as they label orbits
in Bohrís model. With this in mind, he replaced the familiar classical func-
tion f(x; p) of position x and momentum p with a function of natural numbers
f(m;n): To ensure energy conservation he postulated a multiplication rule for
observables. One consequence of this rule was that observables in quantum me-
chanics do not necessarily commute. This is a fundamental part of the modern
formulation as well. de Broglieís idea that each particle had an associated wave-
like character was at the center of Schrˆdingerís wave mechanics. Additionally,
he supposed that each wave would need to satisfy some equation similar to
the fundamental wave equation or Maxwellís equations. He proceeded to study
the transition between wave and geometric optics, erroneously assuming that
the transition between classical and quantum mechanics should be similar, and
ultimately found the equation which is now named after him.
Ultimately it was Von Neumann, while a student of Hilbert, who realized

the equivalence of wave mechanics and matrix mechanics and proposed the
current formulation. However, the argument at the time was largely heuristic
and unconcerned with mathematical detail. In [CMMC] he argues that the bulk
of the equivalence proof were and have been historically taken for granted. The
reader can consult [CMMC] for more on the technicalities of equivalence proofs.
While the theoretical and conceptual leaps that made the formulation of

quantummechanics possible came largely from Bohr, Heisenberg, and Schrˆdinger,
Von Neumann is responsible for the last unifying mental leap and also for many
of the technical mathematical achievements that accompanied it. We discuss
Von Neumann and the mathematical perspective of these events next.

1.2 Mathematics

One of the most interesting contextual facts regarding the proliÖc surge in math-
ematics that accompanied the development of quantum mechanics is that the
concept of a Önite dimensional vector space was less than a hundred years old by
the time Von Neumann and others realized the necessity of the mathematical
formalism we call Hilbert space. A fairly imprecise notion of a Önite dimen-
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sional vector space was used by Grassman in his work between 1844 and 1862.
It would take the work of Riemann, Weierstrass and others before the idea of
function spaces would eventually emerge in its modern form. The events in the
history of mathematics which led to the emergence of Hilbert space and its ap-
plications are arguably less exciting than the story from the physics perspective
but there are still several key Ögures and turning points worth mentioning. Like
most areas of mathematics, the time-line of the actual appearance of certain
ideas and concepts is not exact. Many mathematicians were working on similar
problems at similar times, or the signiÖcance of their work was not realized until
years after their death, so we will try to credit whoever is historically considered
appropriate while still acknowledging the work of others whose importance was
not realized at the time.
Hilbert space gives a means by which one can consider functions as points

belonging to an inÖnite dimensional space. The utility of this perspective can be
found in our ability to generalize notions of orthogonality and length to collec-
tions of objects (i.e. functions) which donít naturally suggest the consideration
of these properties. While Hilbert space eventually turned out to be the desired
setting for quantum mechanical systems, its applications to physics were not
the only motivation for its conception.
The concept of a space was actually suggested by mechanics in the form

of the coordinates of a dynamical system depending on arbitrary coordinates
(e.g. position (q1; :::; qn)). This implicit coordinate space appears as early as
1788 in work done by Lagrange. By the 19th century, mathematicians were
becoming increasingly interested in studying various concepts of space. Besides
Grassman, Reimann also was one of the Örst to work seriously with the notion
of a space, providing an early conception of a manifold. But without a vector
space structure or metric, Riemannís notion of space wasnít su¢cient to describe
all the useful attributes of functional spaces. Crucial steps were made towards
achieving this description soon after the work of Riemann, by Weierstrass and
Hadamard.
In 1885 Weierstrass considered the distance between two functions, essen-

tially proving that polynomials are dense in the space of continuous functions
(with respect to topology of uniform convergence). Then, in 1897 Hadamard
presented a paper at the First Congress of Mathematicians in Zurich which
called attention to the signiÖcance of the possible connections between sets of
functions and ideas of set theory developed by Cantor. Hadamardís suggestion
marked a major shift in the way mathematicians thought about collections of
functions. By considering spaces or sets whose points or elements are functions,
known set theoretic results could be combined with analytic ones to invent
ways of describing these new structures. Eventually Frechet (as a student of
Hadamard) deÖned what is now called a metric in his Ph.D. thesis of 1906.
Hausdor§ deÖned a topological space which eventually led to the concept of a
topological vector space.
The most familiar vector space for many is Rn: Rn is itself a function space

as we can view it as the space of all functions f : f1; :::; ng ! R under the
identiÖcation x1 = f(1); :::; xn = f(n): The vector space addition of points in
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Rn obviously corresponds to pointwise addition of functions. We can enrich the
structure of Rn by deÖning the norm kfk or length of a vector. This allows us
to further consider the distance between two vectors f and g by the quantity
kf  gk : As mentioned above, this generalized notion of length available in a
normed vector space is what motivated the development of these structures and
the eventual considerations of vector spaces whose points are functions. The
vector space structure also allows for a determination of the angle between two
vectors f and g through the deÖnition of an inner product. In Rn this takes the
form

hf; gi =
nX

k=1

f(k)g(k) (1.1)

which deÖnes the a norm by

kfk2 = hf; fi :

The inner product also deÖnes the angle  between two vectors f and g
through the relation

hf; gi = kfk kgk cos :

In particular this relation gives us a notion of orthogonality by deÖning
vectors f and g to be orthogonal whenever hf; gi = 0: This also allows us to
deÖne orthogonal projections onto vector subspaces of Rn:
Now after viewing Rn as a space of functions, we want to generalize this idea

to an inÖnite dimensional setting. The is done most simply by replacing the set
f1; :::; ng above with N and deÖning the space of all functions f : N ! R(or
C): However, now if we try to deÖne an inner product on this space as before,
replacing 1.1 with

hf; gi =
1X

k=1

f(k)g(k);

we are faced with the obvious problem that this sum will usually not converge.
This motivated the study of the space l2(N) which is deÖned as the space of
all functions f : N ! C for which the above expression does converge. We will
discuss this space a bit more later.
The actual speciÖc mathematical motivation for Hilbert space came from

the study of integral equations of the form

f(x) +

Z
b

a

dyK(x; y)f(y) = g(x) (1.2)

where f; g; and K are continuous, f unknown. While Volterra and Fredholm
were the Örst to study these equations, it was Hilbert who provided the most
substantial breakthrough during his work of 1904-1910. By choosing an ortho-
normal basis fekg of continuous functions on [a; b] and deÖning the generalized
Fourier coe¢cients of f by

bfk := hf; eki
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with inner product

hf; gi :=
Z
b

a

dxf(x)g(x);

Hilbert was able to transform 1.2 into an equation of the form

bfk =
X

l

bKklfl = bgl:

Parsevalís relation was already know from Fourier analysis so Hilbert was
able to conclude that

X bfk

2

=

Z
b

a

dx jf(x)j2 ;

implying bf 2 l2(Z):
This led Hilbert and others to study l2 abstractly. In 1907 the space L2([a; b])

appeared in the work of Reisz and Fischer. In the theorem bearing their names,
Reisz and Fischer established an isomorphism between L2([a; b]) and l2. How-
ever this was only realized years later after the work of Von Neumann. Reisz also
identiÖed the abstract properties of the norm, and in 1922 Banach axiomized
these properties in his thesis.
These new developments in mathematics and the excitement of emerging

quantum mechanics prompted Von Neumann to Önally provide a deÖnition for
abstract Hilbert space in 1927. Eventually people began studying a new class
of functions on Hilbert space, what we now call linear maps. The study of
linear functionals had begun long before deÖnitions of Hilbert or Banach space
were given and applicable results and techniques where readily applied to linear
operators.
Most of the basics and lasting Hilbert space formalism came from the work

of Von Neumann. Reisz established the abstract concept of what we now call
bounded linear operators in 1913. Hilbert and Schmidt studied compact opera-
tors before the concept of compact was even well established and Weyl studied
what we now call unbounded operators. With this preliminary work established,
Von Neumann went on to generalize most of these results beyond recognition
in his book of 1932. Much of Von Neumannís work was aimed speciÖcally at
advancing quantum theory using the tools of functional analysis and Hilbert
space theory. It is the applications of these tools which we will be interested in
discussing.

A note on convention and text

As with most applied mathematics, the notation and convention of physicist
and mathematicians does not always coincide and these notes will be slightly
biased towards traditional mathematical notation.
Some physics literature refers to The Hilbert space in place of the plural

phrasing used here. The isomorphism between l2 and L2 mentioned above is
a speciÖc case of the more general fact that all separable inÖnite dimensional
Hilbert spaces are isomorphic. Since a Hilbert space is separable when it has a
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countable orthonormal basis, practically every example of Hilbert space used in
the early days of quantum mechanics was isomorphic (because they had count-
able bases). Therefore The Hilbert space was seen as appropriate. However,
non-seperable Hilbert spaces do appear and are useful in some areas of quan-
tum Öeld theory and since we will not discuss the concept of isomorphism or
separability in depth the singular phrasing The Hilbert space will not be used.
These notes are meant to be a summary of some of the most basic elements of

Hilbert space theory and their application to modern quantum theory. But, this
exposition is also meant to provide a collection of suggested references for the
material we will discuss. While appropriate references have been made during
the discussion, we will take the time here to mention some of the more useful
and unique references for related material we will not have time to explore in
depth.
An Introduction to Hilbert Space and Quantum Logic by David W. Cohen

contains a unique treatment of the material we will discuss and more using the
concepts of manuals and reÖnements. It provides an interesting introduction
to the logic of nonclassical physics and gives many projects for the reader to
investigate independently. The book Group theory and physics by S. Sternberg
provides is a fairly broad and comprehensive presentation of many application of
group theory and other algebraic concepts in physics. While we will deal with
little to no algebra in our main discussion, parts of [SS] would constitute an
appropriate sequel to these notes. It deals with symmetries and representations
and provides some algebraic shortcuts for some of the methods we will cover.
The symmetry discussed in the last section of these notes is a good starting

point for more advanced quantum Öeld theory. Representation theory as well as
the theory of Lie algebras becomes of central importance in many areas. More
in depth discussions of the applications of these algebraic concepts can be found
in [EJ] and [HS]. More advanced material is covered in [NPL2] and [JM].
There are a plethora of mathematical texts which cover the mathematics we

will go over here but there are a couple worth mentioning brieáy. [JW] gives
a rigorous treatment of the theory of linear operators and [WR] is a classic
reference for all basic functional analysis.
For anything you ever wanted to learn about linear operators, see [ND&JS].
There is no shortage of text books out there but hopefully the texts just

mentioned can provided anyone interested with useful references for a variety of
material.
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Chapter 2

Hilbert Space deÖnitions
and examples

We will begin with the deÖnition of a vector space

DeÖnition 1 A vector space V is a collection of vectors together with a Öeld
| and a corresponding addition (V V ! V ) and multiplication (|V ! V )
relation such that V is a commutative group under addition and multiplication
is both associative and distributive.

Cn and Rn are both vector spaces with addition and multiplication deÖned
in the obvious way and are probably the most familiar to readers. The set of
polynomials with degree less than or equal to n; for some Öxed n 2 N; with real
coe¢cients is a vector space under usual addition and multiplication by elements
from R: The space of polynomials of degree less than or equal to n 2 N with
complex coe¢cients is a vector space under usual addition and multiplication
by elements from R but, C could also be used as the Öeld for multiplication.
In what follows, we will usually take | = C :
Out of the endless numbers of vector spaces available, we will ultimately be

most interested in the Hilbert space consisting of functions whoís squared norm
is Lebesgue integrable on a particular interval. This will be more explicitly
deÖned and discussed later. A rigorous understanding of the Lebesgue integral
and theory of measure will not be necessary for what follows but some familiarity
is encouraged. Besides the standard treatment available in most undergraduate
analysis texts, the reader is referred to [JHW] for more on Lebesgue integration.

2.1 Linear functionals

Most people are familiar with the common deÖnition of an inner product space
as a vector space V endowed with a mapping, usually h:; :i : V  V ! C, such
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that for all x; y; z 2 V and ;  2 C the following hold

hx; yi = hy; xi; (2.1)

hx+ y; zi =  hx; zi+  hy; zi ; and (2.2)

hx; xi  0 (2.3)

where equality holds in the last expression only if x = 0: We will introduce a
slight variant of this deÖnition using deÖnitions and theorems related to linear
functionals. The majority of these deÖnitions were taken from [PRH].
A linear transformation between two vector spaces V and V 0 is a map L :

V ! V 0 such that
L(x+ y) = L(x) + L(y) (2.4)

for every x; y 2 V and all ;  2 C: Linear transformations whose range coincides
with C are of particular interests. These maps are called linear functionals.

DeÖnition 2 A linear functional on a vector space V is a map  : V ! C
which satisÖes the following conditions, formally known as:
(i)  is additive i.e. (x+ y) = (x) + (y) 8x; y 2 V and,
(ii)  is homogeneous i.e. (x) = (x) 8x 2 V and 8 2 C
Also, we have the corresponding notion of a conjugate linear functional where

condition (ii) is replaced with (x) = (x):

We will also need to deÖne what is known as a bilinear functional:

DeÖnition 3 A bilinear functional on a vector space V is a function ' :
V  V ! C such that if


y
(x) = 

x
(y) = '(x; y); (2.5)

then, for every x; y 2 V the map 
y
is a linear functional and the map 

x
is a

conjugate linear functional.

Note that if ' is a given bilinear functional and  (x; y) := '(y; x); then  
itself is obviously a bilinear functional. In the case that ' =  we say that '
is symmetric. Finally, we will deÖne the quadratic form induced by a bilinear
functional.

DeÖnition 4 The quadratic form induced by a bilinear functional ' on a
complex vector space V is the map ' deÖned for each x 2 V as

'(x) = '(x; x): (2.6)

The preceding deÖnitions now allow us to introduce the inner product and
notions of distance in a vector space.
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2.2 Metric, Norm and Inner product spaces

A Hilbert space is a special type of vector space. Its deÖnition will require the
generalized notion of length and distance in a vector space. For this we will
require an inner or scalar product (V  V ! V ) which will lead us to a norm
and metric.

DeÖnition 5 An inner product on a complex vector space V is a strictly
positive and symmetric bilinear functional h:; :i : V  V ! C. An inner
product space is then a vector space V equipped with such an inner product.

In physics, what is known as the "bra-ket" notation is often used to describe
elements in an inner product space. This refers to identifying elements of an
inner product space V as vectors ji or ji with inner product h j i = h j i.
This is mostly for aesthetic and notational convenience and will seldom be used
here.
If an inner product h:; :i is deÖned on a vector space V then from the deÖn-

ition, h:; :i is a strictly positive, symmetric bilinear functional. Then according
to deÖnition 4 we may deÖne a quadratic form ' = k:k2 associated with h:; :i
as hx; xi := kxk2 . Since by deÖnition h:; :i must be symmetric and strictly pos-
itive, i.e. hx; xi = hx; xi  0; we are guaranteed that hx; xi := kxk2 will deÖne
a positive real number kxk =

p
hx; xi: This number is called the norm or more

speciÖcally the norm induced by the inner product h:; :i : There is also a more
general deÖnition of a norm and metric.

DeÖnition 6 A norm is a real valued function k:k : V ! R which satisÖes the
following conditions.

1. kxk = jj  kxk

2. if x 6= 0; kxk 6= 0

3. kxk+ kyk  kx+ yk

8x; y 2 V

DeÖnition 7 A metric is a function d : V  V ! R which satisÖes the fol-
lowing conditions:

1. d(x; y) = d(y; x)

2. d(x; y) = 0 i§ x = y

3. d(x; y) + d(y; z)  d(x; z) (triangle equality)

8 x; y; z 2 V

A metric space (V; d) is then a set V equipped with an associated metric
d : V  V ! R
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For simple vector spaces like R or C we have standard norms kxkR = jxj
and kzkC = jzj =

p
Re(z)2 + Im(z)2. We can easily generalize these examples

to a norm in Cn by deÖning an inner product hx; yi =
P
k=n
k=1 xkyk for every

x = (x1; x2; :::; xn); y = (y1; y2; :::; yn) 2 Cn. This inner product allows us to
deÖne, for each x 2 Cn; the norm

kxkCn =
p
hx; xi =

vuut
nX

k=1

jxkj
2 (2.7)

which also deÖnes a metric as

d(x; y)Cn = kx ykCn =
p
hx y; x yi =

vuut
nX

k=1

jxk  ykj
2
: (2.8)

Note that Rn is a subspace of Cn and we may deÖne an inner product and
norm for Rn in the same manner as we have just done for Cn:
Notice that all these inner products, norms, and metrics deÖned in Rn and

Cn are geometrically and intellectually intuitive and feel quite natural. This is
most likely due to the fact that we actually, at least up to n = 3 for Rn, have
a very good idea of what the spaces look like. So, it seems natural to say the
distance between two points x and y in R is the distance of their separation on
the real line jx yj ; or in R2 the metric which gives the distance between two
points x = (x1; x2) and y = (y1; y2) as the distance of their separation in the
plane,

d(x; y) =
p
(x1  y1)2 + (x2  y2)2 (2.9)

which follows from a simple application of the Pythagorean theorem. This ease
of visualization of distance in the lower dimensional spaces is a rare luxury
for mathematicians so the standard norms and metrics just discussed really are
quite pleasing and can allow one to develop a good intuition about the geometry
of the individual spaces after some acquaintance.
But what about the inÖnite dimensional case? Often times we are dealing

with a vector space which does not have an obvious metric or distance between
its elements. What then can we say is the distance between the functions
f(x) = x 1 and g(x) = 2x 1 in L2([0; 1])? DeÖnition 6 allows us to abstract
notions of length in arbitrary vector spaces which may or may not have had
some inherent and intuitively obvious notion of distance already. For instance,

the space L2() = ff : ! C j kfk2 :=
R


jf j2 d

 1
2

<1g permits a norm

kfk2 :=
Z



jf j2 d
 1

2

for all f 2 L2(); (2.10)

and therefore a metric

d(f; g) = kf  gk2 =
Z



jf  gj2 d
 1

2

(2.11)
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as well. The deÖnition of kf  gk2 gives us a way to interpret the distance
between any two functions f and g in L2(): L2() is an inÖnite dimensional
vector space and one of our most prominent and useful examples of Hilbert
space.
We can deÖne a norm on the spaceMn = fA = (aij) : aij 2 C i; j 2 f1; 2; :::; ngg

of n by n matrices with complex entries by

k(aij)k := max
i;j

jaij j : (2.12)

This gives us a way of deÖning the norm of a linear operator by considering
its matrix representation and using 2.12. We will also see it is possible to deÖne
the norm of an arbitrary linear operator without considering its matrix form.
If, however, we want to consider the norm of a linear operator on an inÖnite
dimensional Hilbert space there is one major consideration that one needs to
take into account; the issue of boundedness. This is obviously not a problem in
the Önite dimensional case and of course means that it will only make sense to
look at the norm of bounded linear operators.
Although it will take some work, we will see that Hilbert space is useful

precisely because it allows us to generalize our traditional notions of an inner
product space and norm space to an inÖnite dimensional setting. Later we will
look at what restrictions we need to make on our inÖnite dimensional spaces in
order for a suitable inner product and norm to be deÖned.
It is easy to deÖne a norm or metric on a vector space which satisÖes de-

Önition 7 or 6 but does not necessarily coincide with the traditional idea of
distance in the given space. The following examples demonstrate the diversity
available for functions that satisfy deÖnition 6. We can equip R2 with the fol-
lowing distinct norms with associated metric which deÖne di§erent geometries
on our vector space.

Example 8 Consider the norms

k(x1; x2)k1 =
q
x21 + x

2
2; (2.13)

k(x1; x2)k2 = jx1j+ jx2j ; and (2.14)

k(x1; x2)k3 = maxfx1; x2g (2.15)

deÖned on R2: The corresponding unit ball in R2 with respect to the preceding
norms (i.e. k(x1; x2)k1  1; k(x1; x2)k2  1; and k(x1; x2)k3  1:) is easy to
visualize, forming a circle, rotated square (2 radians); and a centered square
respectively.

Although the norms in example 8 are all distinct functions on R2  R2, it
turns out that in any Önite dimensional space, as far as convergence is con-
cerned, every function satisfying deÖnition 6 is equivalent i.e. deÖnes the same
convergence.
For any inner product space with norm kxk =

p
hx; xi we have the following

well known result.
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Theorem 9 (Cauchy-Schwartz Inequality) For any two elements x and y
in an inner product space with norm kxk =

p
hx; xi we have

jhx; yij  kxk  kyk : (2.16)

Proof. Note: if y = 0 we are done. Assume y 6= 0: Then from the properties
of bilinear functionals we may expand the value hx+ y; x+ yi like so:

0  hx+ y; x+ yi = hx; xi+  hx; yi+  hy; xi+ jj2 hy; yi (2.17)

Now set  = hx; yi = hy; yi and multiply each side of 2.17 by hy; yi and we
have

0  hx; xi hy; yi  jhx; yij2 (2.18)

If x; y 2 V are such that x = y for some  2 C we say x and y are parallel,
often written x k y. It can be easily veriÖed that when x k y we will have
jhx; yij = kxk  kyk : We also have the useful result known as the parallelogram
law

Theorem 10 (Parallelogram Law) For any two elements x and y in an
inner product space we have

kx+ yk2 + kx yk2 = 2(kxk2 + kyk2) (2.19)

Proof. Expand

hx+ y:x+ yi = kx+ yk2 (2.20)

= hx; xi+ hx; yi+ hy; xi+ hy; yi (2.21)

= kxk2 + hx; yi+ hy; xi+ kyk2 (2.22)

Similarly we have kx yk2 =

= hx; xi  hx; yi  hy; xi+ hy; yi (2.23)

= kxk2  hx; yi  hy; xi+ kyk2 (2.24)

Now, by adding 2.22 and 2.24 we obtain the parallelogram law.

2.3 Convergence and completeness

We will now brieáy introduce notions of convergence and completeness in a
metric space before explicitly deÖning Hilbert space.

DeÖnition 11 Let (xn) be a sequence in a metric space (V; d): We say xn ! x
when limn!1 d(xn; x) = 0.
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DeÖnition 12 A metric space (V; d) is called complete when every Cauchy
sequence converges to a limit in V

With these deÖnitions in mind we may now formally deÖne a Hilbert space:

DeÖnition 13 A Hilbert space is an inner product space which is complete
with respect to the associated metric or norm induced by the inner product. That
is, a Hilbert space is an inner product space in which every Cauchy sequence has
a limit.

It is important to note the di§erence between a metric space which is com-
plete with respect to the norm induced by the inner product (i.e. Hilbert space)
and a metric space which is complete with respect to an arbitrary norm. The
latter is know as a Banach space. It is always the case that a Hilbert space is a
Banach space but the converse is not necessarily true. Consider the space

Lp() = ff : ! C j kfk
p
:=

Z



jf jp d
 1

p

<1g (2.25)

where  is a space with associated measure : Lp() is a Banach space for
all 0 < p  1 however it is only a Hilbert space for p = 2: It was said earlier
that Hilbert space allows the generalization of euclidean space to an inÖnite
dimensional setting. To do so we must take care in constructing the elements of
the space. The most natural generalization of Rn to a space of inÖnite dimension
would be the set of all inÖnite real sequences. It is true that this set forms a
vector space according to deÖnition 1 but it is not a very useful one. How would
one deÖne an inner product or norm on such a space? Continuing with our
generalization of the structure of Rn one may propose an inner product such as

hx; yi =
1X

n=1

xnyn (2.26)

for two sequences x = (xn) and y = (yn): However it is often the case that 2:26
will not converge when x and y are just two arbitrary real sequences. Instead,
we can restrict our attention to the set of all inÖnite sequence whose terms
are square summable. This space is know as `2(N) = f(a1; a2; a3; :::); ai 2 C jP1
n=1 jaij

2
< 1g: There is also the related hardy space H2 consisting of all

holomorphic functions f on the open unit disk satisfying

sup
0<r<1


1

2

Z 2

0

f(rei)
2 d

1=2
<1

The added structure of an inner product or normed spaces allows us to deÖne
two new types of convergence which will be useful in the future.

DeÖnition 14 (Strong Convergence)A sequence of vectors (xn) in an inner
product space V is said to converge strongly to x 2 V if kxn  xk ! 0 as
n!1:
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DeÖnition 15 (Weak Convergence) A sequence of vectors (xn) in an inner
product space V is said to converge weakly to x 2 V if for each y 2 V; hxn; yi !
hx; yi as n!1:

2.4 Basis system and orthogonality

Before we begin our discussion of linear operators in Hilbert space, we need
to deÖne an orthonormal basis and review other notions of orthogonality. An-
other special aspect of Hilbert space is that it allows our common notion of
orthogonality in a Önite dimensional vector space to be generalized to an inÖ-
nite dimensional setting.
Recall, given any Hilbert space H with inner product h:; :i we say that two

vectors f; g 2 H are orthogonal, often written f?g; when hf; gi = 0:
This idea can be extended to the notion of subspaces as well. That is,

M  H and N  H, both subspaces of H; are said to be orthogonal, again,
often written M ? N , when hf; gi = 0 for all f 2M and all g 2 N:
Here is very elementary example of two subspaces which are orthogonal

`2(N):

Example 16 Consider the Hilbert space `2(N) of square summable sequences
of elements of C: Let Mn = f(a1; a2; a3; :::) 2 `2(N) j ai = 0 8i  ng and
Nn = f(b1; b1; b1; :::) 2 `2(N) j bj = 0 8j > ng; for some n 2 N: Then using the
usual inner product for `2(N); for any f 2Mn and any g2 Nn we have:

hf; gi =
1X

i=1

aibi = 0 
nX

i=1

bi + 0 
1X

i=n+1

ai = 0 (2.27)

So we can see that Mn ? Nn in `2(N):

There are numerous other examples of orthogonal subspaces, obviously more
complicated than these. For now, we present some theorems showing how some
properties of orthogonality can manifest in relations between the norm of dif-
ferent vectors.
While it is very well known, it is useful to remind ourselves that for any

f?g; f; g 2 H; the vector norms of f and g satisfy the Pythagorean Theorem.
That is, we have:

kf + gk2 = kfk2 + kgk2 (2.28)

whenever f?g with f; g 2 H:
Recall that for any subset A  V where V is a vector space, span(A) (the

span of A) is the set of all Önite linear combinations of vectors in A. span(A)
is the smallest subspace of V containing A. If it happens that span(A) = V
and, also the vectors of A are linearly independent, then A forms a basis for V .
That is, if A is a basis for V then every vector in V can be written as a Önite
linear combination of vectors in A: Now we give the deÖnition of orthogonal and
orthonormal systems as given in [LD&PM].
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DeÖnition 17 Let V be an inner product space. A family of vectors S  E
is called an orthogonal system if, for any x; y 2 S; x 6= y we have x ? y.
Additionally, if it happens that kxk = 1 for all x 2 S we say that S is an
orthonormal system.

I am assuming that the reader is familiar with the concept of a basis for a
Önite dimensional vector space. The inÖnite dimensional case is similar, however
it is not quite as simple as "a set of linearly independent vectors whose span
is equal to the vectors space". However, linear independence is still necessary
for a basis in our inÖnite dimensional setting so we will require the following
theorem and the deÖnition of an orthonormal sequence.

Theorem 18 Orthogonal systems are linearly independent.
Proof. Let A be an orthogonal system and suppose

P
k=n
k=1 akek = 0 for some

e1; e2; ::: en 2 A and a1; a2; ::: an 2 C:Then

0 =
m=nX

m=1

h0; amemi (2.29)

=
m=nX

m=1

*
k=nX

k=1

akek; amem

+
(2.30)

=
m=nX

m=1

jamj
2 kemk

2 (2.31)

This implies that am = 0 8m 2 N so e1; e2; ::: en are linear dependent

DeÖnition 19 (Orthonormal Sequence) A sequence of vectors which con-
stitute an orthonormal system is called an orthonormal sequence.

Now the orthogonal condition for a (xn) sequence can be expressed in terms
of the Kronecker delta symbol:

hxn; xmi = nm (2.32)

and kxnk for an orthonormal sequence (xn) where nm = 1 for n = m and
nm = 0 when n 6= m:
Again, this is really not very di§erent from the Önite dimensional case. As

an example, consider en = (0; :::; 0; 1; 0; :::) where the 1 is in the nth position.
Then the set S = fe1; e2; e3; :::g is an orthonormal system in `2

DeÖnition 20 (Complete Orthonormal Sequence) An orthonormal sequence (xn)
in an inner product space V is said to be complete if for every x 2 V we have:

x =
1X

n=1

hx; xnixn (2.33)
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Now we may Önally deÖne a basis in a inÖnite dimensional space as follows
and give the following theorem regarding complete orthonormal sequences in
Hilbert space.

DeÖnition 21 (Orthonormal Basis) An orthonormal system B in an inner
product space V is called an orthonormal basis (o.n.b) if every x 2 V has a
unique representation

x =
1X

n=1

nxn (2.34)

where each n 2 C and each xn 2 B.

When a basis B has been speciÖed we often will write x = (1; 2; :::) where
n = hx; xni for every xn 2 B:

Theorem 22 An orthonormal sequence (xn) in a Hilbert space H is complete
if and only if hx; xni = 0 8n 2 N implies that x = 0:
Proof. Suppose (xn) is a complete orthonormal sequence in H: Then we can
write every x 2 H as

x =
1X

n=1

hx; xnixn (2.35)

So if hx; xni = 0 for every n 2 N then x = 0:
Now suppose that if hx; xni = 0 for every n 2 N it follows x = 0: Let x 2 H

and deÖne y =
P1
n=1 hx; xnixn:NTS x = y

We can expand hx y; xni =

= hx; xni 

*
1X

n=k

hx; xkixk; xn

+
(2.36)

= hx; xni 
1X

n=1

hx; xki hxk; xni (2.37)

to obtain hx; xni  hx; xni = 0 since hxk; xni = k;n and therefore x y = 0
and

x =
1X

n=1

hx; xnixn (2.38)
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Chapter 3

Linear Operators

Previously covered was the topic of linear functionals. Recall that a linear
functional is nothing more than a linear map whose range is C: Now we will
explore the more general case of linear operator between two arbitrary Hilbert
spaces. We will however, be mostly concerned with operators A : H ! H 0

where H = H 0.

3.1 Basics

Before we get to involved in our discussion, it will help too go over a few nota-
tional conventions and elementary facts about Hilbert space.
For a given linear operator A we will refer to the set of vectors which A acts

upon as the domain of A which we will most often write as D(A): Similarly
the range of A will often be denoted R(A):We will need the analytic notion of
a dense subset:

DeÖnition 23 A set Q is a dense subset of a set W if the closure of Q is equal
to W

The completeness property of Hilbert space allows us to consider operators
deÖned only on a dense subspace of a Hilbert space. If we are given an operator
A deÖned on D  H a dense subset of H; then for v =2 D (v 2 H) we can
deÖne Av := limn!1Avn where the sequence (vn)  D converges to v: In other
words, if we have (vn)  D(A) satisfying vn ! 0 and Avn ! w; we must have
w = 0 for this process to work. If an operator A admits such an extension it
is closable. This extension, usually denoted A; can be shown to be unique. If
an operator cannot be extended any further by the method described then it is
closed. More formally

DeÖnition 24 An operator A on a Hilbert space H is closed if, for all sequences
(xn)  D(A), xn ! x and Axn ! y implies x 2 D(A) and Ax = y:
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This may also be stated by deÖning the graph G(A) of a linear operator
A : H ! H 0 as G(A) = f(x;Ax) : x 2 D(A)g: A is then closed if G(A) is a
closed subspace of H H 0:
It will also help to know that a closed subspace of a Hilbert space is a Hilbert

space itself.
Many times we will be interested in the bound of various operators.

DeÖnition 25 For a linear operator A : H ! H 0 deÖne a positive number kAk
by

kAk := supfkAxk
H0 ; x 2 H; kxkH = 1g (3.1)

where kxk
H
=
p
hx; xi

H
. Note that from this deÖnition it follows

kAxk  kAk kxk (3.2)

for every x 2 H:
We say that A is bounded when kAk <1

It turns out that a linear operator will be bounded if and only if it is con-
tinuous. In fact, we have the following theorem demonstrating the equivalence
of three important conditions.

Theorem 26 For a linear map between Hilbert spaces A : H ! H 0 the following
three conditions are equivalent:
1) A is continuous at zero
2) A is continuous
3) A is bounded

Proof. 2 implies1 does not need proof
1 implies 2: Assume A is continuous at zero. Then 8" > 0 we can Önd

 > 0 such that kAx 0k
H0 < " whenever kx 0k

H
< ; x 2 H: Let " > 0:

Now for x; x0 2 H with kx x0k
H
< ; from the linearity of A we have

kAxAx0k
H0 = kA(x x0) 0kH0 < ":So A is continuous:

1 implies 3, 2 implies 3: Suppose  > 0 is such that whenever kxk
H
 ;

we have that kAxk
H0 < 1: Then for any nonzero v 2 H;

kAvk =

kvk

A(

v
kvk

)

 =
kvk


A(
v
kvk

)

 
kvk


so A is bounded.
3 implies 1, 3 implies 2: Suppose A is bounded. We actually may show

that A is uniformly continuous which is obviously a stronger conclusion. If A is
bounded, say by M > 0; then for x; y 2 H we have

kA(y  x)Ayk = kAxk M kxk

Now, letting x! 0 shows that A is continuous at 0. But since M is indepen-
dent of our choice of y we have shown that A is in fact uniformly continuous.

23



Example 27 (Shift operator) Consider the map A : `2 ! `2 deÖned by

A(a1; a2; :::) = (0; a1; a2; :::) (3.3)

for every (a1; a2; :::) 2 `2:

Example 28 (Multiplication operator) Let z 2 C([a; b]) where C([a; b]) is the
set of continuous functions on [a; b]. DeÖne A : L2([a; b]) ! L2([a; b]) as
(Ax)(t) = z(t)x(t): A is clearly linear and since

kAxk2 =
Z
b

a

jx(t)j2 jz(t)j2 dt  max
[a;b]

jz(t)j2
Z
b

a

jx(t)j2 dt;

we have that kAxk  max[a;b] jz(t)j kx(t)k so therefore A is also bounded.

Every linear operator on a Hilbert space is completely determined by itís
action on the basis. Suppose we have a Hilbert space H with o.n.b. S =
fe1; e2; e3; :::g and are considering the action of a linear operator A on H: For
every x 2 H we may write x =

P1
n=1 nen where hx; eni = n 2 C: Then by

the linearity of A we may write

Ax = A(

1X

n=1

nen) = A(1e1 + 2e2 + 3e3 + :::)

= A(1e1) +A(2e2) +A(3e3) + :::

= 1A(e1) + 2A(e2) + 3A(e3) + :::

=
1X

n=1

nAen

So we can see that the value of Ax is completely described by the value of
Aei, i 2 N: Now, for A : H ! H 0; if S0 = fe01; e02; e03; :::g is an o.n.b. for H 0,
then, since Aei 2 H 0; we may write

Aei = 
i1
e01 + i2e

0
2 + i3e

0
3 + ::: =

1X

n=1


n
e0
n

where 
ij
2 C 8j 2 N: Note that 

ij
=

Aei; e

0
j


: This leads us to the matrix

representation of a linear operator A:Given a linear operator A : H ! H 0, where
S = fe1; e2; e3; :::g and S0 = fe01; e02; e03; :::g are o.n.b.ís forH andH 0 respectively,
the matrix representation A = [ai;j ]; that is, the i; jth entry of the matrix for

A is ai;j =
D
Aej ; e

0

i

E
. From this discussion of the matrix representation of an

operator, we can see that the composition of operators is the same as matrix
multiplication in the usual sense. In light of this, we will typically drop the 
when discussing composition or products of operators i.e. (AB)(x) = A(B(x)):
We will usually just write AB in place of the more bulky (A B):

Next we will prove a lemma which will lead us to the proof of the what is
called the Reisz representation theorem. The reader will need to recall that the
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null space, null(L); of a linear map L is the subspace of all vectors which L
maps to the zero vector.

Lemma 29 Let f be a bounded linear functional on an inner product space E:
Then the dimension of null(f)?  1:
Proof. If f = 0 we are done so assume f is non-zero. Since f is continuous
null(f) is a closed subspace of E so null(f)? is not empty. If we take non-zero
x; y 2 null(f)?; since f(x) 6= 0 and f(y) 6= 0; we can Önd some scalar a 6= 0
such that f(x)+af(y) = 0: f is linear so f(x)+af(y) = f(x+ay) which implies
x+ay 2 null(f): However, we choose x; y 2 null(f)? which is a vector space so
we must have x+ ay 2 null(f)? as well. The only way this may happen is if x
and y are linearly dependent since a 6= 0: Since x and y where chosen arbitrarily
we see that they each span null(f)? i.e. it is one dimensional.

Now we can prove

Theorem 30 (Reisz Representation Theorem) Let f be a bounded linear func-
tional on a Hilbert space H: Then there exist some x0 2 H such that f(x) =
hx; x0i for all x 2 H and kfk = kx0k :
Proof. If f = 0 then x0 = 0 works so assume f is a non-zero functional. From
lemma 29 we know that null(f)? has dimension one. Let z0 2 null(f)? with
kz0k = 1:Then for every x 2 H we may write x = x  hx; z0i z0 + hx; z0i z0:
Since hx; z0i z 2 null(f)? we must have x hx; z0i z0 2 null(f) so

f(x hx; z0i z0) = 0

which means
f(x) = hx; z0i f(z0) =

D
x; f(z0)z0

E

so let x0 = f(z0)z0 and we have f(x) = hx; x0i for all x 2 H: We need to
make sure x0 is unique.
Suppose there is some x1 satisfying f(x) = hx; x1i for all x 2 H: Then

hx; x1i = hx; x0i or hx; x1  x0i = 0 for all x 2 H: Then hx1  x0; x1  x0i = 0
which can only happen if x0 = x1:
To show that kfk = kx0k consider kfk = supkxk=1 jf(x)j = supkxk=1 jhx; x0ij 

supkxk=1 kxk kx0k = kx0k
On the other hand, kx0k

2
= jhx; x0ij = jf(x)j  kfk kx0k

Therefore kx0k = kfk

3.2 The adjoint

For now we are only going to consider linear operators between the same spaces
i.e. operators A : H ! H: There are plenty of interesting things to study about
operators between di§erent spaces but knowledge of them will not be necessary
what weíre ultimately concerned with. Right now we want to deÖne and discuss
what are known as self-adjoint operators which will be of great importance to
us later. First we start with the deÖnition of a Hermitian operator
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DeÖnition 31 An operator A : H ! H is said to be Hermitian if

hAf; gi = hf;Agi

holds for all f; g 2 H

Using this deÖnition we will present a lemma which will prove to be one of
the main reason Hermitian operators are so important in quantum physics.

Lemma 32 An operator A : H ! H is self-adjoint if and only if hAf; fi 2 R
for all f 2 H

Most people are familiar with this result which comes from a fairly simple
application of the properties of inner products so we wonít prove it here.

DeÖnition 33 Let A : H ! H be a linear operator on a Hilbert space H.
Suppose there is f;  2 H such that

h ;A'i = hf; 'i

for some ' 2 H:
The adjoint of A is an operator A deÖned as A = f . An operator then

is said to be self-adjoint if it is equal to its adjoint.

The distinction between Hermitian operators and ones which are self-adjoint
is very subtle. The main di§erence is that an operator that is self-adjoint must
have the same domain as its adjoint while an operator is Hermitian simply if it
satisÖes hAf; gi = hf;Agi. In the case of bounded operators they are the same.
The deÖnitions are famously confused as exempliÖed by the following anecdote of
a meeting between the famous mathematician John von Neumann and physicist
Werner Heisenberg. Their encounter is said to have gone something like this:

 During the 1960ís John von Neumann was meeting with Werner Heisen-
berg and felt compelled to thank him for the invention of quantum me-
chanics, because this had led to the development of so much beautiful
mathematics (such as the theory of operators on Hilbert space which we
are discussing), adding that mathematics paid back a part of the debt by
clarifying, for example, the di§erence of a self-adjoint operator and one
that is only symmetric. Heisenberg replied: ìWhat is the di§erence?î

In physics literature especially the distinction is usually relaxed and the
operators are just referred to as Hermitian.
Sometimes it may be helpful to look at the set L(H;H 0); of all linear op-

erators between two Hilbert spaces H and H 0 and also B(H;H 0); the set of
all bounded linear operators between H and H 0 (L(H) or B(H) in the event
H = H 0). The adjoint of an operator A 2 L(H;H 0) will then belong to the
set L(H;H 0): In fact, if A 2 B(H;H 0) it turns out A 2 B(H 0;H); that is, if
a linear operator is bounded then its adjoint is as well. In fact, we have the
following theorem relating the norms of operators and their adjoints.
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Theorem 34 Let A 2 B(H;H 0); H and H 0 both Hilbert spaces. Then

kAk2 = kAk2 = kAAk

Proof. Let h 2 H with khk
H
 1:

Then:

kAhk2
H0 = hAh;Ahi

H0 (3.4)

= hAAh; hi
H
 kAAhk

H
khk

H
(3.5)

 kAAk khk2
H
 kAAk (3.6)

 kAk kAk (3.7)

So, by deÖnition of kAk we have kAk2  kAk2  kAAk :
To obtain the reverse inequality, simply substitute A for A and A for A:

Therefore,
kAk2 = kAk2 = kAAk (3.8)

A very important self-adjoint operator is the projection operator PK : H !
K which projects every vector onto a subspace K  H:

DeÖnition 35 A projection on a Hilbert space H is a bounded operator P
satisfying P 2 = P  = P

Consider a closed subspace K  H. K itself is a Hilbert space and therefore
it admits a basis representation, say B = (ei): Then the projection of H onto
K; PK ; is the map

f 7!
X

i

hf; eii ei

for all f 2 H. Recalling our previous discussion of orthogonality, it is clear that
Pf = f for all f 2 K and Pf = 0 for all f 2 K?:
The well know orthogonal projection theorem will be necessary to complete

our proof of the spectral theorem for self-adjoint operators. We will state the
theorem here. The proof is fairly straight forward but it is not particularly
enlightening so we will state the theorem without proof.

Theorem 36 If K is a closed subspace of a Hilbert space H then every x 2 H
has a unique representation as a sum of vectors, u 2 K and v 2 K?: That is,
for every x 2 H we may write

x = u+ v, u; v 2 H where hu; vi = 0:

Next we state and prove an identity which, again, will aid is in our proof of
the spectral theorem.
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Theorem 37 Let A be a self-adjoint operator on a Hilbert space H: Then we
have kAk = supkxk=1 jhAx; xij :
Proof. First setM = supkxk=1 jhAx; xij : Then for kxk = 1; jhAx; xij  kAxk 
kAk and therefore M  kAk :

Now let  :=
q

kAxk
kxk and z := Ax


: Then

kAxk2 = hAx; zi

=
1

4
[hAx+ z; x+ zi  hA(x z); x zi]


1

4
M(kx+ zk2 + kx zk2)

=
1

2
M(kxk2 + kzk2)

=
1

2
M(2 kxk2 +

1

2
kAxk2)

= M kxk kAxk :

This gives kAxk M kxk which means kAk M:

Compactness is another quality of linear operator which is relevant to our
discussion. We know that a compact set is one in which every sequence has a
convergent subsequence. Similarly, a compact operator is simply an operator
which preserves compactness. That is, if K is a compact subset of a Hilbert
space H; then A : H ! H is compact if the set fAx j x 2 Kg is compact as
well. We may also deÖne a compact operator as follows:

DeÖnition 38 A compact operator on a Hilbert space H is a bounded oper-
ator that maps the closed unit ball B1  H into a compact set.

Compact operators are special because they behave like Önite rank-operators:
In fact, it can be shown that every compact operator on a Hilbert space is the
limit of a Önite rank operator. Therefore we can regard the set of compact
operators as the closure of the set of Önite rank operators with respect to the
operator norm.
Our Örst statement about compact operators will be an interesting equiv-

alence statement involving the notion of weak convergence which was deÖned
earlier. For proof see [LB&PM].

Theorem 39 An operator A on a Hilbert space H is compact if and only if
xn ! x weakly implies A xn ! Ax:

The eigenvalues of linear operator are of particular interest in quantum me-
chanics. We will require a few theorems regarding the eigenvalues of compact
operators which we will develop here.

Lemma 40 Let A 6= 0 be a self-adjoint, compact operator between a Hilbert
space H and itself. A has an eigenvalue  satisfying jj = kAk or jj = kAk
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Proof. Consider a sequence of unit vectors (un) in H such that kAunk ! kAk

as n!1: Consider the quantity
A2un  kAunk2 un


2

which may be expanded

as follows
A2un  kAunk2 un


2

=
D
A2un  kAunk

2
un; A

2un  kAunk
2
un

E

=

A2un; A

2un

+
D
kAunk

2
un; kAunk

2
un

E
 2 kAunk

2 
A2un; un



=
A2un

2 +
kAunk2 un


2

 2 kAunk
2 hAun; Auni

=
A2un

2  kAunk4 (3.9)

 kAk2 kAunk
2  kAunk

4

= kAunk
2
(kAuk2  kAunk

2
): (3.10)

Since we chose (un) such that kAunk ! kAk as n!1; the last expression,

equation 3.10, will go to zero as well so
A2un  kAunk2 un


2

! 0 as n!1.
Since A is compact A2 will be as well so there exist a subsequence (uni) of

(un) such that (A2uni) converges. We may write the limit of (A
2uni) as kAk

2
v

for some non-zero v 2 H: Now, for any i 2 N we have
kAk2 v  kAk2 uni

 (3.11)


kAk2 v A2uni

+
A2uni  kAunik

2
uni

+
kAunik

2
uni  kAk

2
uni

(3.12)

The Örst quantity in the second half of equation 3.12 goes to zero by de-

Önition of kAk2 v; the second since
A2un  kAunk2 un


2

! 0; and the third

quantity of equation 3.11 eventually vanishes because we assume kAunk ! kAk :
So
kAk2 v  kAk2 uni

 = kAk2 kv  unik as n ! 1; which means that (uni)
converges to v; since A 6= 0; and therefore,

kAk2 v = A2v

or
(A kAk)(A+ kAk)v = 0:

If (A + kAk)v 6= 0 then we may let w = (A + kAk)v and then we have
(AkAk)w = 0. Therefore, w is an eigenvector of A with eigenvalue kAk : If it
happens that (A+ kAk)v = 0 then kAk is an eigenvalue of A:
The existence of the eigenvalue in the previous theorem will end up playing

an important part in the proof of the spectral theorem.

Corollary 41 If A is a compact self-adjoint operator on a Hilbert space H,
then there is a unit vector w 2 H such that

jhAw;wij = sup
kxk1

jhAx; xij (kwk = 1)
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Proof. Let w 2 H be an eigenvector in lemma 40 corresponding to the eigen-
value  with jj = kAk : Then from theorem 37 we have

jhAw;wij = jhw;wij = jj kwk = jj = kAk = sup
kxk1

jhAx; xij

Finally, we are ready to present the Hilbert-Schmidt and spectral theorem.
Most readers familiar with linear algebra know that, for a self-adjoint linear
operator of Önite rank, we may Önd an orthonormal basis of eigenvectors. We
now seek to generalize this result for inÖnite dimensional Hilbert space. This
idea will be very important in the applications to come.

Theorem 42 (Hilbert Schmidt) For any compact self-adjoint operator A on an
inÖnite dimensional Hilbert space H we may Önd an orthonormal system of
eigenvectors (un) corresponding to nonzero (real) eigenvectors (n) such that
every x 2 H may be written uniquely as

x =

1X

n=1

nun + v

where n 2 C and Av = 0: If A has an inÖnite number of distinct eigenvalues
then we have n ! 0 as n!1 .
Proof. Let A be a compact self-adjoint operator on an inÖnite dimensional
Hilbert space H: First, recall from lemma 40 and corollary 41 that we know A
has an eigenvalue, 1; such that

j1j = kAk = sup
kxk1

jhAx; xij :

Let u1 be the normalized eigenvector corresponding to the eigenvalue 1 and
set

Q1 = fx 2 H : x ? u1g

Note that for x 2 H we have hAx; u1i = hx;Au1i = 1 hx; u1i = 0 so
Ax ? u1 and therefore Ax 2 Q1 i.e. A maps Q1 into itself. This means we
may consider the map of A restricted to Q1 and again apply corollary 41 and
lemma 40 to Önd an eigenvalue 2 such that j2j = supkxk1 fjhAx; xij : x 2 Q1g
corresponding to a normalized eigenvector u2 2 Q1. Obviously u2 ? u1 and we
may set

Q2 = fx 2 Q1 : x ? u2g

and continue in the same manner as above. If we have chosen eigenvectors
1; :::n with corresponding normalized eigenvectors u1; :::; un deÖne

Qn = fx 2 Qn1 : x ? ung

and choose
jn+1j = sup

kxk1
fjhAx; xij : x 2 Qng

30



Having chose n+1 we may take un+1 to be the normalized eigenvector cor-
respond to n+1:
It may happen that this procedure terminates after a Önite number of steps

in which case every x 2 H has a unique representation as

x = 1u1 + :::+ kuk + v

with Av = 0 and
Ax = 11u1 + :::+ kkuk:

If the procedure terminates the theorem is proved but suppose that we obtain
an inÖnite sequence of eigenvalues (n) and eigenvectors (un): By the nature
of how (un) is chosen it converges weakly to zero. Therefore, by theorem 39 we
know Aun ! 0 strongly and therefore

jnj = knunk = kAunk ! 0

Now let S = span(u1; u2; :::) we the space spanned by the vector or: From
theorem 36 we know we know every x 2 H may be written uniquely as x = u+v;
u 2 S and v 2 S?;

x =
1X

n=1

nun + v

Now to show Av = 0 let w = v

kvk : Then hAv; vi = kvk
2 hAw;wi : Note that

w 2 S?  Qn for all n 2 N and

jhAv; vij = kvk2 hAw;wi  kvk2 sup
kxk1

fjhAx; xij : x 2 Qng = kvk
2 jn+1j ! 0

This implies hAv; vi = 0: So from theorem 37 , the norm of A restricted to
S? is zero giving Av = 0 for all v 2 S?

The work to prove the spectral theorem is now mostly done now. The
spectral theorem is presented in various forms depending on the context of
discussion but in general it is a way of completely characterizing compact self-
adjoint operators.

Theorem 43 (Spectral Theorem) Let A be a compact self-adjoint operator on a
Hilbert space H with a complete orthonormal system of eigenvectors fv1; v2; :::g
with corresponding eigenvalues f1; 2; :::g: Let Pi : H ! H be the one dimen-
sional projection onto span(v1; v2; :::) deÖned by x 7! hx; vii : Then for all x 2 H
we may write

x =
1X

i=1

Pix

and

A =

1X

i=1

iPi
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Proof. Recall from theorem 42 we have the orthonormal system B0 = fu1; u2; :::::g
which forms a basis for vectors in S: Therefore if we add an arbitrary ortho-
normal basis for S? to the set B0 we obtain a complete orthonormal system
B = fv1; v2; :::g: Given a complete orthonormal basis B we may write any x 2 H
as

x =
1X

i=1

hx; vii vi:

With our deÖnition of Pi as Pix = hx; vii for all i 2 N we have

x =
1X

i=1

Pix;

and since our basis consist of eigenvectors we also have

Ax =
1X

i=1

i hx; vii vi =
1X

i=1

iPix;

which gives

A =
1X

i=1

iPi:

3.3 The spectrum

The previous discussion had much to do with the eigenvalues of linear operators.
In the inÖnite dimensional setting we have sort of a broader set of values we are
interested in known as the spectrum.

DeÖnition 44 Let A be a linear operator on a Hilbert space H. We deÖne the
operator R by

R := (I A)1:

R is called the resolvent operator of A. The values of  for which R is
deÖned on all of H and is bounded are called regular points. The set of all
regular points, denoted (A); is called the resolvent set of A: The set of all
 2 C not in (A) is called the spectrum of A and is denoted by (A):

In summary,  2 (A) if one of the following conditions is true

 (A I) is not one-to-one

 The range of (A I) is not dense
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We can easily see that every eigenvalue of A is in (A) : if v is an eigenvector
of A corresponding to eigenvalue  then v is a solution to the equation A 
I = 0: So the operator (A I) is not one-to-one and therefore not invertible
which means  2 (A): The spectrum may also contain values which are not
eigenvalues of A: In fact, a non-empty spectrum may contain no eigenvalues.

Example 45 Consider the multiplication operator A : C([a; b]) ! C([a; b]) on
the space C([a; b]) of continuous functions on the interval [a; b] deÖned by

(Ax)(t) = u(t)x(t)

for Öxed u 2 C([a; b]): In this case the resolvent operator R = (A  I)1 is
deÖned by the rule x(t) 7! x(t)

u(t) so we can see that

(A) = f : u(t) =  for some t 2 [a; b]g ;

or in other words the spectrum of A consists of the values in the range of u: In the
case that u is non-constant and strictly increasing we have (A) = [u(a); u(b)]:

We know that the eigenvalues of a self-adjoint operator are always real and
that the spectrum contains all eigenvalues. Now we will prove a stronger state-
ment about the spectrum.

Theorem 46 If A is a self-adjoint operator then (A) contains all non-real
numbers
Proof. If z 2 C but z =2 R then g() = (z  )1 is a bounded continuous
function on the real line. Therefore the resolvent operator R = (A )1 is a
bounded operator deÖned everywhere so z 2 (A):

So, the spectrum of a self-adjoint linear operator may only contain real
values.
Now that we know that the spectrum of a self-adjoint operator contains only

real values we are of course interested in when exactly we can say that a real
number  2 (A): The following theorem gives us an equivalent condition.

Theorem 47 If A : H ! H is a closed self-adjoint then the real number  2
(A) if and only if there is a sequence (un)  D(A) such that

kunk = 1 and k(A)unk ! 0 as n!1: (3.13)

Proof. Suppose condition 3.13 holds. If  2 (A) then we would have kunk =
kR(A)unk ! 0 from the second part of our assumption, contradicting the
Örst part, kunk = 1:
Conversely, if we suppose that 3.13 does not hold then we may Önd some

constant C such that

kuk  C k(A)uk for u 2 D(A): (3.14)
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If not then we can Önd (vn)  D(A) such that k(A)vnk
1 kvnk ! 1

and setting un = vn

kvnk
gives us a sequence satisfying condition 3.13. Therefore,

condition 3.14 holds. This gives us two important bits of information. First, it
tells us that the function (A) is one-to-one on D(A).
3.14 also implies that R(  A) is closed. To see this, consider a sequence

(fn)  R( A) such that fn ! f in H: Since ( A) is one-to-one on D(A)
we may Önd a unique un 2 D(A) satisfying (A)un = fn: Now condition 3.14
implies that (un) is Cauchy so un ! u 2 H: So, if we take v 2 D(A) we have

hu; (A)vi = lim hun; (A)vi = lim hfn; vi = hf; vi :

Therefore u 2 D(A) with (A)u = f: Knowing this allows us to show R(
A) = H which gives  2 (A) since we may then deÖne Rf as the solution to
(  A)u = f: So to show R(  A) = H let f 2 H and w 2 R(  A): Let
v 2 D(A) be the unique solution (in D(A)) of (A)v = w:We may now deÖne
a linear functional on R(A) by Fw := hv; fi : Since we showed R(A) is
closed and it is automatically a subspace of H; R(A) is itself a Hilbert space.
From condition 3.14 we have

jFwj  kvk kfk  C kfk kwk

so F is bounded. Therefore, by the Reisz representation theorem, there is u 2
R(A) such that Fw = hw; ui for all w 2 R(A): This gives

hu; (A)vi = hf; vi for v 2 D(A)

Since A is self-adjoint, this implies u 2 D(A) and (  A)u = f . So f 2
R(A).

The preceding proof also gives proofs of the following corollaries

Corollary 48 Self-adjoint operators are closed.

Corollary 49 If A is closed and

kvk  C kAxk ; v 2 D(A)

then A is one-to-one and R(A) is closed.

Our next endeavor will be to show that the resolvent set, (A); is always
an open set in C: For this we will need a lemma and to employ the notion of
convergence of a sequence of operators.
Recall the deÖnitions of strong/weak convergence deÖned earlier. We have

similar notions of convergence which we can deÖne in the space B(H) of bounded
linear operator on a Hilbert space

DeÖnition 50 Let (An)  B(H) be a sequence of linear operators. If there
exist A 2 B(H) such that kAn Ak ! 0 as n!1 we say (An) converges to A
in the uniform operator topology or converges in norm. We say A converges
strongly if Anx! Ax for all x 2 H:
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With this deÖnition in mind, it may be shown that the space B(H) is in fact
itself a Banach space.

Lemma 51 Let A 2 B(H): If kAk < 1 then (I  A) is invertible in B(H) and
the inverse is given by

(I A)1 = I +A+A2 +A3 + ::: =
1X

k=0

Ak (3.15)

Expression 3.15 is called the Neumann series.
Proof. If kAk < 1; then

P1
k=0 kAk

k
= 1

1kAk < 1 so the Neumann series
P1
k=0A

k will converges to an operator in B(H) since it is complete.
Note that if Si; S; T 2 B(H) and Si ! S in B(H) then kSiT  STk 

kSi  Sk  kTk ! 0 and kTSi  TSk  kTk  kSi  Sk ! 0: Therefore

(I  L)

 
1X

k=0

Lk

!
= lim
N!1

(I  L)
NX

k=0

Lk = lim
N!1

(I  LN+1) = I

since
LN+1

  kLkN+1 ! 0: Similarly we have
P1

k=0 L
k

(I  L) = I. So

I  L is invertible with (I  L)1 =
P1

k=0 L
k


Now we have

Corollary 52 The resolvent set (A) of a linear operator A is an open set.
Proof. Let  2 (A): So by deÖnition the operator (I  A) is bounded and
invertible. Let M =

(I A)1
 and let  be such that j j < " = 1

M
: We

have

I A = ( )I + I A (3.16)

= (I A)(( )(I A)1 + I): (3.17)

Since j j < " we have
( )(I A)1

  k( )k
(I A)1

 < 1 (3.18)

so (I A)(( )(I A)1 + I) = I A is invertible, implying  2 (A):
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Chapter 4

Physics

The often non-intuitive nature of quantum mechanics is, in part, a consequence
of the statistical nature of the current quantum interpretation of atomic theory
that has been adopted by modern physics. Before this, the classical description
of mechanics was rooted in the notion of a phase space M and and the concept
of time evolution. The points in the phase space each correspond to a state.
At any point in time, each state is said to completely characterize the system.
More speciÖcally, a state determines any observable value of the system such as
momentum, energy etc. and also allows one to make predictions about the future
of the system so long as the state at t = 0 is known. For instance we have the
familiar Hamiltonian which gives the energy of the system in a particular state.
The relationship between states (the points of phase space M) and observables
may be stated as follows

The value of the observable f in the state x is f(x).

This naturally leads to the formulation of certain kinds of yes-no questions:
is the system in a state lying in S M i.e. is x 2 S: The answer is deÖned by
the characteristic function 

S
for S as usual with 

S
(x) = 1 for ëyesí i.e. x 2 S

and 
S
(x) = 0 for ënoí i.e. x =2 S:

We may deÖne a system classically using M = R2n as our phase space
to model a system consisting of point particles moving in Rn: We can deÖne
coordinates (q; p) := (qi; pi) where i = 1; :::; n. These coordinates deÖne the
position q of a particle with momentum q: To completely describe the system
we will need a function h on R2n which we will call the Hamiltonian of the
system. As stated before, the Hamiltonian can be regarded as an observable
that gives the value of the energy of the system, but it also plays a the dual
role, determining the time-evolution of the system. Time-evolution is governed
by Hamiltonís equations:

:

q
i
:=

dqi
dt
=

@h

@pi
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:

p
i
:=

dpi
dt

=
@h

@qi

The most well known example is the Hamiltonian for a particle with mass
m moving in a potential V .

h(q; p) =
p2

2m
+ V (q)

where p2 :=
P
n

i=1(pi)
2

Applying the Hamiltonian equations to h gives us the relations

:

q
i
=
pi
m

:

p
i
= 

@V

@qi
:

By deÖning the force Fi :=  @V

@qi
; then the above equations are precisely

Newtonís equation
!
F = m!a :

4.1 Quantum mechanics

The fundamental di§erence between the classical and quantum interpretation is
that in a quantum decision, an inÖnite number of possible values of an observable
are possible. In quantum mechanics the phase space is taken to be a Hilbert
space i.e. M = H. Because of the probabilistic interpretation of quantum
mechanics we demand that only vectors with unit norm correspond to physical
states and additionally if y = x, x; y 2 H and jj = 1 then x and y correspond
to the same state.
As we progress, the postulates of quantum mechanics will be given in order

and described in a similar nature as in Operator Methods in Quantum Mechanics
by [MS]. Di§erent texts and authors vary in minor ways on the precise form
and order of the postulates to come, however, the overall picture they form is
essentially equivalent.

4.1.1 Linear operators as observables

The motion of a particle in R3

One of the simplest quantum systems is that of a particle moving in R3. Here our
wave function  will be in the Hilbert space L2(R3): Unless otherwise speciÖed,
all operations will be over all components of x = (x1; x2; x3) in R3; however, we
will drop the component notation, e.g. dx not d3x; except for where a distinction
is necessary or desired. For a quantum system we cannot ask questions exactly
as we did in the classical sense such as when is the particle at position x =
(x01; x

0
2; x

0
3) 2 R3: The function  now corresponds to a probability density,
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speciÖcally k k2. This is the essential starting point of quantum mechanics and
it is often stated as a more general postulate:

Postulate 1 : There is a function  (x; t) of position x and

time t such that the probability of the particle

being found in the region  is given by the expression

Pr( ; x 2 ) = h (x; t);  (x; t)i =
Z



dx k (x; t)k2 :

This expression hints at the useful structure of Hilbert space as the last
equality comes from the inner product deÖned on L2(R3) by

hf; gi =
Z

R3
f(x)  g(x)dx:

The Örst stipulation above now appears obvious. We are demanding our
function  have norm 1, i.e.

R
R3 dx k (x)k

2
= 1; so that

R
R3 d

3x k (x)k2 =
h ; R3 i = h ; i = Pr( ; x 2 R3) = 1, which is interpreted as the likeli-
hood x 2 R3: So

R
R3 d

3x k (x)k2 = Pr( ; x 2 R3) = 1 naturally since we are
assuming that the particle is somewhere in R3: We also must demand that the
limit of  at both negative and positive inÖnity be zero.
This example is quite speciÖc. More generally we can represent any observ-

able a with a self-adjoint linear operator A which we will give the following
interpretation

The value of the observable a in the state  is h ;A i .

At this point one may call into question our ability to represent any observ-
able with a self-adjoint operator. It turns out we will take this as one of our
postulates of quantum mechanics. We will provide a more acceptable justiÖ-
cation of this later, but for now we will discuss the some applications of this
operator-observable association while taking for granted our ability to do so.
The drastic di§erence in the classical and quantum descriptions of a sys-

tem can be somewhat intellectually uncomfortable at Örst. The statement ìthe
probability of a particle in state  being found in region  is Pr( ; x 2 R3)î
would seem rather useless since when we actually perform an experiment we
will Önd that the particle either is indeed in  or it is not. Unfortunately this
is the nature of quantum mechanics. As we will see, there is a limit on the
degree of accuracy one can expect from the calculated value of an observable in
a particular state. That is, there is a degree of uncertainty associated with any
measurement of a quantum system. We cannot say ìa particle is at position
x0 at time tî. We instead may interpret Pr( ; x 2 ) in the following way.
Suppose we perform N experiments trying to detect the particle in state  in
some region : Say the particle is detected i times in . As N !1; the value
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of i

N
will approach Pr( ; x 2 ). In this sense, quantum mechanics is usually

not particularly useful in calculating speciÖc results for a single experiment, but
rather what value we can expect the results to center around or converge to
given a large number of trials. The expectation value represents the statistical
mean of the value of an observable. It is the nature of quantum behavior that,
in general, identical experiments repeated several times will not yield the same
results. But, the statistical mean of the measured values from experiment will
tend to the expectation value as more experiments are performed.

Projections

Projections can be thought of as the quantum analogues to characteristic func-
tions in classical mechanics. For a given projection PK : H ! K; we may ask,
is the system in K: However, the fundamental di§erence between classical me-
chanics and the quantum mechanical interpretation of expectation value is that
we have more possible answers to this question than just yes or no. It becomes a
yes-no and varying degrees of maybe situation. If the answer to the question is
yes, i.e.  2 K, then as with the characteristic function, we have 1 = hPK ; i
since k k = 1: Similarly, if the answer is no, that is the system is not in K
( =2 K); then hPK ; i = h0;  i = 0: There is also the possibility that  is of
the form  =  ? +  k where  ? 2 K? and  k 2 Kk: In this case, we have

hPK ; i =
D
 k;  

E
=
D
 k;  k

E
=
 k


2

2 [0; 1]:

Note: 0 
 k


2

 k k2 = 1; (Recall kPKk = 1 for projections). This assures
that any predictions we make based on expectation values make sense; at least
statistically. Born and Pauli gave the following Önal generalized interpretation
to wavefunctions:

The number hPK ; i is the probabilty that the state  lies in K:

If we are considering an observable a and a range or set I of possible values of
a then a natural question to ask would be how likely is it that a 2 I: Projections
allow us to answer this question which we will explore in more detail soon.

Mixed States

The above discussion of expectation values is in fact very limited. It is often
the case that the precise state of a system cannot be determined. In this case
we will have to settle for a list of candidate pure states ( 

i
) and assign each

state a probability Pri where naturally we demand that Pri 2 [0; 1] for all
i 2 N and

P1
i=1 Pri = 1: We will use  to denote the so-called density matrix

corresponding to this weighted series of state vectors.
Now for an observable A; the value of A in the given state  is

hAi =
1X

i=1

Pr
i

h 
i
; A 

i
i (4.1)
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Often  is referred to as a density matrix  =
P1
i=1 Pri[ i]; where [ i]

denotes the one-dimensional projection onto the subspace spanned by  
i
: The

term ídensity matrixí suggests the following reformulation of 4.1 as

hAi = Tr(A)

where the trace of a bounded operator B acting on a Hilbert space with respect
to o.n.b. feig is

Tr(B) :=
X

i

hBei; eii : (4.2)

In quantum mechanics, density matrices are generally referred to as mixed
states.
In some physics literature the convergence of the sum in equation 4.2 is

taken for granted as well as its invariance with respect to the basis used. In
reality however, the situation is not so simple. It is easily veriÖed that for a
Önite-dimensional vector space

P
i
hBei; eii =

P
i
hB

i
; 
i
i for any choice of

orthonormal bases feig and fig: The situation changes for an inÖnite dimen-
sional space. In fact, it is possible to Önd a bounded operator B and two
distinct orthonormal bases fuig and fvig such that Tr(B) :=

P
i
hBui; uii =1

and Tr(B) :=
P
i
hBvi; vii =1:

To solve this problem we need to construct a new class of operators for which
4.2 converges to a Önite value independent of the basis chosen. While there is
more than one approach, we will follow the method suggested in [NPL]. For a
well deÖned trace we must demand A be bounded and compact. This implies
the Hermitian product of operators AA is bounded and compact as well. The
spectral theorem tells us that AA may be written

AA =
X

iPi;

where Pi is the projection onto the eigenspace corresponding to eigenvalue i:
Now we know if  belongs to the image of Pi then we have AA = i and
we see kA k2 = hAA ; i = i k k

2  0 i.e. i  0: Now we may deÖne the
class of operators we are interested in constructing,

DeÖnition 53 For a bounded and compact linear operator A : H ! H, we say
that A is trace class if the sum

P
i < 1 where i are the eigenvalues of

AA:

This class is admittedly limited, but useful. The most important attributes
of trace class operators may be summarized in the following theorem.

Theorem 54 If A : H ! H is trace class then the following hold

 The expression 4.2 is absolutely convergent and independent of basis. That
is,
P
i
hBei; eii =

P
i
hB

i
; 
i
i for any choice of orthonormal bases feig

and f
i
g:
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 For any bounded linear operator B : H ! H we have

Tr(AB) = Tr(BA);

and the products AB and BA are both trace class.

 If U : H ! H is a unitary operator (meaning hx; yi = hUx;Uyi for all
x; y 2 H) then

Tr(UAU1) = Tr(A);

Finally, the above discussion has motivates the following deÖnition which
generalizes the idea of mixed states and density matrices.

DeÖnition 55 A bounded operator  : H ! H is called a density operator
(or density matrix) if:

  is positive

  is trace class

 Tr() = 1

We say that  is positive if hf; fi  0 for all f 2 H:
The approach outlined in this section, this observable-operator correspon-

dence, is the essence of the mathematical model of quantum mechanics. How-
ever, we have limited our discussion to mostly bounded operators. As stated in
[MR&BS], "It is a fact of life that many of the most important operators which
occur in mathematical physics are not bounded". While this may seem rather
discouraging, at this point most readers familiar with the study of unbounded
operators should realize that all is not lost. Much of the tools and machinery de-
veloped earlier related to bounded or compact operators can be brought to bear
in the study of unbounded operators. Because of this, we will not devote much
time to discussion or proving any new results for operators speciÖcally in the
unbounded case. Rather, we will continue discussing observables, speciÖcally
those of position, momentum, and energy, and their corresponding operators,
shedding more light on their application without concerning ourselves with cer-
tain seemingly important operator properties (such as boundedness...). In short,
we are taking the physicistís approach. The justiÖcation for this is that most of
the expressions and relations which deÖne the interesting unbounded operators
we will encounter do not necessarily make sense on all of H: These operators
are usually deÖned naturally on some dense subspace, say K  H; making the
speciÖcation of this domain crucial. As was discussed early in the section on
linear operators, the deÖnition of an operator on a dense subspace is su¢cient.
There is a great deal of literature devoted to rigorously developing the formali-
ties of unbounded operators and the reader is referred to [TFJ] and [KS] for a
better discussion.
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4.1.2 Position, Momentum, and Energy

In classical mechanics the relation p = mdx

dt
where p is the momentum; deÖned

by mass,m, multiplied by the time derivative of position x:Our second postulate
of quantum mechanics is

Postulate 2 : The probability that the momentum p of a particle

is contained in some interval I is given by

1

}

Z

I

b (
p

}
; t)

2

dp

where b denotes the Fourier transform of  

Here we will deÖne the Fourier transform b (k; t) of  (x; t) with respect to x
by

F( (x; t)) = b (k; t) = 1
p
2

Z 1

1
 (x; t)eikxdx

and

F1(b (k; t)) = 1
p
2

Z 1

1

b (k; t)eikxdk =  (x; t)

deÖnes F1 the inverse Fourier transform: In quantum mechanics the tra-
ditional wave number k for the wave function  deÖnes the momentum of the
particle by

p = }k: (4.3)

That is, the Fourier transform and its inverse are maps between functions on
position and momentum space. The relation in 4.3 highlights the signiÖcance
of the universal constant }: The convention of distributing the factor of 2
evenly between the transform and its inverse is necessary to ensure the Fourier
transform remains unitary.

The momentum operator

We wish to deÖne the momentum operator P by

Pxi = i}
@ 

@xi
; (4.4)

but it will take a little work to get there.
Here we will borrow a few basic ideas from statistics. Our interpretation

of the function  deÖnes a probability density for the quantity x: Similarly,
b deÖnes a probability density for the quantity p: Therefore, we may use the
well known equation for the average value of a variable with a corresponding
non-discrete probability density to deÖne the average value of the momentum
as

p =
1

}

Z 1

1
p
b (

p

}
; t)

2

dp = }
Z 1

1
k
b (k; t)


2

dk:
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In order to justify our desired deÖnition of Lxi in 4.4 we will need to derive
the following basic relations between Fourier transforms and their inverses,

Claim 56 a. (Parsevalís identity)
Z 1

1
 (x; t)'(x; t)dx =

Z 1

1

b (k; t)b'(k; t)dk (4.5)

b.
@b (k; t)
@k

= iF(x (x; t)) (4.6)

c.

F(
@ (x; t)

@x
) = ikb (k; t) (4.7)

Proof. a. Recall the inner product deÖned on L2(R3) in section 4.1.1. For any
two elements f; g 2 L2(R3); writing f(x) = 1p

2

R bf(k)eikxdk; we can see that

hf; gi =
1
p
2

Z Z
bf(k)eikxdk


g(x)dx

=

Z
bf(k)

Z
g(x)eikxdxdk

=

Z
bf(k)b'(k)dk:

b. Writing b (k) = 1p
2

R1
1  (x)eikxdx we may di§erentiate with respect

to k so

@b (k; t)
@k

=
i
p
2

Z 1

1
x (x)eikxdx

= iF(x (x; t)):

c. Consider the integral
R
r

r
@ (x)
@x

 eikxdx: Using integration by parts we
Önd

R
r

r
@ (x)
@x

 eikxdx =

= ik

Z
r

r
 (x)  eikxdx+ eikx (x) jx=r

x=r

= ik

Z
r

r
 (x)  eikxdx+ eikr (r) eikr (r)

Since our wave function goes to zero at negative inÖnity the last line goes top
2ikb (k) as r !1; proving (c).
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If we take another look at the average momentum we can use the above
properties to see

p = }
Z 1

1
kb (k; t)b (k; t)dk

= i}
Z 1

1
F(

@ (x; t)

@x
)b (k; t)dk

= i}
Z 1

1

@ (x; t)

@x
 (x; t)dx

=


i}

@ (x; t)

@x
;  (x; t)



= hPx (x; t);  (x; t)i :

Now our deÖnition of Pxi = i}
@

@xi
seems completely natural since we can

see that the expectation value of Pxi in state  is simply equal to the average
value of the momentum.
In classical physics the kinetic energy T of an object moving with momentum

p and mass m is given by

T =
p2

2m
:

Since we have an expression for the quantum mechanical momentum oper-
ator Pxi = i}

@

@xi
we may apply the identity 4.6 to get the general expression

F(@
n
 (x;t)
@xn

) = (ik)nb (k; t) and write

p2 =

P2 ; 



so we will take

hT i = T =


P2 ; 



2m
: (4.8)

as the expectation value of kinetic energy.
If we are given a real valued function V; and if additionally V is continuous

with
R1
1 V (x) j (x; t)j2 dx < 1; then we may also consider the expectation

value of the potential energy

hV i = V =

Z 1

1
V (x) j (x; t)j2 dx: (4.9)

Since we have an expression for the expectation value of kinetic and potential
energy, equations 4.8 and 4.9 respectively, we can use the fact the mathematical
expectation of a sum is equal to the sum of mathematical expectation to express
the expectation value for the total energy of the system as

hEi = hH ; i ;

where H is known as the Hamiltonian of the system or the energy operator

H =
P2

2m
+ V:
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Observables and the spectrum

Now that we have our basic operators of position, momentum, and energy, we
can have a bit more involved discussion about observables and develop tech-
niques to apply some of the mathematics discussed earlier. Here we will state
our next postulate

Postulate 3 : For every real valued observable a there corresponds a Hermitian

operator A with a dense domain D(A) such that

a = hA ; i for all  2 D(A)

Since our expectation value for an observable comes from the quantity hA ; i ;
where A is Hermitian, our expectation value hA ; i is real. So given an ob-
servable a one question we want to ask is how likely is it that a belongs to some
some interval I  R. This suggests we are looking to employ the characteristic
function 

I
for I: The value of 

I
(a) is then an observable itself taking on the

value 1 when a 2 I and 0 if not. But we want the expectation value of 
I
(a) so

we will deÖne


I
(a) = P (a 2 I)  1 + P (a =2 I)  0

= P (a 2 I)

as our expectation value of 
I
(a): Now according to our postulate there is some

Hermitian operator, weíll call it EI ; corresponding to I(a) such that


I
(a) = P (a 2 I) = hEI ; i :

This is a good start to answering our question, but we still donít know exactly
how EI is constructed or related to A: We spoke earlier about how projection
operators in Hilbert space can be thought of as the quantum analogue of the
characteristic function. Now we will shed some more light on this idea.
It turns out that, given an observable a represented by a Hermitian operator

A; we want to construct EI as follows. Suppose I  R is given and 1; 2;...
are the eigenvalues of A contained in I: Let fu1; u2; :::g be the eigenvectors
associated with the eigenvalues contained in I. We deÖne EI to be the projection
operator which projects vectors in the domain of A onto spanfu1; u2; :::g: From
this deÖnition follows a few of the statistical properties we would expect for the
value of 

I
(a): In particular

1. EI[J = EI + EJ  EI\J

2. EI\J = EIEJ

3. 
I
(a)! 1 as I ! R:

From the deÖnition of EI we can now see why the the deÖnition of the
spectrum is so important.
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Corollary 57 An observable may only assume values which belong to the spec-
trum of its corresponding operator.
Proof. Let 0 2 (A) where A is a self-adjoint linear operator representing
an observable a:We know (A) is open so there is an open interval I  (A)
containing 0: All the eigenvalues of A are contained in the spectrum of A so,
from the deÖnition EI we have

P (a 2 I) = hEI ; i = 0:

This result suggests that the next question we want to ask is what values are
in the spectrum of the operators we are interested in. First we will look at the
position operator. Since the state function  (x) deÖnes a probability density
function of the position it is clear the operator corresponding to the position
will be multiplication by x i.e.

x = hx ;  i

=

Z
x k (x)k2 dx:

Since an operator is not technically deÖned unless its domain is speciÖed we
will take the time to do that here. First we need to mention a few facts about
operators. This will be brief and mostly without proof.
For an operator A corresponding to a real valued observable it may be shown

that for all f 2 L2(R3) we may Önd a vector u 2 D(A) such that f = u+A2u;
i.e. the operator 1 +A2 is onto.

Corollary 58 For every f 2 L2(R3) there is u;w 2 D(A), where A corresponds
to a real valued observable; such that

(A i)u = (A+ i)u = f:

Proof. We know for any f 2 L2(R3) there is u 2 D(A) such that (A2 + I)u =
(A i)(A+ i)u = (A+ i)(A i)u = f: Therefore both (A+ i)u and (A i)u are
in D(A):

The following three properties are enough to show that a densely deÖned
Hermitian operator A : H ! H is self-adjoint:

 R(1 +A2) = H

 R(A i) = H

 R(A+ i) = H

Now we can specify the domain of the position operator which we will from
here on denote as X: Since we want X to map between L2(R3) the simplest
domain we can choose for X is the set of all  2 L2(R3) such that x 2 L2(R3)
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as well. We can show X is in fact self-adjoint on this domain as follows. If f 2
L2(R3) then  = f

x+i 2 D(X) and (X+ i) = f . Therefore R(X+ i) = L2(R3):
By a similar argument R(X  i) = L2(R3): Moreover, we may show that D(X)
is a dense subset of L2(R3) since for f 2 L2(R3) if we deÖne  

"
:= f

"x2+1 we get

 
"
2 D(X) for every " > 0: Therefore k 

"
 fk  "x

2kfk
(1+"x2) so  " ! f as "! 0:

This along with the condition stated in 4.1.2 is enough to conclude that X is
self-adjoint.
Now we turn our attention back to determining the spectrum of X:We know

the eigenvalues of X will be in the spectrum so we will look for those points
Örst.
The eigenvalues of X will be the  2 R for which there are solutions to the

equation
( x) = 0 (4.10)

A solution of 4.10 must satisfy  (x) = 0 for all x 6= . So  = 0 almost
everywhere so X evidently has no eigenvalues. Now we must employ the method
proposed in 47. This is easily done by constructing a sequence of functions with
unit norm which converge to zero when (  x) is applied and also for x 6= .
Let

 
n
= cne

n2(x)2

2

with
cn =

p
n

1
4

This gives

kx  
n
k2 = cnn

3
Z 1

1
y2ey

2

dy ! 0

So  2 (X): Since  is an arbitrary real number this shows that (X) = R:
We can follow a process similar to the one just described to determine the

domain and spectrum of the momentum operator L. From Parsevalís identity
and the other relations in claim 56 we can see that we can deÖne the action of
L by

L = }F1(kb );
and this will be equivalent to our previous deÖnition. This essentially converts
L into an operator similar to X and we can follow an almost identical procedure
as with X to show that L is self-adjoint.
The spectrum can also be determined in a similar fashion. For any  2 R

we can deÖne '
n
as

'
n
= cne

n2(k)2

2 ;

where cn is deÖned as above. Again we have k'nk = 1 and k(k  )'nk ! 0: If
we let  

n
be the inverse transform of '

n
this gives

(L ) 
n
= }F1[(k  )'

n
];

and therefore
k(L ) 

n
k = } k(k  )'

n
k ! 0:
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Parsevalís identity again gives k 
n
k = 1 so we can Önally conclude that (L)

is also the entire real line.
Now we want to consider the spectral properties of the Hamiltonian operator

H: This will be a little trickier than our previous treatment of the operators X
and L since the Hamiltonian operator is dependent on a potential which varies
depending on the situation. Recall the Hamiltonian is deÖned by

H =
L2

2m
+ V:

DeÖne the operator H0 :=
L
2

2m : It is relatively simple to show that H0 is
self-adjoint on L2(R3): The exercise of Önding the spectrum of H0 would seem
rather redundant at this point so we will just state

The spectrum of H0 is [0;1):

That is, the spectrum of H0 consists of all non-negative real numbers.
So H0 is fairly easy to deal with, but what happens if we are considering a

non-zero potential? We need to ensure that H is self-adjoint on its domain and
we would also like this domain to be as large as possible. It is actually possible
to construct a potential for which H is only self-adjoint on D(H) = 0: It turns
out there is a simple theorem which we will state here without proof that allows
us to easily determine if H is self-adjoint.

Theorem 59 If the exist a; b 2 R (a < 1) such that

kV  k  a kH0 k+ b k k ;  2 D(H0);

then H is self-adjoint.

Fortunately there is also a list of equivalent conditions which we may use to
verify whether H is self-adjoint as well. The conditions we want to check are as
follows:

Theorem 60 The following statements are equivalent and imply H is self-
adjoint:

1. D(H0)  D(V )

2. kV  k2  C(kH0 k
2
+ k k2);  2 D(H0)

3. sup
x

R
x+1

x
jV (y)j2 dy <1

4. For every " > 0 there is a constant K 2 R such that kV  k2  " kH0 k
2
+

K k k2 ;  2 D(H0):
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The last inequality can be replaced by the simpler kV  k  " kH0 k+K k k ;
 2 D(H0):
The possibility of a non-zero potential adds a whole new degree of com-

plexity to the analysis of H: We wont go any further into this here. We have
demonstrated the statistical motivation for our deÖnitions of L and X and gone
through how to determine their spectrum. The ultimate goal of this process
was to be deÖne H which complete deÖnes the time evolution of the state of a
system. For a more involved and in depth treatment of the topics covered in
the most recent sections the reader is advised to consult [MS].

4.2 Deviation and Uncertainty

One of the well know results of quantum mechanics is Heisenbergís uncertainty
principle. This is, generally speaking, a product of the statistical nature of
quantum mechanics and the probabilistic interpretation of the state function.
More speciÖcally, the uncertainty principle may be viewed as a product of the
canonical commutator relation [; ] (most often just commutator relation)
which is often taken as a postulate of quantum mechanics. It may also be derived
from our previous work through the deÖnition of the operatorís P and X: This
relationship is of particular importance. In the classical theory, observables
commute: If we have functions of momentum and position which we represent
by observables P and X then the classical theory tells us that the commutator
relation is [P; X] = 0: However, for the postulates of quantum mechanics Born
demanded the commutator relation be

[P; X] =
}
i

where } = h

2 is the reduced Plank constant.
With the expectation value of an observable represented by a self-adjoint

operator A in state  given by

hAi = hA ; i

we may deÖne the root-mean square deviation from this expectation value as
follows

DeÖnition 61 The root-mean square deviation (or standard deviation)
(A) of the expectation value hAi of an observable A in state  is deÖned by
the expression

(A)2
 
=

(A hA ; i)2 ; 


: (4.11)

We can easily expand the expression given above in the deÖnition for the stan-
dard deviation to obtain the somewhat more intuitive expression

(A)2
 

=

(A hA ; i)2 ; 



=

A2 ; 


 2 hhA ; i A ; i+ hA ; i2

=

A2 ; 


 hA ; i2
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This naturally leads us to an essential observation of quantum mechanics:

Conclusion 62 The standard deviation of an observable represented by a self-
adjoint operator A is exactly zero if  is an eigenvector of A. In this case hAi
is equal to the corresponding eigenvalue:

The bound states of a quantum mechanical system are deÖned to be the
 
n
such that (A) n = 0: Therefore the bounds states can be obtained by

solving the eigenvalue equation for a particular operator.
If we consider two Hermitian operators A and B we may use the above

deÖnition of standard deviation along with the Cauchy-Schwartz inequality to
obtain the following expression
(AA)(B B) ; 

 =
(AA) ; (B B )

 
(AA) 

(B B )


=
q
(AA) ; (AA) 

 
(B B) ; (B B 



=
q
(AA)2 ; 

 
(B B)2 ; 



= (A) (B) 

where A = hA ; i and B = hB ; i : This expression will soon prove to be
quite useful. For any complex number z 2 C we can write the imaginary part of
z as im(z) = zz

2i and it will always be the case that jim(z)j  jzj :With this in
mind, we may write

im(

(AA)(B B) ; 


)
 

(AA)(B B) ; 
.

Using the previously mentioned identity we can expand
im(

D
(AA)(B B) ; 

E
)
 = (4.12)

=




(AA)(B B) ; 




(AA)(B B) ; 



2i



=

(AA)(B B) ; 



 ; (AA)(B B) 


2

=
1

2



(AA)(B B) ; 



D
(B B)(AA) ; 

E

=
1

2

(AA)(B B)  (B B)(AA) ; 


=
1

2
jh(AB BA) ; ij =

1

2
jh[A;B] ; ij

Now using this result with 4.2 we have

1

2
jh[A;B] ; ij  (A) (B) (4.13)

Note that equation 4.13
is only meaningful for  which are not eigenvectors of A or B:
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Recall the brief mention of the commutator of two linear operators earlier. It
was stated that, for the position and momentum operatorsX and P respectively,
the commutator relationship was given by [P; X] = }

i
:Therefore we can insert

this into the above relation to obtain the well known uncertainty principle or
Heisenberg uncertainty principle

}
2
=
1

2




}
i
1 ; 

 =
1

2
jh[P; X] ; ij  (P) (X) :

Note that this inequality is independent of  i.e. (P) (X)  }
2 for any

state function  :This is incredibly important because it implies that neither
(P) nor (X) ever vanish. This is one of the more mysterious results of
the quantum theory. An observation dependent on two variables may never be
made with perfect accuracy.
This all seems quite non-intuitive and indeed it was very alarming to many

physicists of the early 1900ís who where studying these phenomena. If electrons
and other particles do exhibit this quantized behavior, then why is it that larger
bodies of mass do not appear to? When I look outside my window in the morning
there doesnít appear to be any uncertainty as to the position of the trees or birds
in the sky, or anything for that matter. But it is important to keep in mind
the value of } = 1:054572  1034J  s; it is quite small. } basically acts as a
scale of quantum e§ects, and since it is so small, we do not observe extreme
quantum e§ects on a macroscopic level in our day to day life. The quantization
of certain properties e.g. energy, momentum is only noticeable on a very small
scale. If we imagine a universe with a di§erent value of } we will be imagining
a universe very very di§erent from our own. Since the ionization energy of
hydrogen is inversely proportional to }2; if say } where larger than its value in
our universe, it is likely atoms would not form. An increase in } would result
in a decrease in ionization energy which would make atoms less and less stable
as } increased. On the other hand, if } where perhaps smaller, the e§ects of
quantization would be present on a much smaller scale. Perhaps if } had been
smaller the instrumentation needed to observe these e§ects would have taken
longer to become available and the transition from classical to quantum theory
may have occurred much later in history.

4.3 The Qubit

Our discussion of the basic mathematics of quantum mechanics would not be
complete without a brief mention of the qubit. We will describe this notion
here and brieáy cover an application of group representations that enable us to
better understand the qubit. We will avoid going into very much detail here and
the reader is referred to [SFS] for a more thorough investigation of these topics.
The latter part of this section and the next was added to give the reader a basic
idea of how representation theory and other algebraic concepts start to play a
very important role in quantum theory and the study of quantum symmetry.
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The spin of a quantum particle is an intrinsic form of angular momentum.
We may model the space of all spin states for a spin 1/2 particle. This space
is called the qubit ("cue-bit"). A spin 1/2 particle begins with two physically
distinguishable states which are usually labeled by kets as jz+i and jzi. One
then assumes that every quantum state may be written as the superposition of
kets as

c+ jz+i+ c jzi ; (4.14)

where c+; c 2 C and jc+j
2
+ jcj

2
= 1:

For a spin-1/2 particle we may build a Stern-Gerlach machine which will
allows us to determine the orientation of the spin of a particular particle or
beam of particles. Those unfamiliar with a Stern Gerlach device may refer to
[SFS]. The interpretation we give to the values of c+ and c is as follows: if we
put a beam of particles in the state described by expression 4.14 through the
Stern-Gerlach machine, the fraction of particles found to be in the state jz+i
will be jc+j

2 and similarly the fraction in state jzi is jcj
2
:

We know however, that we may measure the outcome of our Stern Gerlach
experiment with the machine oriented in any particular direction we choose
and that the spin state of a spin-1/2 particle is completely determined by the
probabilities associated with emerging spin up or down along all three coordinate
axes x, y, and z  : Since the state described in 4.14 is determined by jc+j
and jcj ; the pair (c+; c) 2 C2 contains more information than necessary
suggesting there is a more appropriate space to model the qubit. We will not go
into details but it turns out that the natural model for a spin-1/2 particle is the
projective space P (C2) which can be viewed as the 2 sphere S2 in R3: P (C2)
is the set of equivalence classes [c+ : c], c+; c 2 C and jc+j

2
+ jcj

2
= 1;

deÖned by the relation
[c+ : c] = [ec+ : ec] (4.15)

if and only if
(c+; c) = (ec+; ec) (4.16)

for  2 C with jj = 1: Viewing P (C2) as S2 we have [1 : 0] as the north
pole of S2 and [0 : 1] the south (along the z axis). Also, [1 : 1] corresponds to
the pole of S2 along the positive x  axis, [1 : 1] is the pole of S2 along the
negative x  axis and [1 : i] and [1 : i] are the poles of S2 along the positive
and negative y  axis; respectively. We then assign the north and south poles
of the 2  sphere to the spin up and spin down states for a Stern Gerlach
machine oriented along the z  axis; respectively. That is, jz+i := [1 : 0] and
jzi := [0; 1]: Similarly we set jx+i := [1 : 1] and jxi := [1 : 1] where jx+i is
the x-spin up state for a Stern Gerlach machine oriented along the x  axis; :
jxi is the x-spin down state. Finally, jy+i := [1 : i] and jyi := [1 : i] where
jy+i and jyi are the y-spin up and down states respectively. Now we have a
more natural space to model the qubit where spin states simply corresponds to
points on S2: This model is much more visually pleasing than the redundant
modeling of spin states as points in C2:
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For this model we give the following experimental/predictive interpretation.
Suppose we would like to use a Stern Gerlach Machine oriented along the zaxis
to create a beam of z-spin up particles and then send them through a Stern
Gerlach Machine oriented along the y  axis. Using the qubit model we just
constructed we can calculate the fraction of particles which emerge y-spin up
from the second machine in the following way. Take any point (y0; y1) 2 S3  C2
correspond to the y-spin up state, i.e. choose (y0; y1) 2 S3  C2 such that [y0 :
y1] = jy+i ; say (y0; y1) = 1p

2
(1; i): Similarly take a point (z0; z1) 2 S3  C2;

say (z0; z1) = (1; 0); such that [z0 : z1] = jz+i : The fraction of particles exiting
the second machine y-spin up will then be

jh(y0; y1); (z0; z1)ij
2
; (4.17)

or, 


1
p
2
(1; i); (1; 0)


2

=
1

2
; (4.18)

with 1
2 of the particles exiting y-spin up, as it should.

Next we want to deÖne a representation which arises from the e§ect of rota-
tion in three dimensional space on the qubit. Weíll need to brieáy deÖne a few
ideas and objects.
The reader is hopefully familiar with the general linear group and some of

its useful subgroups. The general linear group, GL(V ); of a vector space
V is the set of all invertible linear transformations from V to itself. We are
interested in the useful subgroups of GL(C2) and GL(R3);the special unitary
group, SU(C2) = fM 2 GL(C2) : MM = I and det(M) = 1g and the
special orthogonal group, SO(R3) = fM 2 GL(R3) : MTM = I and
det(M) = 1g: Typically these groups are thought of as matrix groups with group
multiplication corresponding to matrix multiplication. SO(R3) then consists of
all length preserving three dimensional rotations and similarly SU(C2) is the
set of unitary operators from C2 to itself.
Since we have deÖned the projective space P (C2) to model the qubit, we need

to deÖne the projective unitary group of C2 which will deÖne a corresponding
equivalence class of operators.

DeÖnition 63 Let V be a complex inner product space. The projective uni-
tary group of V is

PU(V ) := U(V )= v (4.19)

where U(V ) is the group of unitary operators from V to itself and T1 v T2 if
and only if T1T

1
2 is a scalar multiple of the identity.

We will not show details here but we may construct a homomorphism  :
SU(C2)! SO(R3) such that  is two-to-one, that is, if (U) = (eU) 2 SO(R3)
then U =  eU so we can be sure that [U ] = [eU ] 2 PU(C2):We can also construct
 such that

X = 

 
e

i
2 0

0 e
i
2

!
(4.20)
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where X 2 SO(R3) is a rotation of angle  around the x axis:

DeÖnition 64 For a given vector space V; group G, and homomorphism  :
G! GL(V ); the triplet (G;V; ) is called a representation of G on V .

Therefore, we may deÖne the representation  1
2
: SO(R3)! PU(C2) by

 1
2
(g) := [U ] 2 PU(C2) (4.21)

where U 2 SU(C2); g 2 SO(R3) satisÖes (U) = g: It can be easily veriÖed
that  1

2
is indeed a homomorphism.

It has been shown experimentally that if two observers position di§ers by a
rotation g 2 SO(R3), then their observations of states of the qubit di§er by a
projective unitary transformation [U ] such that (g) = U: From equation 4.20
we have

 1
2
(X) =

" 
e

i
2 0

0 e
i
2

!#
(4.22)

so as an observer physically rotates around the x  axis the corresponding
equivalence class rotates at half the speed of the observer. This would seem
to be a problem, however we are not dealing with vectors we are dealing with
equivalence classes: We need  1

2
(X0) =  1

2
(X2); (Note [c1 : c2] = [c1 : c2]);

and indeed

 1
2
(X0) =


1 0
0 1


=


1 0
0 1


=  1

2
(X2) (4.23)

This idea can be generalized to deÖne n
2
for a particle with spin n

2 :
Since it is not our intent to focus on algebraic application in this paper we

will stop our discussion of the qubit here but the reader is strongly encouraged
to consult [SFS] for a more detailed treatment and continuation of these themes
and ideas.

4.4 Symmetry and Time Evolution

Our last major discussion will concern the role played by unitary operators in
describing the time evolution of a quantum system and the so called symmetries
of a quantum system.
It was said earlier, the Hamiltonian describes the time evolution of a system.

Now we will try to be a bit more explicit.
Here we will state the well known Schrˆdinger equation as a postulate, similar

to the treatment in [MS].

Postulate 4 : If H is the Hamiltonian operator for a

particle in state  (t) at time t

then  (t) is a solution of

i} 0(t) = H (t)
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This postulate describes what is known as the time-dependent Schrˆdinger
picture. Up until this point we have not been very concerned with time depen-
dence. Now we want to distinguish two descriptions of time evolution.

Schrˆdinger and Heisenberg picture

Given the Hamiltonian H of the a system, the unitary operator

Ut = e
iHt
}

is called the time evolution operator. Given an initial state  0 at t = 0; Ut 0
gives the state of the system at time t: In the Schrˆdinger picture, operators are
taken to be time-independent, A(t) = A; while the states are time dependent,
 =  (t) = Ut 0: In the Heisenberg picture, time dependence is transferred to
the operators and the states are considered to be time independent i.e.  (t) =  :
In the Heisenberg picture, the time dependence of an operator comes again from
the time evolution operator in the expression

A(t) = U1
t
A0Ut:

We can now state the equations governing the time dependence of operators
or state vectors for either "picture". In the Schrˆdinger picture, the state  of
the system with Hamiltonian H must satisfy Schrˆdingerís equation

i~
@

@t
 = H 

and we demand that for an operator A;

i~
@

@t
A  0

For the Heisenberg picture the equations

i~
@

@t
  0

and

i~
@

@t
A = [A;H]

govern the time dependence of the system with HamiltonianH in state  : Unless
otherwise stated, we will continue to work in the Schrˆdinger picture, assuming
the time dependence comes from the state of the system.

Time dependence of expectation values

We naturally want to know how the expectation value of an observable will
evolve in time. We have the expression

@

@t
hA ; i = h@t(A) ; i+ hA@t( );  i+ hA ; @t( )i
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Applying the Schrˆdinger equation i~@t( ) = H and noting @t(A) = 0 we
can obtain what is know as Ehrenfestís theorem:

@

@t
hA ; i =

i

}
h[H;A] ; i :

This tells us that @

@t
hA ; i = 0 precisely when A and H commute, in

other words, the expectation value of operators that commute with H are the
constants of motion.

Symmetry

We will end with a brief discussion suggesting some of the symmetric qualities
of quantum systems. The observables we have discussed act as generators of
transformation groups.
Suppose we are given the Hamiltonian H of a system and consider the group

GH of unitary transformations which act invariantly on H; that is [H;U ] = 0
for all U 2 GH : GH is said to be the set of symmetries of the quantum system.
Just as we deÖned the time evolution or translation operator Ut we may

deÖne translations in position and momentum space as well.
Suppose we wish to deÖne the spatial translation  (r)!  (r + a) for some

constant vector a in the coordinate space. It can be shown that the unitary
operator

Ur = e
i
}aP

gives the desired translation U1
r
 (r)Ur =  (r+a) and generates the group

of spatial translations.
Similarly, we may deÖne translations in momentum space with the unitary

operator
UP = e

i
}aX

where X is the position operator. UP also acts as a generator of the group of
translations in momentum space.
To generate the group of spatial rotations one needs the operator L which

corresponds to the observable of angular momentum. We will not discuss L in
detail however it may be used to deÖne another unitary operator

U = e
i
}'enL

which generates the group of spatial rotations, ' the angle of rotation around
Öxed axis en:

Representation Symmetry Recall deÖnition 64. A subrepresentation of
a representation  : G ! GL(V ) is a subspace W  V such that for every
g 2 G; w 2 W; (g)w 2 W: For a given representation (G;R3; ) and Hilbert
space H we may deÖne an associated representation e of G on H by

e (r; t) =  ((g1)r; t) (4.24)
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We say the representation  is a symmetry of the Hamiltonian H if for
every g 2 G;  2 H we have

H(e(g) ) = e(g)(H ): (4.25)

LetAH  H denote the subspace ofH consisting of solutions to Schrˆdingerís
equation. Then for  2 AH we have

iH(e(g) ) = i(e(g)(H )) (4.26)

= e(g)( @
@t
 ) (4.27)

=
@

@t
(e(g) ): (4.28)

This shows that if  is a symmetry of H then its associated representation e has
the subspace AH as a subrepresentation. We can also see from equation 4.25
that if  2 H is an eigenvector of the Hamiltonian with eigenvalue  then e(g) 
is one as well so the subspace AH; of eigenvectors corresponding to eigenvalue
 gives another subrepresentation:
One can now use Lie representations to prove conservation of energy and a

special case of Noetherís Theorem. The reader should consult [EJ] for more
details and further investigation into representation theory and symmetry.
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