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Abstract. 

A titania nanosol was synthesized and coated onto nylon/cotton blended textile 

substrates. The substrates were characterized via SEM for adhesion and nanoparticle formation, 

then subjected to antimicrobial efficacy tests. The titania nanosol was successfully coated on to 

textiles samples. Particles were observed to be around 2 by 3 micrometers and formed between 

the interstitial space of textile fibers. Although larger than typical nanoparticles, the coatings 

exhibited what seemed to be antimicrobial activity. Titania nanosol coated textile samples were 

subjected to Kirby Bauer Assay in the presence of S. aureus. The coated textile sample exhibited 

an inhibition of growth around its edges while the uncoated sample encouraged growth. A post-

antibiotic effect was observed to be 1.2 hours on S. aureus when exposed to the titania coated 

textile. 
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Introduction. 

Antimicrobial coatings have been developed for a variety of different applications to 

reduce the proliferation of bacteria, fungi, and viruses on surfaces. Current scientific research 

involving antimicrobial coatings for textiles is gaining attention in the healthcare industry due to 

the increased risk of healthcare associated infections (HAIs) (Gouveia, 2010). Reducing the 

number of pathogenic microorganisms in a  patient’s environment is now a high priority in all 

healthcare institutions.  Antimicrobial coated surfaces can potentially reduce these troublesome 

infections. 

The goal of this project is to create an antimicrobial coating using nanoparticle titanium 

dioxide to be applied to textile samples. A titanium dioxide coating will be characterized and 

observed for antimicrobial activity. Titanium dioxide (also known as titania) was chosen as the 

base for this coating because of its photocatalytic activity. The photocatalytic activity of  

nanoparticle titania is useful for antimicrobial applications and is currently being investigated for 

its ability to inhibit the growth of pathogenic microorganisms (Dastjerdi, 2010). Partly due to the 

recent interest in reducing transmission of infectious disease, titania nanoparticles could be used 

for surface treatments to deter growth of pathogenic microorganisms in the surrounding clinical 

environment. Every year, 1.7 million HAIs cause almost 100,000 deaths in the United States 

(Pollack, 2010). Those that don’t end in death can cause life-threatening illnesses. HAIs are 

generally caused by transmission of microbes between surfaces, patients and employees. Patients 

that are immune-suppressed are among the most susceptible to HAIs. In fact, any patient 

admitted into a healthcare facility for a medical transplant, disease, or critical trauma is at risk 

(Neely, 2000). One of the most common of these infections is Staphylococcus aureus, also 

known as “Staph.” S. aureus is a facultative anaerobic gram positive coccus (spherical) 
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bacterium, which indicates its spherical shape and lack of an outer membrane. Staph colonizes in 

both aerobic and anaerobic conditions and is a normal flora in about 30% of industrialized 

countrie's populations (Page, 2007). Many strains of Staph have the ability to develop a 

resistance to antibiotics. For example, methicillin resistant or multi-resistant Staphylococcus 

aureus (MRSA) was found  in 50 % of Staph infection cases in United States ICUs in 2007 

(Rosenthal, 2009). Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, 

and Enterococcus have also developed antibiotic resistant strains that are difficult to control in 

clinical environments (Rosenthal, 2009). Clostridium difficle has become one of the leading 

causes of infection due to its spore forming bacterial cell wall. The dormant endospores  of C. 

diff. allow it to undergo harsh conditions from antibiotics and antimicrobial surfaces (Pant, 

2011). One of the reasons that these infections might find their way to immune deficient patients 

is contamination of the surrounding environment. For example, patients are in constant contact 

with bed linen during their hospital stay. The transfer of infectious disease through linen, 

although not highly recognized, is very common in clinical settings. Under certain temperatures 

and humidity, textiles such as bed linen are a perfect place for microbes to grow. (Gouveia, 

2010).  

In most healthcare facilities, linens, scrubs and gowns are rented out by an industrial 

launderer. During the transportation of linen from the industrial laundry plant, it may be handled 

by up to eight different people before it is placed on the bed of a patient (according to healthcare 

personnel at Sierra Vista Regional Medical Center in San Luis Obispo, CA). Environmental 

personnel handling the linens may not be wearing protective gloves, allowing  possible transfer 

of pathogens from handler to patient. In order to strive for more sanitary conditions, 

antimicrobial coatings and treatments of textiles can potentially be used to actively fight the 
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growth of microorganisms after they've been washed. By eliminating pathogens in a patient’s 

direct environment, antimicrobial linen can potentially reduce the risk of infectious disease 

transfer in the clinical environment. 

Titanium dioxide is a semiconductor metal oxide that is used in a variety of coating 

applications. It is capable of degrading organic matter through photocatalytic activity under 

certain circumstances. Surface photocatalysis provides very harsh conditions for microbial 

growth (Abidi, 2009). It was first discovered in the 1960s by Akira Fujishima. He observed the 

formation of radicals by photocatalytic breakdown of water in the presence of TiO2 on Pt 

electrodes under exposure to UV radiation (Fujishama, 2006). Photocatalysis of titania occurs 

when light is absorbed by a TiO2 particle. The particle then creates electron holes which will 

generate hydroxyl radicals. Therefore, O2 and H2O can be reduced to form peroxides. The 

instability of most hydroxyl radicals and peroxide molecules allows them to decompose organic 

molecules on contact (Abidi, 2009). The reactivity of a photocatalytic surface serves a variety of 

applications. For example, immobilized TiO2 nanoparticles have been commonly used as 

coatings for indoor odor removal, antimicrobial surfaces, self-cleaning surfaces, and water 

treatment. (Fujishama, 2006). TiO2 containing wall paper and air fresheners are used because 

they decompose ammonia, hydrogen sulfide, acetaldehyde, toluene, methyl mercaptan, and 

nitrogen in the nearby area (Fujishama, 2006). In previous studies of titania coated wall tiles, 

glass plates, and linens, photocatalytic TiO2 killed E. coli and even decomposed its dead cells 

(6). It has been reported that nanoparticle titania is utilized as exterior architectural coatings and 

has proved itself to be useful for its ability to decompose octadecane, glycerol, triolate, and PEG 

under very weak UV illumination while exhibiting self-regeneration (Fujishama, 2006). This 

application has the ability to destroy organic pollutants or soil buildup on many exterior surfaces 
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(Fujishama, 2006). Photocatalytic titania has been reported for its ability to treat toxic chemicals 

in British river water without creating any toxic byproducts (Fujishama,  2006). In addition, its 

use as a super-hydrophilic agent has been successfully used for anti-fogging films and self-

cleaning glass (Fujishama, 2006). Photocatalytic TiO2 is highly applicable due to its price, 

chemical stability, and properties (Fernando, 2009).  

In this study, a titania coating was synthesized in the form of a nanosol, and coated onto 

hospital linen. The nanosol is a nanoparticle dispersion that consists of an inorganic metal oxide 

dispersed in an organic matrix. This is often made feasible by the use of sol gel chemistry. A sol-

gel process is carried out through the combination of a low molecular weight organic precursor 

and an inorganic precursor such as an inorganic alkoxide (Fernando, 2009). There are many uses 

for titania nanosols. It has been reported that a sol gel process using a titanium alkoxide with 

ethanol in acidic conditions has been successful in creating an anti-microbial and self-cleaning 

coating on textiles (Wu, 2009; Daoud, 2005). Titania nanosols have been reported to have the 

ability to be photo-activated which induces antimicrobial activity once coated onto textiles. 

(Rahal, 2011; Dastjerdi, 2010). The efficiency of a titania nanosol surface treatment was 

characterized with scanning electron microscopy (SEM), and antimicrobial resistance is 

measured by both Kirby-Bauer diffusion-type assays (KBA), and Post-antibiotic Effect (PAE), 

both of which are common for determining an antibiotics efficacy (Braga, 2004; Drew, 1972). 
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Experimental 

Nanosol Preparation: 

 Titania nanosol was synthesized using 10 mL of titanium (IV) butoxide precursor 

purchased from Sigma Aldrich. This inorganic alkoxide was dissolved in 25 mL of ethanol and 

added drop wise to 200 mL of a .04 M nitric acid solution in a 500 mL round bottom flask while 

being stirred at room temperature for 48 hours to ensure that the hydrolysis reaction takes place 

to form titania crystals. This nanosol was set to stand at room temperature for an additional 72 

hours before it could be used for the coating application. The TiO2 content was measured using a 

TA Instruments Q-500 Thermogravimetric Analyzer (TGA). The dispersion was measured to 

contain 0.66% solids. 

Coating Application: 

 The titania nanosol was coated onto a freshly cleaned bed sheet using a dip coating 

technique. A brand new hospital bed sheet, T-180 thread count, 65 % cotton, 35 % nylon, was 

used. The bed sheet was sterilized by boiling for 10 minutes, then washed at 60°C with 50 mL 

Tide
®
 Original Scent liquid laundry detergent and 100 mL of deionized water using a 500 mL 

beaker for 30 minutes to detach any dirt or impurities that might inhibit the coating from 

adhering to the fabric. The fabric was then dipped in ethanol, washed with water to remove any 

excess detergent, and dried overnight in a 60 °C oven. The bulk fabric was cut into 1 in
2
 pieces. 

Three pieces were set aside and three were submersed in a titania nanosol for 2.5 minutes with 

mixing. It was pressed between two pieces of filter paper to remove excess liquid and then 

placed in a 60 °C oven for five minutes to cure the coating. Oven temperature must be increased 

to 115 °C to facilitate attachment of titania to fiber as reported by Wu et al. (Wu, 2009) which 

increases the formation of titanium dioxide crystals. Coated textiles were placed in a hot water 
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bath at 70 °C for 2 hours to remove any unbound titania particles from the textile to leave a 

cleanly coated surface. 

Surface Characterization: 

 Textile surfaces were characterized via SEM for adhesion of titania particulates. Linen 

samples (coated and uncoated) were cut to 0.25 in
2  

pieces. In order to increase electrical 

conductivity of linen, it was sputtered with a 50 Å thick layer of gold which increased the 

focusing potential. Specimens were examined at approximately 500, 2000, and 10,000X 

magnification.  Energy Dispersive X-ray analysis (EDX) was carried out at the low and high 

magnifications (500/10,000X) to determine the elemental composition of both coated and non-

coated substrates. Areas which were found to have high content of titania by EDX were 

characterized.  

Antimicrobial Activity 

 Antimicrobial activity was analyzed using two separate assays; KBA and PAE. A KBA is 

used to determine the resistance of a bacterial or viral strain to a certain antibiotic or drug 

(DeCross, 1993). Typically, a cotton disk is saturated in an antibiotic or detergent and is placed 

on a growth medium such as tryptic-soy agar (TSA) containing a freshly coated liquid layer of a 

diluted bacterial colony. The dish is then incubated at 35°C  for 24 hours (temperature most 

suitable for S. Aureus) and the “zone of inhibition” is measured. The area surrounding the disk 

where no colonies have formed indicates the “zone of inhibition”. The diameter of this circular 

area is significant of a bacteria’s resistance to a specific antibiotic. This diameter is strongly 

dependent on  the concentration of antibiotic, bacterial species and temperature of incubation 

(Drew, 1972). In this study, 1 in
2
 titania coated fabric was tested using KBA. In addition, a PAE 

is typically used to observe effectiveness of an antibiotic. PAE is measured by the recovery time 



12 
 

of a bacterial colony after it has been exposed to an antibiotic for a given amount of time. The 

PAE is dependent on the exposure time, bacterial species, and concentration of the antibiotic 

(Sharma, 2002). The PAE can be defined as the time it takes for a bacterial colony to recover to 

full growing potential after it has been exposed to an antibiotic and can be measured using 

absorption spectroscopy. By using absorption spectroscopy, the concentration of microorganism 

or colony forming units (CFU) can be determined. The PAE can be calculated at the time a 

bacterial colony has increased  to its maximum growth potential or when the absorption on the 

spectrometer increased by 1 OD600. An absorption increase of 1OD600 indicates an increase of 1 

log10 colony forming units. As bacteria increased by 1 log CFU unit, it indicates that a bacterial 

colony has returned to its maximum growth rate. 

White textiles (same as above) were all tested for their ability to inhibit growth of S. 

aureus on tryptic-soy agar (TSA) agar.  S. aureus (ATCC 6538) was obtained from the Cal Poly 

microbiology stockroom and analyzed for purity. It was streaked on a sheep blood agar plate and 

incubated for 24 hours at approximately 35°C to detect purity. S. aureus is a beta-hemolytic 

species that turns red agar yellow. Stock S. aureus  was prepared by picking 4-5 typical colonies 

with a sterile disposable 10 μL loop and re-suspending colony in 25 mL of tryptic-soy broth 

(TSB) in a sterile Erlenmeyer flask.  The flask was placed in a shaker-incubator for 2 hours at   

35 °C and then adjusted to .09-.12 D.U. on a Spectronic 20 OD600 spectrometer which 

corresponds to about 1x10
8
 CFU S. aureus. This inoculum was then used for PAE and KBA. 

 In preparation for the PAE assay, 1 mL of TSB was added to 5 separate test tubes. A 1 in
2
 

piece of titania-coated white cloth was added to tube 1 and a non-coated piece of cloth was 

added to tube 2. 1 mL of 25 ppb silver nitrate is added to tube 3. The inoculum described above 

was diluted 1:10 with pre-warmed TSA and 1 mL was added to tubes 1-4. Tube 4 serves as the 
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inoculum control (only S. aureus and growth medium without fabric) and tube 5 serves as 

medium sterility containing only the growth medium, (Table 1). The tubes were incubated for 1 

hour and the inoculum was plated on TSA using a spread-plate method by pipetting 0.1mL 

aliquots of 10
-5 

and 10
-6 

dilutions of inoculum to determine viable bacterial count. Tubes 1-6 are 

incubated for 1 hour and then diluted 1:1000 with pre-warmed TSB and 250 μL aliquots were 

pipetted into sterile micro well plates in duplicate. Growths curves were constructed taking 

absorbance readings at 600 nm every 10 minutes for 12 hours on a Molecular Devices Spectra 

Max Plus 384 micro plate reader.   

 

Table 1: Contents of Tubes 

 

 

 A slightly altered KBA method was used. Coated and un-coated textiles were used and 

observed for growth around the edges as opposed to measuring zone of inhibition surrounding 

the traditional cotton disk. The textile samples were dried and cured so that the titania 

nanoparticles could form on the surface of the material. S. aureus solution (1x10
8 

CFU) was 

streaked uniformly onto TSA. Six 1 in
2
 squares of cloth (3 titania coated, 3 uncoated placed side 

by side) were placed on fresh bed of S. aureus (Figure 1). The plates were placed in an incubator 

at 35 °C for 24 hours, and then placed on a laboratory bench for 24 hours with illumination from 

indoor fluorescent light bulbs to encourage photo catalytic activity. 

Tube # Contents

1 TiO2 Coated

2 Uncoated Fabric

3 25 µg/L AgNO3

4 Inoculum Control

5 Only Growth Medium
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Figure 1: Diagram exhibits the orientation of titania coated vs. non-coated textiles on a bed of S. 

aureus. 
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Results and Discussion: 

Surface Characterization 

 Figures 2 and 3 display the SEM images of a coated vs. uncoated linen at 500 X 

magnification. It is difficult to distinguish individual fibers in Figure 3 compared to easily 

distinguished fibers in Figure 2. The difference in clarity is most likely be a result of the added 

titanium dioxide particles. Figure 2 also exhibits a much greater depth of field than Figure 3. 

This may indicate that there is less free space due to the presence of titania. This tightly packed 

network makes it difficult to perceive depth in the image. It was also observed that the fabrics 

were physically stiffer and brittle when coated compared to a pristine (uncoated) fabric. At low 

magnifications, the EDS exhibited significant peaks for carbon and oxygen as expected. Carbon 

and oxygen are the key elements of the polymer chains that make up cotton and nylon fibers. The 

EDX displayed trace amounts of gold due to gold sputtering procedure used to enhance electrical  

conductivity for SEM analysis. Titania coated fabric exhibited a large signal of titanium at   

15.05 % weight as determined by EDX software. 
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Figure 2: SEM Image of uncoated white fabric at 500 X magnification. 

 

Figure 3: SEM image of titania coated white fabric at 500 X magnification. 
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 At higher magnifications (greater than 1500 X) particle formations are observed between 

the fibers (Figure 5) rather than on the surface of the fibers. At approximately 2000 X 

magnification there is little difference in depth of field between coated (Figure 5) and uncoated 

(pristine) fabrics (Figure 4). The coating formed a branching network throughout the specimen in 

Figure 5, while the non-coated fabric displayed very smooth surfaces on the fibers with free 

space in between them. 

 

 

 

Figure 4: SEM image of uncoated white fabric at 2000 X magnification. 
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Figure 5: SEM image of titania coated white fabric at 1500 X magnification. 

 

  

 Figures 6 and 7 display the SEM images of very high magnifications of coated and 

pristine fabrics. Unfortunately, the SEM could not focus above 8000 X, before losing focus, but 

was still comparable with the high magnification of the non-coated fabric in Figure 6 which 

allowed  focus as high as 12000 X. At this magnification, the non-coated fabric shows a very 

clear depth of field, while the coated fabrics are very flat in their image. Titania formed 

interstitially between various fibers of coated fabric (Figure 7). Titania particle sizes were 

consistently between 5 and 10 µm. EDS characterized them to be titanium and oxygen indicating 

that they are indeed titanium dioxide microparticles rather than nanoparticles. EDS also displays 

the placement of titania particles in the fiber matrix. It is clear that the composition of the 

interstitial area is largely made up by titanium and oxygen (32 and 46 % weight), which is likely 
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to be titanium dioxide (Figure 7). The fiber surfaces itself contains very little titanium (2.21 % 

weight) compared to the interstitial space between fibers. The network of titania particles may 

contribute to the observed stiffness of this textile.  

 

Figure 6: SEM of Uncoated white fabric at 12000 X. 

 

Figure 7: SEM Titania coated white fabric at 8000 X. 
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PAE of Titania Coated Fabrics 

 

Figure 8: PAE on S. aureus of titania coated fabric, AgNO3, pristine fabric, and no other things 

in TSB. 

Table 2: PAE results of titania coated textile versus silver. 
 

 

 The PAE of a titania coated films is exhibited in Figure 8. The absorbance values 

correlate to CFUs of S. aureus forming after the antibiotics (titania and silver nitrate) have been 

removed. As soon as the curve reaches its steepest point, S. aureus has reached its maximum 

growth rate, meaning that the antimicrobial activity has diminished. A trace amount, 25 parts per 

billion (ppb), of silver nitrate was used because of its known antimicrobial activity in aqueous 

solutions (Roy, 2007) which were used for a standard antibiotic on the PAE.  Although a small 

Antibiotic PAE (hours)

Titania coated fabric 1

Pristine fabric 0.2

25 ppb AgNO3 1.2
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amount is used, AgNO3 was able to create a PAE of 1.2 hours in an ultra-dilute solution. 

Considering that these antibiotics were only exposed to a S. aureus for 1 hour, a 1 hour lasting 

effect is substantial compared to other antibiotics (Sharma, 2002). Titania coated textiles were 

also able to suppress the bacterial growth by resulting in a PAE of 1 hour. The uncoated fabric 

shows an inhibition of growth for 0.2 hours. This inhibition may be due to the fact that the 

substrate is not the most applicable growth medium for S. aureus making it difficult for bacteria 

to grow. It is possible that the 1 hour PAE observed in the titania coated samples is due to 

photocatalytic antimicrobial activity. Typical PAEs may last between 1 and 3 hours but will not 

completely describe the antimicrobial activity of a compound (Braga, 2004).  

Kirby Bauer Assays 

 KBAs determine antimicrobial efficacy and may suggest photo catalytic activity of the 

TiO2 coated fabric. The KBA is shown for six different fabrics. Three were coated with titania 

(Figures 9d, 9e and 9f) while three were uncoated (9a, 9b, and 9c). Figure 9 displays the 

inoculated medium TSA plate after textiles have been removed. From top to bottom was blue 

nylon/cotton blended textile (9a and 9d), white nylon/cotton blend (9b and 9e), and yellow 

carbon laced nylon textile (9c and 9f). This was done to measure the visual regrowth around the 

edges of the cloth. All of the titania coated fabrics exhibited a low level of bacterial growth 

around their edges (Figures 9d,9e, and 9f). Both untreated blue and white textiles encouraged 

bacterial growth, but yellow did not. Unlike cotton/nylon blended fabrics, the yellow fabric was 

composed of a mixture of nylon fibers laced with carbon. It is clear that S. aureus was unable to 

grow around the edges and underneath this fabric sample whether or not it was coated in titania. 

The activated carbon may contribute to antimicrobial behavior of uncoated textile. Overall,  the 

lack of growth around the white and blue coated fabrics compared to the non-coated fabrics 
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indicate that there is possible antimicrobial activity occurring. The plates may be exhibiting 

photocatalytic activity due to indoor laboratory luminescence. The radical formation would 

therefore inhibit microbial growth around the edges of the cloth. 

 

Figure 9. Titania coated fabric areas are displayed on the right while pristine fabric areas are 

displayed on the left side of the Petri dish. a) and d) are blue cotton/nylon blended fabric, b) and 

e) are white cotton/nylon blended fabric, and c) and f) were carbon laced nylon. 
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Conclusion 

 A Titanium dioxide nanosol was prepared from a hydrolysis reaction of titanium (IV) 

butoxide and ethanol. This nanosol was used as a coating for cotton and nylon blended fibers and 

subjected to a  series of tests. SEM characterization displayed formation of titania particle 

formation in the interstitial spaces between fibers. The particles were determined to contain 

mostly titanium and oxygen by EDS analysis, confirming that the particles were most likely pure 

titanium dioxide particles. SEM instrument was unable to focus at high magnifications due to 

lack of electrical conductivity. Although a gold sputtering technique was used to increase 

electrical conductivity of sample, magnifications on the nano-scale were not obtained. Although 

larger than expected in size, SEM showed successful adhesion of titania particles in between 

threads of nylon/cotton textiles.  

 In biological analysis, titania coated textiles inhibited growth of S. aureus on and around 

its surface, and produced post- antibiotic effects on S. aureus in TSB. The prevention of future 

growth was exhibited in a PAE of 1 hour, meaning that it took S. aureus 1 hour to recover and 

resume its maximum growth rate once the titania coated fabric was removed from its growth 

medium. KBA displayed an inhibition of growth around the edges of titania coated textile, but 

not around pristine substrates. In fact, S. aureus colonized favorably around pristine fabric on a 

TSA growth medium. It's possible that textile samples were not completely sterilized in the pre-

treatment process. Linens were pre-treated by boiling in water for 10 minutes. It's possible that 

the textile samples were contaminated with endosporic bacillus (able to withstand very high 

temperatures and pressures) prior to the boiling process. It might be that excess growth around 

the edges of the untreated  nylon/cotton textile in KBA is just contamination from earlier contact.  

In future experiments, it would be more aseptic to autoclave the textile samples for completely 
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sterile testing subjects to ensure that all spore forming organisms are killed. In addition to further 

microbiological tests, future work might include the study of adhesion efficiency of titania 

particles and antibacterial activity dependence on particle concentration. In addition to 

experimental improvements, the health effect of a titania coated textile for human application 

could be studied in future work. Before an application like this can be used in a clinical setting, 

its health effects must be studied. Photocatalysis and its effect on the skin (for use of titania 

textiles in clothing) needs to been investigated. 

 In conclusion, titanium (IV) butoxide was successfully used to synthesize a coating on 

the cotton/nylon substrates. The coating exhibited possible antimicrobial ability, but further 

research must be conducted to determine existence of photocatalytic activity. Because of titania's 

cost and ease of use, it has potential in the field of antimicrobial coatings to reduce the spread of 

infectious disease on surfaces. Although linen is not commonly known as a bacterial vector, it is 

gaining much more attention in hospitals and other clinical settings as an infectious disease 

carrier. Titanium dioxide’s ability to photo-degrade small compounds has already been utilized, 

but it has far greater potential and may contribute to saving lives by reducing the risk of 

infectious disease.  
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