• Previous investigators have identified strong positive relationships between genome size and seed mass within species, and across species from the same genus and family. • Here, we make the first broad-scale quantification of this relationship, using data for 1222 species, from 139 families and 48 orders. We analyzed the relationship between genome size and seed mass using a statistical framework that included four different tests. • A quadratic relationship between genome size and seed mass appeared to be driven by the large genome/seed mass gymnosperms and the many small genome size/large seed mass angiosperms. Very small seeds were never associated with very large genomes, possibly indicating a developmental constraint. Independent contrast results showed that divergences in genome size were positively correlated with divergences in seed mass. • Divergences in seed mass have been more closely correlated with divergences in genome size than with divergences in other morphological and ecological variables. Plant growth form is the only variable examined thus far that explains a greater proportion of variation in seed mass than does genome size.



Included in

Biology Commons



URL: https://digitalcommons.calpoly.edu/bio_fac/90