Although previous studies have demonstrated that heat-shock protein 70 (Hsp70) can be induced by environmental stress, little is known about natural variation in this response over short time scales. We examined how Hsp70 levels varied over days to weeks in two intertidal snail species of the genus Tegula. Sampling was conducted both under naturally changing environmental conditions and in different vertical zones on a rocky shore. The subtidal to low-intertidal T. brunnea was transplanted into shaded and unshaded mid-intertidal cages to assess temporal variation in Hsps under conditions of increased stress. For comparison, the low to mid-intertidal ,T. funebralis was transplanted into mid-intertidal cages, within this species’ natural zone of occurrence. Snails were sampled every 3 to 4 days for one month, and endogenous levels of two Hsp70-kDa family members (Hsp72 and Hsp74) were quantified using solid-phase immunochemistry. Following periods of midday low tides, levels of Hsps increased greatly in transplanted ,em>T. brunnea but not in T. funebralis. Levels of Hsps increased less in T. brunnea transplanted to shaded cages than to unshaded cages, suggesting that prolonged emersion and reduction in feeding time per se are factors that are only mildly stressful. Upregulated levels of Hsps returned to base levels within days. In unmanipulated snails collected from their natural zones, Hsp levels showed little change with thermal variation, indicating that these species did not experience thermally stressful conditions during this study. However, under common conditions in the mid-intertidal zone, Hsp70 levels reflected the different thermal sensitivities of the physiological systems of these two species.



Publisher statement

This is an author-produced electronic version of an article published in The Biological Bulletin. The official version of the article is available at http://www.biolbull.org/cgi/content/abstract/205/3/276.

Included in

Biology Commons



URL: https://digitalcommons.calpoly.edu/bio_fac/280