Date of Award

12-2012

Degree Name

MS in Engineering - Materials Engineering

Department

Materials Engineering

Advisor

Richard N. Savage

Abstract

Research to increase the efficiency of conventional solar cells is constantly underway. The goal of this work is to increase the efficiency of conventional solar cells by incorporating quantum dot (QD) nanoparticles in the absorption mechanism. The strategy is to have the QDs absorb UV and fluoresce photons in the visible region that are more readily absorbed by the cells. The outcome is that the cells have more visible photons to absorb and have increased power output. The QDs, having a CdSe core and a ZnS shell, were applied to the solar cells as follows. First, the QDs were synthesized in an octadecene solution, then they were removed from the solution and finally they were dried and deposited into polydimethylsiloxane (PDMS) and the PDMS/QD composite is allowed to cure. The cured sample is applied to a silicon solar panel. The panel with the PDMS/QD application outputs 2.5% more power than the one without, under identical illumination by a tungsten halogen lamp, using QDs that fluoresce in the orange region. This work demonstrates the feasibility of incorporating QDs to increase the efficiency of conventional solar cells. Because the solar cells absorb better in the red region, future effort will be to use QDs that fluoresce in that region to further boost cell output.