Date of Award


Degree Name

MS in Engineering - Bioengineering


Biomedical and General Engineering


Robert Szlavik


In previous studies it was determined that the fiber diameter distribution in a peripheral nerve could be estimated by a simulation technique known as group delay. These results could be further improved using a combinatorial optimization algorithm called simulated annealing. This paper explores the structure and behavior of simulated annealing for the application of optimizing the group delay estimated fiber diameter distribution. Specifically, a set of parameters known as the cooling schedule is investigated to determine its effectiveness in the optimization process.

Simulated annealing is a technique for finding the global minimum (or maximum) of a cost function which may have many local minima. The set of parameters which comprise the cooling schedule dictate the rate at which simulated annealing reaches its final solution. Converging too quickly can result in sub-optimal solutions while taking too long to determine a solution can result in an unnecessarily large computational effort that would be impractical in a real-world setting.

The goal of this study is to minimize the computational effort of simulated annealing without sacrificing its effectiveness at minimizing the cost function. The cost function for this application is an error value computed as the difference in the maximum compound evoked potentials between an empirically-determined template distribution of fiber diameters and an optimized set of fiber diameters. The resulting information will be useful when developing the group delay estimation and subsequent simulated annealing optimization in an experimental laboratory setting.