Date of Award

6-2017

Degree Name

MS in Aerospace Engineering

Department

Aerospace Engineering

Advisor

Dr. Graham Doig

Abstract

This work investigates the feasibility of producing small scale, low aerodynamic loading wind tunnel models, using FDM 3D printing methods, that are both structurally and aerodynamically representative in the wind tunnel. To verify the applicability of this approach, a 2.07% scale model of the NASA CRM was produced, whose wings were manufacturing using a Finite Deposition Modeling 3D printer. Experimental data was compared to numerical simulations to determine percent difference in wake distribution and wingtip deflection for multiple configurations.

Numerical simulation data taken in the form of CFD and FEA was used to validate data taken in the wind tunnel experiments. The experiment utilized a wake rake to measure 3 different spanwise locations of the wing for aerodynamic data, and a videogrammetry method was used to measure the deflection of the wingtips for structural data. Both numerical simulations and experiments were evaluated at Reynolds numbers of 258,000 and 362,000 at 0 degrees angle of attack, and 258,000 at 5 degrees angle of attack.

Results indicate that the wing wake minimum in the wind tunnel test had shifted approximately 8.8mm at the wingtip for the Nylon 910 wing at 258,000 Reynolds number for 0 degrees angle of attack when compared to CFD. Videogrammetry results indicate that the wing deflected 5.9mm, and has an 18.6% difference from observed deflection in FEA. This reveals the potential for small scale wind tunnel models to be more representative of true flight behavior for low loading scenarios.